DigitalPath, Inc.

TEST REPORT FOR
Gen7 AP
Models: G7RL10H and G7RL10S

Tested to The Following Standards:
FCC Part 15 Subpart E Section(s)
15.207 \& 15.407

UNII 1 AND UNII 2a

Report No.: 100331-23

Date of issue: December 18, 2017

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 8
FCC Part 15 Subpart E 9
15.215 Occupied Bandwidth 9
15.407(a)Output Power 24
15.407(a) Power Spectral Density 57
15.407(a) EIRP at >30으응 89
15.407(b)\&(b)(1) Radiated Emissions \& Band Edge 97
15.207 AC Conducted Emissions 146
Supplemental Information 157
Measurement Uncertainty 157
Emissions Test Details 157

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

DigitalPath, Inc.
1065 Marauder St.
Chico, CA 95973

Representative: Brock Eastman

DATE OF EQUIPMENT RECEIPT: DATES) OF TESTING:

REPORT PREPARED BY:

Terri Rayle
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 100331

October 4, 2017
October 4, 2017 and November 3-17, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

1120 Fulton Place
Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .11

Site Registration \& Accreditation Information

Location	NIST CB \#	TAIWAN	CANADA	FCC	JAPAN
Fremont, CA	US0082	SL2-IN-E-1148R	$3082 \mathrm{~B}-1$	US1023	A-0149
Mariposa A, CA	USO103	SL2-IN-E-1147R	$3082 A-2$	US1024	A-0136

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart E-15.407 (UNII 1 and UNII 2a)

Test Procedure	Description	Modifications	Results
15.215	Occupied Bandwidth	Mod. \#1	Pass
$15.407(\mathrm{a})$	Output Power	Mod. \#1	Pass
$15.407(\mathrm{a})$	Power Spectral Density	Mod. \#1	Pass
$15.407(\mathrm{a})$	EIRP at >30ㅇ Elevation	Mod. \#1	Pass
$15.407(\mathrm{~b}) \&(\mathrm{~b})(1)$	Radiated Emissions \& Band Edge	Mod. \#1	Pass
15.207	AC Conducted Emissions	Mod. \#1	Pass

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification \#1: A new GPS unit was installed into the product in order to pass spurious emissions.
Product Name: ublox7
Model: Max-7 GNSS module
Serial: NA
Manufacturer: ublox
All testing was repeated to insure validity of test results.
Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

[^0]
EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	$1713-0000107$

Support Equipment:

Device	Manufacturer	Model \#	S/N
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228
Laptop Computer	HP	Probook 6565b	None

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	$1713-0000107$
Supply			
30 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-30	None

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 3

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	$1713-0000107$
50 Degree Horn Antenna	Digital Path, Inc.	DP-TP-5-50	None

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

LABORATORIES, INC.

Configuration 4

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	$1713-0000107$
90 Degree Horn Antenna	Digital Path, Inc.	DP-TP-5-90	None

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 5

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10H	0000002
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	$1713-0000107$

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 7

Equipment Tested:

Device	Manufacturer	Model \#	S/N
90 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-90	None
50 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-50	None
30 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-30	None
Gen7 AP	DigitalPath, Inc.	G7RL10H	0000002
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	$1713-0000107$

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.11 ac
Operating Frequency Range:	$5.15-5.350 \mathrm{GHz}$
Modulation Type(s):	OFDM
Maximum Duty Cycle:	100%
Number of TX Chains:	4 (All are identical)
	30 Degree Horn / 17.5dBi
Antenna Type(s) and Gain:	50 Degree Horn / 13dBi
	90 Degree Horn /9dBi
	HexHorn / 13dBi
Beamforming Type:	None
Antenna Connection Type:	Integral PCB Trace
Nominal Input Voltage:	48 VDC POE
Firmware / Software used for Test:	Web Interface on EUT to Atheros TX99 Tool: athtestcmd provided by
	Qualcomm

Notes:

1. The 50 Degree Horn and the HexHorn are identical. The HexHorn has 6 of the 50 Degree horns within it and it uses the same exact radio.
2. Within the definitions provided within KDB 662911 D01 v02r01, the manufacturer declares the output from all antennas to be completely uncorrelated therefore, power aggregation is not required.

LABORATORIES, INC.

FCC Part 15 Subpart E

15.215 Occupied Bandwidth

Test Setup/Conditions			
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan
Test Method:	ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)	Test Date(s):	$11 / 3 / 2017$
Configuration:	1	The EUT is setup on a table with its antenna port directly connected to an analyzer through 11.4dB of attenuation. The EUT has two antenna ports that are identical. Testing was performed on Port 1	
Test Setup:	Modification \#1 was in place during testing.		
Declaration:			
 Temperature (으) 20 Relative Humidity (\%):			

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02660	Spectrum Analyzer	Agilent	E4446A	$10 / 10 / 2016$	$10 / 10 / 2018$	
03361	Cable	Astrolab	$32022-2-29094-$ $48 T C$	$1 / 10 / 2017$	$1 / 10 / 2019$	
P05935	Attenuator	Weinschel	$84 A-10$	$1 / 18 / 2016$	$1 / 18 / 2018$	

1 Thesting the Future
LABORATORIES, INC.

26dB Occupied Bandwidth

Test Data Summary UNII 1

Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
5180	1	OFDM $/ 20 \mathrm{MHz}$	23221		
5200	1	OFDM $/ 20 \mathrm{MHz}$	23198		
5240	1	OFDM $/ 20 \mathrm{MHz}$	23245		
5180	1	OFDM $/ 40 \mathrm{MHz}$	43327		
5200	1	OFDM $/ 40 \mathrm{MHz}$	43804	None	NA
5205	1	OFDM $/ 40 \mathrm{MHz}$	43360		
5210	1	OFDM $/ 40 \mathrm{MHz}$	43527		
5200	1	OFDM $/ 80 \mathrm{MHz}$	89334		
5210	1	OFDM $/ 80 \mathrm{MHz}$	89968		
5240	1	OFDM $/ 80 \mathrm{MHz}$	88531		

Test Data Summary - UNII 2a

Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
5260	1	OFDM $/ 20 \mathrm{MHz}$	23469		
5300	1	OFDM $/ 20 \mathrm{MHz}$	23325		
5320	1	OFDM $/ 20 \mathrm{MHz}$	23046		
5260	1	OFDM $/ 40 \mathrm{MHz}$	43571	None	NA
5300	1	OFDM $/ 40 \mathrm{MHz}$	43669		
5310	1	OFDM $/ 40 \mathrm{MHz}$	43647		
5320	1	OFDM $/ 40 \mathrm{MHz}$	43662		
5260	1	OFDM $/ 80 \mathrm{MHz}$	89866		
5300	1	OFDM $/ 80 \mathrm{MHz}$	89836		

LABORATORIES, INC.

99\% Occupied Bandwidth

Test Data Summary - UNII 1					
Frequency (MHz)	Antenna Port	Modulation	$\begin{gathered} \text { Measured } \\ (\mathrm{kHz}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Limit } \\ & \text { (kHz) } \end{aligned}$	Results
5180	1	OFDM / 20MHz	18026	None	NA
5200	1	OFDM / 20MHz	18014		
5240	1	OFDM / 20MHz	18020		
5180	1	OFDM / 40MHz	36421		
5200	1	OFDM / 40MHz	36398		
5205	1	OFDM / 40MHz	36388		
5210	1	OFDM / 40MHz	36424		
5200	1	OFDM / 80MHz	76233		
5210	1	OFDM / 80MHz	76195		
5240	1	OFDM / 80MHz	76222		

Test Data Summary - UNII 2a

Frequency (MHz)	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit (kHz)	Results
5260	1	OFDM $/ 20 \mathrm{MHz}$	18022		
5300	1	OFDM $/ 20 \mathrm{MHz}$	18016		
5320	1	OFDM $/ 20 \mathrm{MHz}$	18011		
5260	1	OFDM $/ 40 \mathrm{MHz}$	36405	None	NA
5300	1	$O F D M / 40 \mathrm{MHz}$	36422		
5310	1	$O F D M / 40 \mathrm{MHz}$	36377		
5320	1	$O F D M / 40 \mathrm{MHz}$	36414		
5260	1	$O F D M / 80 \mathrm{MHz}$	76230		
5300	1	$O F D M / 80 \mathrm{MHz}$	76296		

Plots
 UNII 1

$20 \mathrm{MHz} /-26 \mathrm{~dB}$

Low Channel

Middle Channel

High Channel
$40 \mathrm{MHz} /-26 \mathrm{~dB}$

Low Channel

Low Channel, 5180

Middle Channel

High Channel
$80 \mathrm{MHz} /-26 \mathrm{~dB}$

Low Channel

Low Channel, 5200

High Channel

High Channel, 5210

UNII 2a
 20MHz / -26dB

Low Channel

Middle Channel

High Channel
$40 \mathrm{MHz} /-26 \mathrm{~dB}$

Low Channel

Middle Channel

High Channel

High Channel, 5320
$80 \mathrm{MHz} /-26 \mathrm{~dB}$

Low Channel

High Channel, 5300

Test Setup Photos

LABORATORIES, INC.

15.407(a) Output Power

Test Setup/Conditions

Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan
Test Method:	ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)	Test Date(s):	$11 / 14 / 2017-11 / 15 / 2017$
Configuration:	1	The EUT is setup on a table with its antenna port directly connected to an analyzer through 11.4dB of attenuation. The EUT has two antenna ports that are identical. Testing was performed on Port 1	
Test Setup:	Modification \#1 was in place during testing.		
Declaration:			

Environmental Conditions			
Temperature (으)	$20-22$	Relative Humidity (\%):	$42-45$

Test Equipment

Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due
02660	Spectrum Analyzer	Agilent	E4446A	$10 / 10 / 2016$	$10 / 10 / 2018$
03361	Cable	Astrolab	$32022-2-29094-$ $48 T C$	$1 / 10 / 2017$	$1 / 10 / 2019$
	Attenuator	Weinschel	$84 A-10$	$1 / 18 / 2016$	$1 / 18 / 2018$

14 Testing the Future
Testing the Future

Test Data Summary - Voltage Variations-20MHz Channel Bandwidth

Frequency (MHz)	Modulation / Ant Port	$\mathrm{V}_{\text {Minimum }}$ (dBm)	$\mathrm{V}_{\text {Nominal }}$ (dBm)	$\mathrm{V}_{\text {Maximum }}$ (dBm)	Max Deviation from $V_{\text {Nominal }}(\mathrm{dB})$
UNII 1					
5180	OFDM / Ant Port 1	17.98	17.96	17.98	0.02
5220	OFDM / Ant Port 1	20.43	20.44	20.42	0.02
5240	OFDM / Ant Port 1	20.79	20.78	20.76	0.03
UNII 2a					
5260	OFDM / Ant Port 1	20.73	20.74	20.73	0.01
5300	OFDM / Ant Port 1	20.04	20.06	20.07	0.03
5320	OFDM / Ant Port 1	16.90	16.89	16.88	0.02

Test performed using the conducted method and using the operational mode with the highest output power, representing worst case.

Frequency (MHz)	Modulation / Ant Port	VMinimum (dBm)	$\mathrm{V}_{\text {Nominal }}$ (dBm)	VMaximum (dBm)	Max Deviation from $V_{\text {Nominal }}(\mathrm{dB})$
UNII 1					
5180	OFDM / Ant Port 1	12.30	12.32	12.30	0.02
5205	OFDM / Ant Port 1	17.00	17.01	17.02	0.02
5210	OFDM / Ant Port 1	17.13	17.13	17.15	0.02
UNII 2a					
5260	OFDM / Ant Port 1	17.62	17.62	17.63	0.01
5300	OFDM / Ant Port 1	17.01	16.98	17.00	0.03
5320	OFDM / Ant Port 1	13.20	13.21	13.20	0.01

Test performed using the conducted method and using the operational mode with the highest output power, representing worst case.

Test Data Summary - Voltage Variations-80MHz Channel Bandwidth

Frequency (MHz)	Modulation / Ant Port	$\mathrm{V}_{\text {Minimum }}$ (dBm)	$\mathrm{V}_{\text {Nominal }}$ (dBm)	$\mathrm{V}_{\text {Maximum }}$ (dBm)	Max Deviation from $V_{\text {Nominal }}(\mathrm{dB})$
UNII 1					
5200	OFDM / Ant Port 1	12.34	12.35	12.36	0.02
5240	OFDM / Ant Port 1	9.21	9.22	9.21	0.01
UNII 2a					
5260	OFDM / Ant Port 1	9.08	9.09	9.09	0.01
5300	OFDM / Ant Port 1	12.45	12.45	12.46	0.01

Test performed using the conducted method and using the operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V $_{\text {Nominal }}:$	48 VDC
V Minimum:	40.8 VDC
$\mathrm{V}_{\text {Maximum }}:$	55.2 VDC

LABORATORIES, INE.

UNII 1 Test Data Summary - RF Conducted Measurement

Measurement Option: AVGSA-1

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
20MHz Channel BW					
5180	OFDM	17.5dBi 30DegHorn	13.17	≤ 18.5	Pass
5200	OFDM	17.5 dBi 30 DegHorn	13.20	≤ 18.5	Pass
5240	OFDM	17.5 dBi 30 DegHorn	13.46	≤ 18.5	Pass
5180	OFDM	13 dBi 50DegHorn / HexHorn	16.55	≤ 23	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	13.20	≤ 23	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	13.46	≤ 23	Pass
5180	OFDM	9dBi 90DegHorn	17.55	≤ 27	Pass
5200	OFDM	9 dBi 90 DegHorn	19.84	≤ 27	Pass
5240	OFDM	9 dBi 90 DegHorn	20.46	≤ 27	Pass

5200	OFDM	17.5dBi 30DegHorn	9.48	≤ 18.5	Pass
5205	OFDM	17.5 dBi 30 DegHorn	9.52	≤ 18.5	Pass
5210	OFDM	17.5dBi 30DegHorn	9.65	≤ 18.5	Pass
5190	OFDM	13 dBi 50DegHorn/ HexHorn	10.74	≤ 23	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	9.8	≤ 23	Pass
5205	OFDM	13 dBi 50DegHorn/ HexHorn	9.85	≤ 23	Pass
5180	OFDM	9dBi 90DegHorn	11.77	≤ 27	Pass
5205	OFDM	9 dBi 90 DegHorn	16.53	≤ 27	Pass
5210	OFDM	9 dBi 90DegHorn	16.67	≤ 27	Pass
80MHz Channel BW					
5240	OFDM	17.5dBi 30DegHorn	8.67	≤ 18.5	Pass
5210	OFDM	13 dBi 50DegHorn/ HexHorn	9.98	≤ 23	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	10.14	≤ 23	Pass
5200	OFDM	9dBi 90DegHorn	11.5	≤ 27	Pass
5205	OFDM	9 dBi 90 DegHorn	13.45	≤ 27	Pass

For access points using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(i):
Limit $=30-$ Roundup $(G-6)$

ABORATORIES, INC.

UNII 2a Test Data Summary - RF Conducted Measurement

Measurement Option: AVGSA-1

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
20MHz Channel BW					
5260	OFDM	17.5 dBi 30 DegHorn	10.04	≤ 12.5	Pass
5300	OFDM	17.5dBi 30DegHorn	9.43	≤ 12.5	Pass
5320	OFDM	17.5 dBi 30DegHorn	11.33	≤ 12.5	Pass
5260	OFDM	13 dBi 50DegHorn/ HexHorn	10.04	≤ 17	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	9.43	≤ 17	Pass
5320	OFDM	13 dBi 50DegHorn/ HexHorn	12.91	≤ 17	Pass
5260	OFDM	9dBi 90DegHorn	20.35	≤ 21	Pass
5300	OFDM	9 dBi 90 DegHorn	19.80	≤ 21	Pass
5320	OFDM	9 dBi 90 DegHorn	16.53	≤ 21	Pass
40MHz Channel BW					

5260	OFDM	17.5 dBi 30 DegHorn	10.21	≤ 12.5	Pass
5300	OFDM	17.5 dBi 30 DegHorn	9.65	≤ 12.5	Pass
5310	OFDM	17.5 dBi 30 DegHorn	6.72	≤ 12.5	Pass
5260	OFDM	13 dBi 50DegHorn/ HexHorn	12.25	≤ 17	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	14.33	≤ 17	Pass
5320	OFDM	13 dBi 50DegHorn/ HexHorn	12.32	≤ 17	Pass
5260	OFDM	9dBi 90DegHorn	16.74	≤ 21	Pass
5300	OFDM	9 dBi 90 DegHorn	16.17	≤ 21	Pass
5320	OFDM	9 dBi 90DegHorn	12.42	≤ 21	Pass
80MHz Channel BW					
5260	OFDM	17.5dBi 30DegHorn	8.60	≤ 12.5	Pass
5260	OFDM	13 dBi 50 DegHorn	12.14	≤ 17	Pass
5300	OFDM	13 dBi 50 DegHorn	10.64	≤ 17	Pass
5260	OFDM	9dBi 90DegHorn	14.09	≤ 21	Pass
5300	OFDM	9 dBi 90 DegHorn	11.72	≤ 21	Pass

The limit is calculated in accordance with 15.407(a)(2):

$$
\text { Limit }=\text { The lesser of }\left\{\begin{array}{c}
24 \mathrm{dBm}-(G-6) \\
11 \mathrm{dBm}+10 \operatorname{LOG}(B)-(G-6)
\end{array}\right.
$$

Plots

UNII 1
$\underline{20 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}}$

LB, Set 16

MB, Set 16

HB, Set 16
$\underline{20 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}}$

LB, Set 20

MB, Set 22

HB, Set 22

20 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 16

MB, Set 16

HB, Set 16
$40 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

LB, Set 12

MB, Set 12

HB, Set 12

40 MHz / 90Deg / 9dBi

LB, Set 14

MB, Set 18.5

HB, Set 18.5
$40 \mathrm{MHz} / \mathrm{HexHorn} / 50 \mathrm{Deg}$ Horn / 13dBi

LB, Set 12

MB, Set 12

HB, Set 16
$80 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

Set 10

$80 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}$

LB, Set 14

HB, Set 16

80 MHz / HexHorn / 50Deg Horn / 13dBi

HB, Set 10

UNII 2a
 20MHz / 30Deg/17.5dBi

LB, Set 12.5

MB, Set 12.5 LABORATORIES, INC.

HB, Set 14
$\underline{20 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}}$

LB, Set 22

MB, Set 22

HB, Set 19

20 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12.5

MB, Set 12.5

HB, Set 16
$40 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

LB, Set 12

MB, Set 12

HB, Set 9
$\underline{40 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}}$

LB, Set 18.5

MB, Set 18.5

HB, Set 15

40 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12

MB, Set 15

HB, Set 15
$80 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

Set 10

80 MHz / 90Deg / 9dBi

LB, Set 16

HB, Set 14

80 MHz / HexHorn / 50Deg Horn / 13dBi

Set 12

Test Setup Photos

LIABORATORIES, INC.

15.407(a) Power Spectral Density

Test Setup/Conditions

Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan
Test Method:	ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)	Test Date(s):	$11 / 14 / 2017-11 / 15 / 2017$
Configuration:	1	The EUT is setup on a table with its antenna port directly connected to an analyzer through 11.4dB of attenuation. The EUT has two antenna ports that are identical. Testing was performed on Port 1	
Test Setup:	Modification \#1 was in place during testing.		
Declaration:			

Environmental Conditions			
Temperature (으)	$20-22$	Relative Humidity (\%):	$42-45$

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02660	Spectrum Analyzer	Agilent	E4446A	$10 / 10 / 2016$	$10 / 10 / 2018$	
03361	Cable	Astrolab	$32022-2-29094-$ $48 T C$	$1 / 10 / 2017$	$1 / 10 / 2019$	
P05935	Attenuator	Weinschel	$84 A-10$	$1 / 18 / 2016$	$1 / 18 / 2018$	

UNII 1 Test Data Summary - RF Conducted Measurement

Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	$\begin{gathered} \text { Limit } \\ (\mathrm{dBm} / \mathrm{MHz}) \end{gathered}$	Results
20MHz Channel BW					
5180	OFDM	17.5dBi 30DegHorn	4.54	≤ 5.5	Pass
5200	OFDM	17.5 dBi 30 DegHorn	4.57	≤ 5.5	Pass
5240	OFDM	17.5dBi 30DegHorn	-0.20	≤ 5.5	Pass
5180	OFDM	13 dBi 50DegHorn/ HexHorn	4.46	≤ 10	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	4.57	≤ 10	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	-0.20	≤ 10	Pass
5180	OFDM	9dBi 90DegHorn	3.89	≤ 14	Pass
5200	OFDM	9 dBi 90 DegHorn	6.18	≤ 14	Pass
5240	OFDM	9 dBi 90 DegHorn	6.80	≤ 14	Pass
40MHz Channel BW					
5200	OFDM	17.5dBi 30DegHorn	-6.93	≤ 5.5	Pass
5205	OFDM	17.5 dBi 30DegHorn	-6.85	≤ 5.5	Pass
5210	OFDM	17.5dBi 30DegHorn	-6.74	≤ 5.5	Pass
5190	OFDM	13 dBi 50DegHorn/ HexHorn	-4.52	≤ 10	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	-6.62	≤ 10	Pass
5205	OFDM	13 dBi 50DegHorn/ HexHorn	-6.52	≤ 10	Pass
5180	OFDM	9dBi 90DegHorn	-4.59	≤ 14	Pass
5205	OFDM	9 dBi 90 DegHorn	0.15	≤ 14	Pass
5210	OFDM	9 dBi 90 DegHorn	0.28	≤ 14	Pass
80 MHz Channel BW					
5240	OFDM	17.5dBi 30DegHorn	-10.80	≤ 5.5	Pass
5210	OFDM	13 dBi 50DegHorn/ HexHorn	-7.97	≤ 10	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	-9.33	≤ 10	Pass
5200	OFDM	9dBi 90DegHorn	-8.01	≤ 14	Pass
5205	OFDM	9 dBi 90 DegHorn	-6.09	≤ 14	Pass

For access points using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(i):
Limit $=17-$ Roundup $(G-6)$

ABORATORIES, INE.

UNII 2a Test Data Summary - RF Conducted Measurement

Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	$\begin{gathered} \text { Limit } \\ (\mathrm{dBm} / \mathrm{MHz}) \end{gathered}$	Results
20MHz Channel BW					
5260	OFDM	17.5 dBi 30 DegHorn	-3.66	≤-0.5	Pass
5300	OFDM	17.5 dBi 30 DegHorn	-4.25	≤-0.5	Pass
5320	OFDM	17.5 dBi 30 DegHorn	-2.30	≤-0.5	Pass
5260	OFDM	13 dBi 50DegHorn/ HexHorn	-3.66	≤ 4	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	-4.25	≤ 4	Pass
5320	OFDM	13 dBi 50DegHorn/ HexHorn	-0.72	≤ 4	Pass
5260	OFDM	9dBi 90DegHorn	6.64	≤ 8	Pass
5300	OFDM	9 dBi 90 DegHorn	6.13	≤ 8	Pass
5320	OFDM	9 dBi 90 DegHorn	2.91	≤ 8	Pass
40 MHz Channel BW					
5260	OFDM	17.5 dBi 30 DegHorn	-6.19	≤-0.5	Pass
5300	OFDM	17.5 dBi 30 DegHorn	-6.75	≤-0.5	Pass
5310	OFDM	17.5 dBi 30DegHorn	-9.68	≤-0.5	Pass
5260	OFDM	13 dBi 50DegHorn/ HexHorn	-4.14	≤ 4	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	-2.07	≤ 4	Pass
5320	OFDM	13 dBi 50DegHorn/ HexHorn	-2.734	≤ 4	Pass
5260	OFDM	9dBi 90DegHorn	0.35	≤ 8	Pass
5300	OFDM	9 dBi 90 DegHorn	-0.24	≤ 8	Pass
5320	OFDM	9 dBi 90 DegHorn	-3.98	≤ 8	Pass
80MHz Channel BW					
5260	OFDM	17.5dBi 30DegHorn	-10.94	≤-0.5	Pass
5260	OFDM	13 dBi 50DegHorn/ HexHorn	-7.39	≤ 4	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	-7.772	≤ 4	Pass
5260	OFDM	9dBi 90DegHorn	-5.45	≤ 8	Pass
5300	OFDM	9 dBi 90 DegHorn	-7.81	≤ 8	Pass

The limit is calculated in accordance with 15.407(a)(2):
Limit $=11-$ Roundup $(G-6)$

Plots

UNII 1
$\underline{20 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}}$

LB, Set 16-20M

MB, Set 16-20M

HB, Set 16-20M
$\underline{20 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}}$

LB, Set 20-20M

MB, Set 22-20M

HB, Set 22-20M

20 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 16-20M

MB, Set 16-20M

HB, Set 16-20M
$40 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

LB, Set 12-40M

MB, Set 12-40M

HB, Set 12-40M
$\underline{40 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}}$

LB, Set 14-40M

MB, Set 18.5-40M

HB, Set 18.5-40M

40 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12-40M

MB, Set 12-40M

HB, Set 16-40M
$80 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

Set $10-80 \mathrm{MHz}$

80MHz / 90Deg / 9dBi

LB, Set 14-80M

HB, Set 16-80M

80 MHz / HexHorn / 50Deg Horn / 13dBi

HB, Set 10-80M

UNII 2a
 20MHz / 30Deg / 17.5dBi

LB, Set 12.5-20M

MB, Set 12.5-20M LABORATORIES, INC.

HB, Set 14-20M
$\underline{20 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}}$

LB, Set 22-20M

MB, Set 22-20M LABORATORIES, INC.

HB, Set 19-20M

20 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12.5-20M

MB, Set 12.5-20M

HB, Set 16-20M
$40 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

LB, Set 12-40M

MB, Set 12-40M

HB, Set 9-40M
$40 \mathrm{MHz} / 90 \mathrm{Deg} / 9 \mathrm{dBi}$

LB, Set 18.5-40M

MB, Set 18.5-40M

HB, Set 15-40M

40 MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12-40M

MB, Set 15-40M

HB, Set 15-40M
$80 \mathrm{MHz} / 30 \mathrm{Deg} / 17.5 \mathrm{dBi}$

Set 10-80M

80MHz / 90Deg / 9dBi

LB, Set 16-80M

HB, Set 14-80M

80 MHz / HexHorn / 50Deg Horn / 13dBi

Set 12-80M

Test Setup Photos

LABORATORIES, INC.

15.407(a) EIRP at >30ㅇ Elevation

Test Setup/Conditions

Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan
Test Method:	ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)	Test Date(s):	$11 / 17 / 2017$
Configuration:	2,3, and 4		
Test Setup:	The EUT is setup horizontally on a Styrofoam table and oriented such that the face of the EUT is parallel to the table's 0 degree marker. The testing receive antenna is also oriented horizontal so that the polarity between receive antenna and EUT are consistent. Using a controller, the table is turned from 30 to 95 degrees in the direction that exposes the top of the EUT to the antenna slowly while simultaneously taking data that is later plotted. The angle that produced maximum radiation is where the power reading was taken.		
Declaration:	Modification \#1 was in place during testing.		

Environmental Conditions			
Temperature (으)	$17-21$	Relative Humidity (\%):	$45-48$

Test Equipment							
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due		
00327	Horn Antenna	EMCO	3115	$3 / 4 / 2016$	$3 / 4 / 2018$		
02115	Preamp	HP	83051 A	$2 / 27 / 2017$	$2 / 27 / 2019$		
03361	Cable	Astrolab	$32022-2-29094-$ $48 T C$	$1 / 10 / 2017$	$1 / 10 / 2019$		
P05935	Attenuator	Weinschel	$84 \mathrm{~A}-10$	$1 / 18 / 2016$	$1 / 18 / 2018$		
03543	Cable	Astrolab	$32022-29094 K-$ $29094 K-10 M$	$11 / 7 / 2017$	$11 / 7 / 2019$		
02660	Spectrum Analyzer	Agilent	E4446A	$10 / 10 / 2016$	$10 / 10 / 2018$		

LABORATORIES, INC.

Test Data Summary - Radiated Measurement
Measurement Option: AVGSA-1

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type / Gain $(\mathbf{d B i})$	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ \mathbf{3 m})$	Calculated $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
5200	OFDM	90 deg Horn $/ 9 \mathrm{dBi}$	90.2	-5.03	≤ 21	Pass
5200	OFDM	30 deg Horn $/ 17.5$	77.0	-18.23	≤ 21	Pass
5200	OFDM	50 deg Horn/ HexHorn $/ 13 \mathrm{dBi}$	79.3	-15.93	≤ 21	Pass

RF power calculated in accordance with KDB 789033.

$$
P(W)=\frac{(E \cdot d)^{2}}{30}
$$

Or equivalently, in logarithmic form:

$$
P(d B m)=E(d B u V / m)+20 L O G(d)-104.77
$$

Test Setup / Conditions / Data

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)
unit is in continuous mode
Antenna: 90 degree Horn, 30 degree Horn and 50 degree Horn
Gain: $9 \mathrm{dBi}, 17.5 \mathrm{dBi}$ and 13 dBi
Highest Generated Frequency not related to radio: 1.4 GHz

Frequency Range Investigated: Mid channel 5220 MHz at the highest amplitude for that channel.
Temperature: $17.8^{\circ} \mathrm{C}$
Rel. Humidity: 48\%

Test method: ANSI C63.10 (2013)

The receive antenna is co-polarized with the transmit antenna. The transmit antenna is set on its side and the table will be rotated 30 degrees for this measurement.
Power is measured using the integration method.
The HexHorn 30 degree elevation test will be performed with the 50 degree horn.
The radio and antenna are identical.
Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#:: 6 Date: 11/17/2017
15.407(a)(1) Power Limit at 30 Degree Elevation Test Distance: 3 Meters Horiz

Readings
\times QPReadings

- Ambient

1-15.407(a)(1) Power Limit at 30 Degree Elevation

O Peak Readings

* Average Readings

Software Version: 5.03.11

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T2	AN02115	Preamp	83051 A	$2 / 27 / 2017$	$2 / 27 / 2019$
T3	AN03361	Cable	$32022-2-29094-$ 		$1 / 10 / 2017$
48TC					
T4	ANP05935	Attenuator	$84 \mathrm{~A}-10$	$1 / 18 / 2016$	$1 / 18 / 2018$
T5	AN03543	Cable	$32022-29094 K-$ $29094 K-10 M ~$	$11 / 7 / 2017$	$11 / 7 / 2019$
T6	AN02660	Spectrum Analyzer	E4446A	$10 / 10 / 2016$	$10 / 10 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Setup Photos

30Deg, 17.5dBi

50Deg, 13dBi

90Deg, 9 dBi

LAEORAATOMES, INE:

15.407(b)\&(b)(1) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 1120 Fulton Place •Fremont, CA 94539 • 510-249-1170	
Customer:	Digital Path	
Specification:	15.407(b) / 15.209 Radiated Spurious Emissions	
Work Order \#:	100331	Date: 10/4/2017
Test Type:	Radiated Scan	Time: 14:41:25
Tested By:	Benny Lovan	Sequence\#: 5
Software:	EMITest 5.03.11	

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.
Modulation used: OFDM (802.11ac)
Unit is Beaconing
Antenna: 50 degree Hex Array Horn (6 horns)
Operational Frequency: Radio 1 is at 5745 MHz , Radio 2: 5540 MHz and Radio 3: 5240 MHz
Power Output Setting: all radios set to 17 dBm
Frequency Range Investigated: 30-1000M
Highest Generated Frequency not related to radio: 1.4 GHz

Radio $15745 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 2: 5540 MHz - Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 3: $5240 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Temperature: $18^{\circ} \mathrm{C}$
Rel. Humidity: 27\%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)
This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#; 5 Date: 10/4/2017
15.407(b) / 15.209 Radiated Spurious Emissions Test Distance: 10 Meters Horiz

[^1]- Peak Readings
* Average Readings

Software Version: 5.03.11

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	$11 / 1 / 2016$	$11 / 1 / 2018$
T2	ANP05656	Attenuator	PE7004-6	$12 / 22 / 2015$	$12 / 22 / 2017$
T3	AN00449	Preamp-Top Amp (dB)	$8447 F$	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06847	Cable	LMR195-FR-6	$7 / 31 / 2017$	$7 / 31 / 2019$
T5	ANP06883	Cable	LMR195-FR-3	$8 / 2 / 2017$	$8 / 2 / 2019$
T6	ANP04249	Cable	CXTA04A-50	$3 / 3 / 2016$	$3 / 3 / 2018$
T7	ANP06230	Cable-Amplitude +15C to +45C (dB)	CXTA04A-50	$11 / 29 / 2016$	$11 / 29 / 2018$
T8	AN03634	Spectrum Analyzer	E4445A	$8 / 30 / 2017$	$8 / 30 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 10 Meters

13	409.000 M	24.9	$\begin{array}{r} +16.2 \\ +0.4 \end{array}$	$\begin{aligned} & \hline+6.0 \\ & +1.7 \end{aligned}$	$\begin{array}{r} -27.2 \\ +2.3 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \end{aligned}$	+10.5	35.5	46.0	-10.5	Horiz
14	160.034 M	28.8	+10.5	+6.0	-26.8	+0.4	+10.5	32.0	43.5	-11.5	Horiz
			+0.2	+1.0	+1.4	+0.0					
15	361.710 M	24.3	+15.1	+6.0	-26.7	+0.6	+10.5	33.9	46.0	-12.1	Vert
			+0.3	+1.6	+2.2	+0.0					
16	$\begin{aligned} & 240.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	28.0	+12.0	+6.0	-26.4	+0.5	+10.5	33.9	46.0	-12.1	Vert
			+0.3	+1.3	+1.7	+0.0					
\wedge	240.000 M	35.4	+12.0	+6.0	-26.4	+0.5	+10.5	41.3	46.0	-4.7	Vert
			+0.3	+1.3	+1.7	+0.0					
18	318.878M	24.3	+14.0	+6.0	-26.2	+0.6	+10.5	32.9	46.0	-13.1	Vert
			+0.3	+1.4	+2.0	+0.0					

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170
Customer: Digital Path
Specification: $\quad 15.407(b)(1) / 15.209$ Radiated Spurious Emissions - Fixed PTP Devices
Work Order \#: 100331 Date: 11/2/2017
Test Type: Radiated Scan
Tested By: Benny Lovan
Benny Lovan
EMITest 5.03.11

Time: 15:40:00
Sequence\#: 6

Software:
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.
Modulation used: OFDM (802.11ac)
Antenna: 50 degree Hex Array Horn (6 horns)
Operational Frequency: Radio 1 is at 5745 MHz , Radio 2: 5540 MHz and Radio 3: 5180 MHz
Data Rate: Max
Power Output Setting: all radios set to 17 dBm
Frequency Range Investigated: 1-26.5G
Highest Generated Frequency not related to radio: 1.4 GHz
Radio 15745 MHz - Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 2: $5540 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 3: $5240 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Temperature: $20.9^{\circ} \mathrm{C}$
Rel. Humidity: 46.1\%
Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)
This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#: 6 Date: 11/2/2017
15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Horiz

Readings	
\times	Peak Readings
* AP Readings	
Average Readings	
Ambient	
\quad Software Version: 5.03 .11	
	$1-15.407(\mathrm{~b})(1) / 15.209$ Radiated Spurious Emissions - Fixed PTP Devices

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02115	Preamp	83051 A	$2 / 27 / 2017$	$2 / 27 / 2019$
T2	AN00327	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T3	AN03361	Cable	$32022-2-29094-$ 48TC	$1 / 10 / 2017$	$1 / 10 / 2019$
			E4446A	$10 / 10 / 2016$	$10 / 10 / 2018$
T4	AN02660	Spectrum Analyzer	$32022-29094 K-$ $29094 K-10 M ~$	$11 / 2 / 2015$	$11 / 2 / 2017$
T5	AN03543	Cable	$54 A-10$	$8 / 8 / 2016$	$8 / 8 / 2018$
T6	ANP06239	Attenuator	$84300-80039$	$1 / 18 / 2016$	$1 / 18 / 2018$
T7	AN01417	High Pass Filter	GH-62-25	$2 / 9 / 2016$	$2 / 9 / 2018$
T8	AN03366	Horn Antenna-ANSI C63.5 Calibration			
T9	AN02046	Horn Antenna	MWH-1826/B	$10 / 7 / 2016$	$10 / 7 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

	$\begin{gathered} 24768.000 \\ \text { M } \\ \text { Ave } \end{gathered}$	23.7	$\begin{array}{r} -34.0 \\ +19.6 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	46.9	68.2	-21.3	Vert
	$\begin{gathered} 24768.000 \\ \mathrm{M} \end{gathered}$	36.7	$\begin{array}{r} -34.0 \\ +19.6 \\ +34.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	59.9	68.2	-8.3	Vert
	$\begin{aligned} & \hline 24730.000 \\ & \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	23.8	$\begin{array}{r} -34.0 \\ +19.6 \\ +34.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	46.9	68.2	-21.3	Horiz
	$\begin{gathered} 24730.000 \\ \text { M } \end{gathered}$	35.2	$\begin{array}{r} -34.0 \\ +19.6 \\ +34.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	58.3	68.2	-9.9	Horiz
	$\begin{gathered} 13250.000 \\ \text { M } \\ \text { Ave } \\ \hline \end{gathered}$	20.1	$\begin{array}{r} -33.6 \\ +14.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.8 \end{array}$	+0.0	32.0	54.0	-22.0	Horiz
	$\begin{gathered} 13250.000 \\ \mathrm{M} \end{gathered}$	30.4	$\begin{array}{r} -33.6 \\ +14.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.8 \end{array}$	+0.0	42.3	54.0	-11.7	Horiz
	$\begin{gathered} 14488.300 \\ \text { M } \\ \text { Ave } \\ \hline \end{gathered}$	19.7	$\begin{array}{r} -34.4 \\ +14.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	31.9	54.0	-22.1	Vert
	$\begin{gathered} 14488.300 \\ \mathrm{M} \end{gathered}$	31.5	$\begin{array}{r} -34.4 \\ +14.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	43.7	54.0	-10.3	Vert
	$\begin{gathered} 12488.300 \\ \text { M } \\ \text { Ave } \end{gathered}$	19.1	$\begin{array}{r} -33.2 \\ +13.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.6 \end{array}$	+0.0	30.7	54.0	-23.3	Vert
	$\begin{gathered} 12488.300 \\ \mathrm{M} \end{gathered}$	31.8	$\begin{array}{r} -33.2 \\ +13.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.6 \end{array}$	+0.0	43.4	54.0	-10.6	Vert
	$\begin{gathered} 16988.300 \\ \mathrm{M} \end{gathered}$	28.4	$\begin{array}{r} -33.4 \\ +15.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ +30.6 \end{array}$	+0.0	44.8	68.2	-23.4	Vert
	$\begin{aligned} & \hline 21781.500 \\ & \text { M } \\ & \text { Ave } \\ & \hline \end{aligned}$	18.7	$\begin{array}{r} \hline-31.4 \\ +18.2 \\ +34.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	44.7	68.2	-23.5	Vert
	$\begin{gathered} 21781.500 \\ \mathrm{M} \end{gathered}$	31.7	$\begin{array}{r} -31.4 \\ +18.2 \\ +34.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	57.7	68.2	-10.5	Vert
	$\begin{gathered} 12250.000 \\ \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	18.6	$\begin{array}{r} -33.1 \\ +13.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.5 \end{array}$	+0.0	30.2	54.0	-23.8	Horiz
	$\begin{gathered} 12250.000 \\ \mathrm{M} \end{gathered}$	29.3	$\begin{array}{r} -33.1 \\ +13.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.5 \end{array}$	+0.0	40.9	54.0	-13.1	Horiz
	$\begin{gathered} 21567.000 \\ \text { M } \\ \text { Ave } \\ \hline \end{gathered}$	17.9	$\begin{array}{r} -31.7 \\ +18.2 \\ +34.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +1.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	43.4	68.2	-24.8	Horiz
	$\begin{gathered} 21567.000 \\ M \end{gathered}$	30.8	$\begin{array}{r} -31.7 \\ +18.2 \\ +34.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +1.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	56.3	68.2	-11.9	Horiz

$\begin{aligned} & \hline 44 \text { 6298.500M } \\ & \text { Ave } \end{aligned}$	19.7	$\begin{array}{r} -31.8 \\ +9.4 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.8 \\ +9.9 \end{array}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	41.6	68.2	-26.6	Vert
$\wedge 6298.500 \mathrm{M}$	30.3	$\begin{array}{r} -31.8 \\ +9.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+32.8 \\ +9.9 \end{array}$	$\begin{aligned} & +1.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	52.2	68.2	-16.0	Vert
$\begin{aligned} & 465798.500 \mathrm{M} \\ & \text { Ave } \end{aligned}$	21.5	$\begin{array}{r} -32.2 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+31.7 \\ +9.9 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	41.4	68.2	-26.8	Vert
$\wedge 5798.500 \mathrm{M}$	39.0	$\begin{array}{r} -32.2 \\ +9.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+31.7 \\ +9.9 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	58.9	68.2	-9.3	Vert
$\begin{aligned} & 485797.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	21.1	$\begin{array}{r} \hline-32.2 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+31.7 \\ +9.9 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	41.0	68.2	-27.2	Horiz
$\wedge 5797.000 \mathrm{M}$	37.8	$\begin{array}{r} -32.2 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+31.7 \\ +9.9 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	57.7	68.2	-10.5	Horiz
$$	20.5	$\begin{array}{r} -32.1 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	39.6	68.2	-28.6	Horiz
$\begin{gathered} \wedge \\ 10537.978 \\ M \end{gathered}$	46.4	$\begin{array}{r} -32.1 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	65.5	68.2	-2.7	Horiz
$\begin{array}{cc} \hline 52 \quad 10002.500 \\ \mathrm{M} \\ \text { Ave } \\ \hline \end{array}$	18.9	$\begin{array}{r} \hline-32.1 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+37.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	39.1	68.2	-29.1	Vert
$\begin{gathered} \wedge \\ \hline 10002.500 \\ \mathrm{M} \end{gathered}$	31.0	$\begin{array}{r} \hline-32.1 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+37.4 \\ +0.0 \end{array}$	$\begin{aligned} & +2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	51.2	68.2	-17.0	Vert
$\begin{aligned} & 54 \text { 9909.500M } \\ & \text { Ave } \end{aligned}$	18.9	$\begin{array}{r} \hline-32.1 \\ +12.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+37.2 \\ +0.0 \end{array}$	$\begin{aligned} & +2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	38.8	68.2	-29.4	Vert
$\wedge 9909.500 \mathrm{M}$	32.4	$\begin{array}{r} -32.1 \\ +12.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+37.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	52.3	68.2	-15.9	Vert
$56 \quad 10049.200$ M Ave	18.6	$\begin{array}{r} -32.2 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+37.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	38.7	68.2	-29.5	Horiz
$\begin{gathered} 10049.200 \\ M \end{gathered}$	37.2	$\begin{array}{r} -32.2 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+37.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	57.3	68.2	-10.9	Horiz
$\begin{array}{cc} \hline 58 & 10527.043 \\ \text { M } \\ \text { Ave } \\ \hline \end{array}$	19.6	$\begin{array}{r} -32.1 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +36.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	38.7	68.2	-29.5	Horiz
$\begin{aligned} & 59 \text { 9769.500M } \\ & \text { Ave } \end{aligned}$	19.0	$\begin{array}{r} \hline-32.0 \\ +11.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.8 \\ +0.0 \end{array}$	$\begin{aligned} & +2.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$		38.3	68.2	-29.9	Vert
^ 9769.500M	30.3	$\begin{array}{r} \hline-32.0 \\ +11.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+36.8 \\ +0.0 \end{array}$	$\begin{aligned} & +2.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.0	49.6	68.2	-18.6	Vert

$\begin{aligned} & 61 \quad 8549.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	19.2	$\begin{array}{r} -31.5 \\ +1.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +34.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.6	68.2	-31.6	Horiz
^ 8549.200M	39.8	$\begin{array}{r} -31.5 \\ +11.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +34.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	57.2	68.2	-11.0	Horiz
$\begin{aligned} & 63 \text { 2921.500M } \\ & \text { Ave } \end{aligned}$	23.4	$\begin{array}{r} \hline-33.1 \\ +6.2 \\ +0.0 \end{array}$	$\begin{array}{r} +26.7 \\ +9.9 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	34.2	68.2	-34.0	Vert
^ 2921.500M	35.5	$\begin{array}{r} \hline-33.1 \\ +6.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +26.7 \\ +9.9 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	46.3	68.2	-21.9	Vert
$\begin{gathered} 65 \quad 15250.000 \\ \mathrm{M} \\ \text { Ave } \\ \hline \end{gathered}$	20.3	$\begin{array}{r} -34.4 \\ +15.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.8 \end{array}$	+0.0	33.7	68.2	-34.5	Horiz
$\begin{gathered} \wedge 15250.000 \\ \mathrm{M} \end{gathered}$	31.5	$\begin{array}{r} -34.4 \\ +15.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.8 \end{array}$	+0.0	44.9	68.2	-23.3	Horiz
$\begin{aligned} & 67 \text { 1921.500M } \\ & \text { Ave } \end{aligned}$	26.1	$\begin{array}{r} 1-33.6 \\ \hline+5.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.5 \\ +9.8 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	32.8	68.2	-35.4	Vert
^ 1921.500M	42.1	$\begin{array}{r} \hline-33.6 \\ +5.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.5 \\ +9.8 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	48.8	68.2	-19.4	Vert
$\begin{aligned} & 69 \text { 1923.500M } \\ & \text { Ave } \end{aligned}$	24.9	$\begin{array}{r} \hline-33.6 \\ +5.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.5 \\ +9.8 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	31.6	68.2	-36.6	Horiz
$\wedge 1923.500 \mathrm{M}$	45.9	$\begin{array}{r} \hline-33.6 \\ +5.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.5 \\ +9.8 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	52.6	68.2	-15.6	Horiz
$\begin{array}{cc} \hline 71 & 13488.300 \\ \text { M } \\ \text { Ave } \\ \hline \end{array}$	19.4	$\begin{array}{r} -33.8 \\ +14.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.8 \end{array}$	+0.0	31.2	68.2	-37.0	Vert
$\begin{gathered} \wedge \begin{array}{c} 13488.300 \\ M \end{array} \end{gathered}$	31.3	$\begin{array}{r} \hline-33.8 \\ +14.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.8 \end{array}$	+0.0	43.1	68.2	-25.1	Vert

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170
Customer: Digital Path
Specification: $\quad 15.407(b)(1) / 15.209$ Radiated Spurious Emissions - Fixed PTP Devices
Work Order \#: 100331 Date: 11/10/2017
Test Type: Radiated Scan
Tested By: Benny Lovan
Software: EMITest 5.03.11

Time: 06:30:36
Sequence\#: 6

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 7		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 7		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.
Modulation used: OFDM (802.11ac)
Antenna: All Horns
Operational Frequency: Radio 1 is at 5745 MHz , Radio 2: 5540 MHz and Radio 3: 5180 MHz
Data Rate: Max
Power Output Setting: all radios set to 17 dBm
Frequency Range Investigated: 26.5-40G
Highest Generated Frequency not related to radio: 1.4 GHz
Radio 15745 MHz - Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 2: $5540 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 3: $5240 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Temperature: $20.9^{\circ} \mathrm{C}$
Rel. Humidity: 46.1\%
Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)
This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#: 6 Date: 11/10/2017
15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Vert

- Readings	
\times	Peak Readings
* Average Readings	
- Ambient	
\quad Software Version: 5.03 .11	
	$1-15.407(\mathrm{~b})(1) / 15.209$ Radiated Spurious Emissions - Fixed PTP Devices

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03543	Cable	$\begin{aligned} & 32022-29094 \mathrm{~K}- \\ & 29094 \mathrm{~K}-10 \mathrm{M} \end{aligned}$	11/7/2017	11/7/2019
	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018
T2	AN02695	Active Horn AntennaANSI C63.5 Calibration	$\begin{aligned} & \hline \text { AMFW-5F- } \\ & 260400-33-8 P \end{aligned}$	5/11/2017	5/11/2019

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\# $\begin{aligned} & \text { Freq } \\ & \\ & \\ & \\ & \text { MHz }\end{aligned}$	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \hline \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
$\begin{array}{cc} 1 & 36762.000 \\ \text { M } \\ \text { Ave } \\ \hline \end{array}$	28.8	+25.3	+2.1			+0.0	56.2	68.2	-12.0	Horiz
$\begin{gathered} \wedge \\ \hline 36762.000 \\ M \end{gathered}$	34.1	+25.3	+2.1			+0.0	61.5	68.2	-6.7	Horiz
$\begin{array}{cc} 3 & 36762.000 \\ \text { M } \\ \text { Ave } \\ \hline \end{array}$	28.8	+25.3	+2.1			+0.0	56.2	68.2	-12.0	Vert
$\begin{gathered} \wedge 36762.000 \\ M \end{gathered}$	35.9	+25.3	+2.1			+0.0	63.3	68.2	-4.9	Vert
$\begin{array}{cc} \hline 5 & 34762.000 \\ \text { M } \\ \text { Ave } \\ \hline \end{array}$	25.3	+24.6	+3.0			+0.0	52.9	68.2	-15.3	Vert
$\begin{gathered} \text { } \begin{array}{c} 34762.000 \\ M \end{array} \end{gathered}$	32.3	+24.6	+3.0			+0.0	59.9	68.2	-8.3	Vert
	25.3	+24.7	+2.9			+0.0	52.9	68.2	-15.3	Horiz
$\begin{gathered} \wedge 4967.000 \\ M \end{gathered}$	29.9	+24.7	+2.9			+0.0	57.5	68.2	-10.7	Horiz
$\begin{gathered} \hline 9 \begin{array}{c} 30967.000 \\ \text { M } \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	20.8	+22.9	+3.6			+0.0	47.3	68.2	-20.9	Horiz
$$	31.4	+22.9	+3.6			+0.0	57.9	68.2	-10.3	Horiz

$\begin{gathered} 11 \begin{array}{c} 30762.000 \\ \text { M } \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	21.0	+22.8	+3.5	+0.0	47.3	68.2	-20.9	Vert
$\begin{gathered} \wedge 30762.000 \\ M \end{gathered}$	32.8	+22.8	+3.5	+0.0	59.1	68.2	-9.1	Vert
$13 \quad 26563.000$ M Ave	21.7	+21.1	+2.9	+0.0	45.7	68.2	-22.5	Horiz
$\begin{gathered} \wedge 26563.000 \\ M \end{gathered}$	33.9	+21.1	+2.9	+0.0	57.9	68.2	-10.3	Horiz
$\begin{gathered} 15 \quad 26762.000 \\ \text { M } \\ \text { Ave } \\ \hline \end{gathered}$	20.5	+21.2	+2.7	+0.0	44.4	68.2	-23.8	Vert
$\begin{gathered} \wedge 26762.000 \\ \mathrm{M} \end{gathered}$	32.8	+21.2	+2.7	+0.0	56.7	68.2	-11.5	Vert

LABORATORIES, INC.

Band Edge

Band Edge Summary					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m@3m)	Results
Low - 5180	OFDM - 20MHz	90 Degree Horn / 9dBi	52.9	<54	Pass
High - 5320	OFDM -20 MHz	90 Degree Horn / 9dBi	53.6	<54	Pass
Low - 5180	OFDM - 40MHz	90 Degree Horn / 9dBi	52.9	<54	Pass
High - 5320	OFDM -40 MHz	90 Degree Horn / 9dBi	53.2	<54	Pass
Low - 5200	OFDM -80 MHz	90 Degree Horn / 9dBi	53.4	<54	Pass
High - 5300	OFDM - 80MHz	90 Degree Horn / 9dBi	52.2	<54	Pass
Low - 5180	OFDM - 20MHz	50 Degree Horn / HexHorn 13dBi	52.7	<54	Pass
High - 5320	OFDM - 20MHz	50 Degree Horn / HexHorn 13dBi	49.1	<54	Pass
Low - 5190	OFDM -40 MHz	50 Degree Horn / HexHorn 13dBi	53.3	<54	Pass
High - 5320	OFDM - 40MHz	50 Degree Horn / HexHorn 13dBi	52.2	<54	Pass
Low - 5210	OFDM - 80MHz	50 Degree Horn / HexHorn 13dBi	53.2	<54	Pass
High - 5300	OFDM - 80MHz	50 Degree Horn / HexHorn 13dBi	53.5	<54	Pass
Low - 5180	OFDM - 20MHz	30 Degree Horn / 17.5 dBi	53.7	<54	Pass
High - 5320	OFDM - 20MHz	$\begin{gathered} 30 \text { Degree Horn / } \\ 17.5 \mathrm{dBi} \\ \hline \end{gathered}$	53.9	<54	Pass
Low - 5200	OFDM - 40MHz	30 Degree Horn / 17.5 dBi	53.2	<54	Pass
High - 5310	OFDM -40 MHz	30 Degree Horn / 17.5 dBi	52.7	<54	Pass
Low - 5240	OFDM - 80MHz	30 Degree Horn / 17.5 dBi	53.1	<54	Pass
High - 5260	OFDM - 80MHz	30 Degree Horn / 17.5 dBi	53.3	<54	Pass

Band Edge Plots

UNII 1

30Deg / 17.5dBi

$50 \mathrm{Deg} / 13 \mathrm{dBi}$

90Deg/9dBi

UNII 2a

30Deg / 17.5dBi

50Deg/ 13dBi

90Deg/9dBi

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. - 1120 Fulton Place • Fremont, CA 94539 - 510-249-1170
Customer:	Digital Path
Specification:	15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices
Work Order \#:	100331 Date: 11/17/2017
Test Type:	Radiated Scan Time: 14:35:35
Tested By:	Benny Lovan Sequence\#: 6
Software:	EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)
unit is in continuous mode
Antenna: 30 degree Horn
Gain: 17.5 dBi
Highest Generated Frequency not related to radio: 1.4 GHz
Radio $15745 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 2: $5540 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 3: $5240 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Temperature: $17.8^{\circ} \mathrm{C}$
Rel. Humidity: 48\%
Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)
The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path W/O\#: 100331 Sequence\#: 6 Date: 11/17/2017
15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Test Distance: 3 Meters Horiz

- Readings	
\times	Peak Readings
* AP Readings	
* Ambient Readings	
\quad Software Version: 5.03 .11	
	$1-15.407(\mathrm{~b})(1) / 15.209$ Radiated Spurious Emissions - AP / PTMP Devices

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T2	AN02115	Preamp	83051 A	$2 / 27 / 2017$	$2 / 27 / 2019$
T3	AN03361	Cable	$32022-2-29094-$	$1 / 10 / 2017$	$1 / 10 / 2019$
			$48 T C$		
T4	ANP05935	Attenuator	$84 \mathrm{~A}-10$	$1 / 18 / 2016$	$1 / 18 / 2018$
T5	AN03543	Cable	$32022-29094 K-$ $29094 K-10 M ~$	$11 / 7 / 2017$	$11 / 7 / 2019$
			Spectrum Analyzer	E4446A	$10 / 10 / 2016$
T6	AN02660				$10 / 10 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	5350.000M	35.2	$\begin{array}{r} \hline+30.9 \\ +9.0 \end{array}$	$\begin{array}{r} -32.5 \\ +0.0 \end{array}$	+1.5	+9.8	+0.0	53.9	$\quad 54.0 \quad-0.1$ UBE UNII2a - 5350MHz @ CH64, Set14PWR 20MHz- MCS9(86Mb) (17.5dBi ANT)	Horiz
2	5150.000M	36.0	$\begin{array}{r} \hline+30.4 \\ +8.7 \end{array}$	$\begin{array}{r} -32.6 \\ +0.0 \end{array}$	+1.4	+9.8	+0.0	53.7	$\quad 54.0 \quad-0.3$ LBE UNII1 - 5150MHz @ CH36, Set16PWR 20MHz- MCS9(86Mb) (17.5dBi ANT)	Horiz
3	5350.000M	34.6	$\begin{array}{r} +30.9 \\ +9.0 \end{array}$	$\begin{array}{r} -32.5 \\ +0.0 \end{array}$	+1.5	+9.8	+0.0	53.3	$\quad 54.0 \quad-0.7$ UBE UNII2a - 5350MHz @ CH52, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT)	Horiz
4	5150.000M	35.5	$\begin{array}{r} \hline+30.4 \\ +8.7 \end{array}$	$\begin{array}{r} \hline-32.6 \\ +0.0 \end{array}$	+1.4	+9.8	+0.0	53.2	$\quad 54.0 \quad-0.8$ LBE UNII1 - 5150MHz @ CH40, Set12PWR 40MHz- MCS9(180Mb) (17.5dBi ANT)	Horiz
5	5150.000M	35.4	$\begin{array}{r} \hline+30.4 \\ +8.7 \end{array}$	$\begin{array}{r} -32.6 \\ +0.0 \end{array}$	+1.4	+9.8	+0.0	53.1	54.0 -0.9 LBE UNII1 - 5150MHz @ CH48, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT)	Horiz
6	5350.000M	34.0	$\begin{array}{r} \hline+30.9 \\ +9.0 \end{array}$	$\begin{array}{r} -32.5 \\ +0.0 \end{array}$	+1.5	+9.8	+0.0	52.7	$\quad 54.0 \quad-1.3$ UBE UNII2a - 5350MHz @ CH62, Set9PWR 40MHz- MCS9(180Mb) (17.5dBi ANT)	Horiz

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170
Customer: Digital Path
Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices
Work Order \#: 100331 Date: 11/13/2017
Test Type: Radiated Scan
Tested By: Benny Lovan
Benny Lovan
EMITest 5.03.11

Time: 15:49:17
Sequence\#: 6

Software:
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 4		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 4		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.
Modulation used: OFDM (802.11ac)
unit is in continuous mode
Antenna: 90 degree Horn
Gain: 9dBi

Highest Generated Frequency not related to radio: 1.4 GHz
Radio $15745 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 2: $5540 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 3: $5240 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain

Temperature: $14.2^{\circ} \mathrm{C}$
Rel. Humidity: 64\%
Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)
The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#: 6 Date: 11/13/2017
15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Test Distance: 3 Meters Horiz

-	Readings
\times	Peak Readings
* AP Readings	
* Average Readings	
\quad Ambient	
\quad Software Version: 5.03 .11	
	$1-15.407(\mathrm{~b})(1) / 15.209$ Radiated Spurious Emissions - AP / PTMP Devices

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T2	AN02115	Preamp	83051 A	$2 / 27 / 2017$	$2 / 27 / 2019$
T3	AN03361	Cable	$32022-2-29094-$	$1 / 10 / 2017$	$1 / 10 / 2019$
			$48 T C$		
T4	ANP05935	Attenuator	$84 \mathrm{~A}-10$	$1 / 18 / 2016$	$1 / 18 / 2018$
T5	AN03543	Cable	$32022-29094 K-$ $29094 K-10 M ~$	$11 / 7 / 2017$	$11 / 7 / 2019$
			Spectrum Analyzer	E4446A	$10 / 10 / 2016$
T6	AN02660				$10 / 10 / 2018$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	5350.000M	34.9	$\begin{array}{r} \hline+30.9 \\ +9.0 \end{array}$	$\begin{array}{r} -32.5 \\ +0.0 \end{array}$	+1.5	+9.8	+0.0	53.6	$\quad 54.0 \quad-0.4$ UBE UNII2a - 5350MHz @ CH64, Set19PWR 20MHz- MCS9(86Mb) (9dBi ANT)	Horiz
2	5150.000M	35.7	$\begin{array}{r} \hline+30.4 \\ +8.7 \end{array}$	$\begin{array}{r} -32.6 \\ +0.0 \end{array}$	+1.4	+9.8	+0.0	53.4	$\quad 54.0 \quad-0.6$ LBE UNII1 - 5150MHz @ CH40, Set14PWR 80MHz- MCS9(390Mb) (9dBi ANT)	Horiz
3	5350.000M	34.5	$\begin{array}{r} +30.9 \\ +9.0 \end{array}$	$\begin{array}{r} -32.5 \\ +0.0 \end{array}$	+1.5	+9.8	+0.0	53.2	$\quad 54.0 \quad-0.8$ UBE UNII2a - 5350MHz @ CH64, Set15PWR 40MHz- MCS9(180Mb) (9dBi ANT)	Horiz
4	5150.000M	35.2	$\begin{array}{r} \hline+30.4 \\ +8.7 \end{array}$	$\begin{array}{r} \hline-32.6 \\ +0.0 \end{array}$	+1.4	+9.8	+0.0	52.9	$\quad 54.0 \quad-1.1$ LBE UNII1 - 5150MHz @ CH36, Set14PWR 40MHz- MCS9(180Mb) (9dBi ANT)	Horiz
5	5150.000M	35.2	$\begin{array}{r} \hline+30.4 \\ +8.7 \end{array}$	$\begin{array}{r} -32.6 \\ +0.0 \end{array}$	+1.4	+9.8	+0.0	52.9	$\quad 54.0 \quad-1.1$ LBE UNII1 - 5150MHz @ CH36, Set20PWR 20MHz- MCS9(86Mb) (9dBi ANT)	Horiz
6	5350.000M	33.5	$\begin{array}{r} \hline+30.9 \\ +9.0 \end{array}$	$\begin{array}{r} -32.5 \\ +0.0 \end{array}$	+1.5	+9.8	+0.0	52.2	$\quad 54.0 \quad-1.8$ UBE UNII2a - 5350MHz @ CH60, Set14PWR 80MHz- MCS9(390Mb) (9dBi ANT)	Horiz

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170
Customer: Digital Path
Specification: $\quad \mathbf{1 5 . 4 0 7}(\mathrm{b})(\mathbf{1}) / \mathbf{1 5 . 2 0 9}$ Radiated Spurious Emissions - Fixed PTP Devices
Work Order \#: 100331 Date: 11/7/2017
Test Type: Radiated Scan
Tested By: Benny Lovan
Benny Lovan
EMITest 5.03.11

Time: 09:59:25
Sequence\#: 6

Software:
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.
Modulation used: OFDM (802.11ac)
Unit is in continuous mode
Antenna: 50 degree Hex Array Horn (6 horns)
Data collected will be for both the HexHorn and the 50 Degree Horn. The customer declares that the antennas are exactly the same and so are the radios.

Highest Generated Frequency not related to radio: 1.4 GHz
Radio 15745 MHz - Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 2: $5540 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Radio 3: $5240 \mathrm{MHz}-$ Max Data Rate $=86 \mathrm{Mbps}$ per chain
Temperature: $18^{\circ} \mathrm{C}$
Rel. Humidity: 27\%
Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)
The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive table. The EUT has 6 Horn Antennas in a hexagon shape. It has 3 radios and 4 chains. Each radio is identical as well as each transmit chain. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#: 6 Date: 11/7/2017
15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Horiz

- Readings

0 Peak Readings
\times QP Readings

* Average Readings
- Ambient

Software Version: 5.03 .11
1-15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03634	Spectrum Analyzer	E4445A	$8 / 30 / 2017$	$8 / 30 / 2018$
T2	AN00327	Horn Antenna	3115	$3 / 4 / 2016$	$3 / 4 / 2018$
T3	AN03543	Cable	$32022-29094 K-$ $29094 K-10 M ~$	$11 / 2 / 2015$	$11 / 2 / 2017$
			83051 A	$2 / 27 / 2017$	$2 / 27 / 2019$
T4	AN02115	Preamp	32022-2-29094-	$1 / 10 / 2017$	$1 / 10 / 2019$
T5	AN03361	Cable	48TC		
T6	ANP05411	Attenuator	$54 A-10$	$1 / 18 / 2016$	$1 / 18 / 2018$

Measu	rement Data:	Reading listed by margin.					Test Distance: 3 Meters			
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	5350.000 M	35.6	$\begin{aligned} & +0.0 \\ & +1.5 \end{aligned}$	$\begin{array}{r} +30.9 \\ +9.4 \end{array}$	+8.6	-32.5	+0.0	53.5	$\quad 54.0 \quad-0.5$ UBE UNII2a - 5350MHz @ CH62, Set15PWR 40MHz- MCS9(180Mb) (13dBi ANT)	Horiz
2	5150.000M	33.1	$\begin{aligned} & \hline+0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +30.4 \\ +9.4 \end{array}$	+8.4	-32.6	+0.0	50.1	$\quad 54.0 \quad-3.9$ LBE UNII1 - 5150MHz @ CH36, Set16PWR 20MHz- MCS9(86Mb) (13dBi ANT)	Horiz
3	5150.000 M	32.7	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} \hline+30.4 \\ +9.4 \end{array}$	+8.4	-32.6	+0.0	49.7	$\quad 54.0 \quad-4.3$ LBE UNII1 - 5150MHz @ CH40, Set12PWR 40MHz- MCS9(180Mb) (13dBi ANT)	Horiz
4	5350.000 M	31.8	$\begin{aligned} & +0.0 \\ & +1.5 \end{aligned}$	$\begin{array}{r} \hline+30.9 \\ +9.4 \end{array}$	+8.6	-32.5	+0.0	49.7	$\quad 54.0 \quad-4.3$ UBE UNII2a - 5350MHz @ CH52, Set12PWR 80MHz- MCS9(390Mb) (13dBi ANT)	Horiz
5	5350.000 M	31.2	$\begin{aligned} & +0.0 \\ & +1.5 \end{aligned}$	$\begin{array}{r} \hline+30.9 \\ +9.4 \end{array}$	+8.6	-32.5	+0.0	49.1	$\quad 54.0 \quad-4.9$ UBE UNII2a - 5350MHz @ CH64, Set16PWR 20MHz- MCS9(86Mb) (13dBi ANT)	Horiz
6	5150.000 M	31.1	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{array}{r} +30.4 \\ +9.4 \end{array}$	+8.4	-32.6	+0.0	48.1	$\quad 54.0 \quad-5.9$ LBE UNII1 - 5150MHz @ CH48, Set10PWR 80MHz- MCS9(390Mb) (13dBi ANT)	Horiz

Test Setup Photos

9dBi-30-1000MHz

9dBi-30-1000MHz

9dBi-1-12GHz, Cone placement

9dBi-12-18GHz, Cone placement

9dBi-18-26.5GHz, Cone placement

9dBi-26.5-40GHz, Cone placement

13dBi-Hex-30-1000MHz

13dBi-Hex-30-1000MHz

$13 \mathrm{dBi}-\mathrm{Hex}-1-12 \mathrm{GHz}$, Cone placement

13dBi-Hex-12-18GHz, Cone placement

13 dBi -Hex-18-26.5GHz, Cone placement

$13 \mathrm{dBi}-\mathrm{Hex}-26.5-40 \mathrm{GHz}$, Cone placement

13dBi-Horn-30-1000MHz

13dBi-Horn-30-1000MHz-

13dBi-Horn-1-12GHz, Cone placement

13dBi-Horn-12-18GHz, Cone placement

13dBi-Horn-18-26.5GHz, Cone placement

13dBi-Horn-26.5-40GHz, Cone placement

$17.5 \mathrm{dBi}-30-1000 \mathrm{MHz}$

$17.5 \mathrm{dBi}-30-1000 \mathrm{MHz}$

$17.5 \mathrm{dBi}-1-12 \mathrm{GHz}$, Cone placement

$17.5 \mathrm{dBi}-12-18 \mathrm{GHz}$, Cone placement

$17.5 \mathrm{dBi}-18-26.5 \mathrm{GHz}$, Cone placement

$17.5 \mathrm{dBi}-26.5-40 \mathrm{GHz}$, Cone placement
L. ABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170		
Customer:	Digital Path Specification:	$\mathbf{1 5 . 2 0 7}$ AC Mains - Average	
Work Order \#:	100331	Date: $10 / 4 / 2017$	
Test Type:	Conducted Emissions Tested By:	Benny Lovan	Time:
Software:	EMITest 5.03.11	Sequence\#:	1
l		120 V 60 Hz	

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:

Equipment is an outdoor access point
Modulation used: OFDM (802.11ac)
Unit is Beaconing
Antenna: 50 degree Hex Array Horn (6 horns)
Note: The power supply for the radio is POE and has an external unit that provides it. For testing of conducted emissions, we will perform the scans on this antenna as the worst case. The radio is identical to all other configurations using different antennas. This antenna has the ability to transmit on multiple antennas simultaneously and it was chosen to represent the conducted emissions.

Operational Frequency: Radio 1 is at 5745 MHz , Radio 2: 5540 MHz and Radio 3: 5240 MHz
Power Output Setting: all radios set to 17 dBm
Frequency Range Investigated: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Highest Generated Frequency not related to radio: 1.4 GHz
Temperature: $18^{\circ} \mathrm{C}$
Rel. Humidity: 27\%
Test method: ANSI C63.10 (2013)
The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive tabletop. The EUT has 6 Horn Antennas in a hexagon shape. It is exercising all three radios within the system. All radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The power supply cable is shorter than 80 cm so it is placed at a position above the ground plane that extends the power supply cable fully. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#: 1 Date: 10/4/2017 15.207 AC Mains - Average Test Lead: 120 V 60 Hz Line

[^2]Readings

* Average Readings
1-15.207 AC Mains - Average

[^3]Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05624	Attenuator	PE7010-10	$1 / 15 / 2017$	$1 / 15 / 2019$
T2	AN00374	50uH LISN-Line (L1) (dB)	$8028-T S-50-$ BNC	$1 / 9 / 2017$	$1 / 9 / 2018$
		AN00374	50uH LISN-Return (L2)	$8028-T S-50-$ BNC	$1 / 9 / 2017$
T3	AN02609	High Pass Filter	HE9615-150K- $50-720 B$	$2 / 18 / 2016$	$1 / 9 / 2018$
T4	ANP06231	Cable	CXTA04A-70	$3 / 3 / 2016$	$3 / 3 / 2018$
T5	ANP06232	Cable	CXTA04A-35	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP06847	Cable	LMR195-FR-6	$7 / 31 / 2017$	$7 / 31 / 2019$
	AN03634	Spectrum Analyzer	E4445A	$8 / 30 / 2017$	$8 / 30 / 2018$

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin	Polar Ant
1	1.226 M	32.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
2	953.754k	32.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
3	1.889M	32.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
4	1.962 M	32.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.2	+0.0	42.9	46.0	-3.1	Line
5	351.436k	35.6	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.0	45.8	48.9	-3.1	Line
6	$391.432 \mathrm{k}$ Ave	34.3	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	44.6	48.0	-3.4	Line
\wedge	391.432k	43.9	$\begin{array}{r} +10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	54.2	48.0	+6.2	Line
8	196.541k	40.1	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.0	+0.0	50.4	53.8	-3.4	Line
9	7.238M	35.7	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.2	+0.3	+0.0	46.5	50.0	-3.5	Line
10	6.932M	35.7	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.2	+0.3	+0.0	46.5	50.0	-3.5	Line
11	587.778k	32.0	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.0	42.5	46.0	-3.5	Line
12	7.157M	35.4	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.2	+0.3	+0.0	46.2	50.0	-3.8	Line
13	7.571 M	35.2	$\begin{array}{r} \hline+10.0 \\ +0.2 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.2	+0.3	+0.0	46.1	50.0	-3.9	Line
14	1.145 M	31.6	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	42.0	46.0	-4.0	Line
15	6.607M	35.1	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
16	6.905 M	35.1	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line

$\left.\begin{array}{|lllrllllllllll|}\hline 17 & 7.256 \mathrm{M} & 35.1 & +10.0 & +0.1 & +0.2 & +0.3 & +0.0 & 45.9 & 50.0 & -4.1 & \text { Line } \\ & & & +0.1 & +0.1\end{array}\right)$

Page 149 of 158

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170
Customer:
Specification: 15.207 AC Mains - Average
Work Order \#: 100331
Test Type: Conducted Emissions
Tested By: Benny Lovan
Software: EMITest 5.03.11

Date: 10/4/2017
Time: 11:11:41
Sequence\#: 2
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 5		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 5		S/N

Test Conditions / Notes:

Equipment is an outdoor access point
Modulation used: OFDM (802.11ac)
Unit is Beaconing
Antenna: 50 degree Hex Array Horn (6 horns)
Note: The power supply for the radio is POE and has an external unit that provides it. For testing of conducted emissions, we will perform the scans on this antenna as the worst case. The radio is identical to all other configurations using different antennas. This antenna has the ability to transmit on multiple antennas simultaneously and it was chosen to represent the conducted emissions.

Operational Frequency: Radio 1 is at 5745 MHz , Radio 2: 5540 MHz and Radio 3: 5240 MHz
Power Output Setting: all radios set to 17 dBm
Frequency Range Investigated: $150 \mathrm{kHz}-30 \mathrm{MHz}$
Highest Generated Frequency not related to radio: 1.4 GHz
Temperature: $18^{\circ} \mathrm{C}$
Rel. Humidity: 27%
Test method: ANSI C63.10 (2013)
The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive tabletop. The EUT has 6 Horn Antennas in a hexagon shape. It is exercising all three radios within the system. All radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The power supply cable is shorter than 80 cm so it is placed at a position above the ground plane that extends the power supply cable fully. The EUT is setup with unshielded Ethernet cables.

Modification \#1 was in place during testing.

Digital Path WO\#: 100331 Sequence\#: 2 Date: 10/4/2017
15.207 AC Mains - Average Test Lead: 120 V 60 Hz Return

[^4]Readings

* Average Readings
1-15.207 AC Mains - Average
0 Peak Readings
- Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05624	Attenuator	PE7010-10	$1 / 15 / 2017$	$1 / 15 / 2019$
	AN00374	50uH LISN-Line (L1) (dB)	$8028-T S-50-$ BNC	$1 / 9 / 2017$	$1 / 9 / 2018$
T2	AN00374	50uH LISN-Return (L2)	$8028-T S-50-$ BNC	$1 / 9 / 2017$	$1 / 9 / 2018$
T3	AN02609	High Pass Filter	HE9615-150K- $50-720 B$	$2 / 18 / 2016$	$2 / 18 / 2018$
T4	ANP06231	Cable	CXTA04A-70	$3 / 3 / 2016$	$3 / 3 / 2018$
T5	ANP06232	Cable	CXTA04A-35	$3 / 3 / 2016$	$3 / 3 / 2018$
T6	ANP06847	Cable	LMR195-FR-6	$7 / 31 / 2017$	$7 / 31 / 2019$
	AN03634	Spectrum Analyzer	E4445A	$8 / 30 / 2017$	$8 / 30 / 2018$

Measurement Data:

| $\#$ | Freq | Rdng | T1 | T2 | Test Lead: Return | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	$395.067 \mathrm{k}$ Ave	36.0	$\begin{array}{r} +10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	46.3	48.0	-1.7	Retur
\wedge	395.067 k	44.1	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	54.4	48.0	+6.4	Retur
3	1.894 M	32.0	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	42.5	46.0	-3.5	Retur
4	2.136 M	31.7	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.2	+0.2	+0.0	42.4	46.0	-3.6	Retur
5	1.528 M	31.9	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	42.4	46.0	-3.6	Retur
6	1.324 M	31.9	$\begin{array}{r} +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.2	+0.1	+0.0	42.3	46.0	-3.7	Retur
7	3.225 M	31.4	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.3	+0.0	42.1	46.0	-3.9	Retur
8	2.315 M	31.3	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.2	+0.2	+0.0	42.0	46.0	-4.0	Retur
9	2.685 M	31.4	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+0.0	42.0	46.0	-4.0	Retur
10	1.430 M	31.4	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	41.9	46.0	-4.1	Retur
11	740.490k	31.2	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.1	+0.0	41.6	46.0	-4.4	Retur
12	198.721k	38.9	$\begin{array}{r} +10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	49.2	53.7	-4.5	Retur
13	962.259 k	30.9	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.1	+0.0	41.4	46.0	-4.6	Retur
14	29.061 M	33.1	$\begin{array}{r} +10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.8	+0.0	45.4	50.0	-4.6	Retur
15	28.308M	33.0	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	+0.0	45.1	50.0	-4.9	Retur
16	6.887 M	34.1	$\begin{array}{r} \hline+10.0 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.1 \end{aligned}$	+0.2	+0.3	+0.0	45.0	50.0	-5.0	Retur

17	351.435k	33.6	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.0	43.8	48.9	-5.1	Retur
18	28.808M	32.7	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.8	+0.0	44.9	50.0	-5.1	Retur
19	29.308M	32.3	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.8	+0.0	44.6	50.0	-5.4	Retur
20	1.141 M	29.6	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Retur
21	27.054M	31.9	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	+0.0	44.0	50.0	-6.0	Retur
22	28.554 M	31.9	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	+0.0	44.0	50.0	-6.0	Retur
23	870.660k	29.5	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+0.0	39.9	46.0	-6.1	Retur
24	1.694 M	29.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.2	+0.0	39.9	46.0	-6.1	Retur
25	224.174k	36.2	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.0	+0.0	46.5	52.7	-6.2	Retur
26	25.800 M	31.6	$\begin{array}{r} \hline+10.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	+0.0	43.7	50.0	-6.3	Retur
27	29.808M	31.3	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.2 \end{aligned}$	+0.3	+0.8	+0.0	43.6	50.0	-6.4	Retur
28	588.504k	29.0	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.0	39.5	46.0	-6.5	Retur
29	861.206k	29.0	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.3	+0.1	+0.0	39.5	46.0	-6.5	Retur
30	212.538k	36.2	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+0.0	46.5	53.1	-6.6	Retur
31	1.132 M	28.9	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.2	+0.1	$+0.0$	39.3	46.0	-6.7	Retur
32	25.553 M	31.2	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	$+0.0$	43.3	50.0	-6.7	Retur
33	609.593 k	28.6	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.3	+0.1	+0.0	39.1	46.0	-6.9	Retur
34	614.683k	28.6	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.3	+0.1	$+0.0$	39.1	46.0	-6.9	Retur
35	25.299 M	31.1	$\begin{array}{r} \hline+10.0 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \\ & \hline \end{aligned}$	+0.3	+0.7	+0.0	43.1	50.0	-6.9	Retur
36	578.323k	28.4	$\begin{array}{r} +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.3	+0.1	+0.0	38.9	46.0	-7.1	Retur
37	1.162 M	28.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ \hline \end{array}$	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Retur
38	27.807M	30.7	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	+0.0	42.8	50.0	-7.2	Retur
39	24.799 M	30.8	$\begin{array}{r} \hline+10.0 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.2 \\ & \hline \end{aligned}$	+0.3	+0.7	+0.0	42.7	50.0	-7.3	Retur
40	28.054 M	30.6	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \\ & \hline \end{aligned}$	+0.3	+0.7	+0.0	42.7	50.0	-7.3	Retur
41	13.355 M	31.2	$\begin{array}{r} \hline+10.0 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	+0.2	+0.5	+0.0	42.5	50.0	-7.5	Retur
42	26.553 M	30.4	$\begin{array}{r} \hline+10.0 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	+0.3	+0.7	$+0.0$	42.5	50.0	-7.5	Retur

Page 154 of 158

43	27.300M	30.4	+10.0	+0.5	+0.3	+0.7	+0.0	42.5	50.0	-7.5	Retur
			+0.4	+0.2							
44	361.616k	26.6	+10.0	+0.1	+0.2	+0.0	+0.0	36.9	48.7	-11.8	Retur
Ave			+0.0	+0.0							
45	164.543 k	32.3	+10.0	+0.1	+0.5	+0.0	+0.0	42.9	55.2	-12.3	Retur
Ave			+0.0	+0.0							
46	163.089k	31.7	+10.0	+0.1	+0.5	+0.0	+0.0	42.3	55.3	-13.0	Retur
Ave			+0.0	+0.0							
\wedge	163.089k	43.6	+10.0	+0.1	+0.5	$+0.0$	+0.0	54.2	55.3	-1.1	Retur
			+0.0	+0.0							
164.543k		43.2	+10.0	+0.1	+0.5	+0.0	+0.0	53.8	55.2	-1.4	Retur
			+0.0	+0.0							
\wedge	160.907k	39.2	+10.0	+0.1	+0.6	+0.0	+0.0	49.9	55.4	-5.5	Retur
			+0.0	+0.0							
50	358.707k	23.7	+10.0	+0.1	+0.2	+0.0	+0.0	34.0	48.8	-14.8	Retur
	Ave		+0.0	+0.0							
\wedge	358.707k	39.7	+10.0	+0.1	+0.2	+0.0	+0.0	50.0	48.8	+1.2	Retur
			+0.0	+0.0							
361.616k		39.5	+10.0	+0.1	+0.2	+0.0	+0.0	49.8	48.7	+1.1	Retur
			+0.0	+0.0							
53	175.451k	17.5	+10.0	+0.1	+0.3	+0.0	+0.0	27.9	54.7	-26.8	Retur
	Ave		+0.0	+0.0							
54	177.633 k	13.0	+10.0	+0.1	+0.3	+0.0	+0.0	23.4	54.6	-31.2	Retur
	Ave		+0.0	+0.0							
\wedge	177.633k	43.5	+10.0	+0.1	+0.3	+0.0	+0.0	53.9	54.6	-0.7	Retur
			+0.0	+0.0							
175.451k		42.9	+10.0	+0.1	+0.3	$+0.0$	+0.0	53.3	54.7	-1.4	Retur
			+0.0	+0.0							
\wedge	180.541k	39.4	+10.0	+0.1	+0.3	+0.0	+0.0	49.8	54.5	-4.7	Retur
			+0.0	+0.0							

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

[^0]: Summary of Conditions
 When Chains 0 \& 1 are active the max data rates are $173 \mathrm{Mbps}, 360 \mathrm{MBps}$ and 780 Mbps .

[^1]: - Readings
 \times QP Readings
 - Ambient

[^2]: \times QP Readings
 Software Version: 5.03.11

[^3]: 0 Peak Readings

 - Ambient

 2-15.207 AC Mains - Quasi-peak

[^4]: \times QP Readings
 Software Version: 5.03.11

