DigitalPath, Inc.

TEST REPORT FOR

Gen7 AP
Models: G7RL10H and G7RL10S

Tested to The Following Standards:

FCC Part 15 Subpart E Section(s)

15.207 & 15.407 UNII 1 AND UNII 2a

Report No.: 100331-23

Date of issue: December 18, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 158 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	
Equipment Under Test	6
General Product Information	3
FCC Part 15 Subpart E	g
15.215 Occupied Bandwidth	
15.407(a)Output Power	24
15.407(a) Power Spectral Density	57
15.407(a) EIRP at >30º Elevation	89
15.407(b)&(b)(1) Radiated Emissions & Band Edge	97
15.207 AC Conducted Emissions	146
Supplemental Information	157
Measurement Uncertainty	157
Emissions Test Details	157

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

DigitalPath, Inc. Terri Rayle

1065 Marauder St.CKC Laboratories, Inc.Chico, CA 959735046 Sierra Pines DriveMariposa, CA 95338

Representative: Brock Eastman Project Number: 100331

DATE OF EQUIPMENT RECEIPT: October 4, 2017

DATE(S) OF TESTING: October 4, 2017 and November 3-17, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Bellon

Page 3 of 158 Report No.: 100331-23

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB#	TAIWAN	CANADA	FCC	JAPAN
Fremont, CA	US0082	SL2-IN-E-1148R	3082B-1	US1023	A-0149
Mariposa A, CA	US0103	SL2-IN-E-1147R	3082A-2	US1024	A-0136

Page 4 of 158 Report No.: 100331-23

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart E - 15.407 (UNII 1 and UNII 2a)

Test Procedure	Description	Modifications	Results
15.215	Occupied Bandwidth	Mod. #1	Pass
15.407(a)	Output Power	Mod. #1	Pass
15.407(a)	Power Spectral Density	Mod. #1	Pass
15.407(a)	EIRP at >30º Elevation	Mod. #1	Pass
15.407(b)&(b)(1)	Radiated Emissions & Band Edge	Mod. #1	Pass
15.207	AC Conducted Emissions	Mod. #1	Pass

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification #1: A new GPS unit was installed into the product in order to pass spurious emissions.

Product Name: ublox7 Model: Max-7 GNSS module

Serial: NA

Manufacturer: ublox

All testing was repeated to insure validity of test results.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

When Chains 0 & 1 are active the max data rates are 173Mbps, 360MBps and 780Mbps.

Page 5 of 158 Report No.: 100331-23

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			

Support Equipment:

Device	Manufacturer	Model #	S/N
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228
Laptop Computer	HP	Probook 6565b	None

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	1713-0000107
30 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-30	None

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	НР	Series PPP012H-S	F12941126327228

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			
50 Degree Horn Antenna	Digital Path, Inc.	DP-TP-5-50	None

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Page 6 of 158 Report No.: 100331-23

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	1713-0000107
90 Degree Horn Antenna	Digital Path, Inc.	DP-TP-5-90	None

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10H	0000002
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 7

Equipment Tested:

Device	Manufacturer	Model #	S/N
90 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-90	None
50 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-50	None
30 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-30	None
Gen7 AP	DigitalPath, Inc.	G7RL10H	000002
Gen7 AP	DigitalPath, Inc.	G7RL10S	000001
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Page 7 of 158 Report No.: 100331-23

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	802.11ac		
Operating Frequency Range:	5.15 – 5.350 GHz		
Modulation Type(s):	OFDM		
Maximum Duty Cycle:	100%		
Number of TX Chains:	4 (All are identical)		
	30 Degree Horn / 17.5dBi		
Antonna Typo(s) and Cain:	50 Degree Horn / 13dBi		
Antenna Type(s) and Gain:	90 Degree Horn / 9dBi		
	HexHorn / 13dBi		
Beamforming Type:	None		
Antenna Connection Type:	Integral PCB Trace		
Nominal Input Voltage:	48VDC POE		
Firmware / Software used for Test:	Web Interface on EUT to Atheros TX99 Tool: athtestcmd provided by Qualcomm		

Notes:

- 1. The 50 Degree Horn and the HexHorn are identical. The HexHorn has 6 of the 50 Degree horns within it and it uses the same exact radio.
- 2. Within the definitions provided within KDB 662911 D01 v02r01, the manufacturer declares the output from all antennas to be completely uncorrelated therefore, power aggregation is not required.

Page 8 of 158 Report No.: 100331-23

FCC Part 15 Subpart E

15.215 Occupied Bandwidth

Test Setup/Conditions					
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan		
Test Method:	ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)	Test Date(s):	11/3/2017		
Configuration:	1				
Test Setup:	The EUT is setup on a table with through 11.4dB of attenuation. The EUT has two antenna ports the Testing was performed on Port 1	·	irectly connected to an analyzer		
Declaration:	Modification #1 was in place durir	ng testing.			

Environmental Conditions					
Temperature (°C) 20 Relative Humidity (%): 42					

Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal Du							
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018		
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019		
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018		

Page 9 of 158 Report No.: 100331-23

26dB Occupied Bandwidth

Test Data Summary UNII 1						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5180	1	OFDM / 20MHz	23221			
5200	1	OFDM / 20MHz	23198			
5240	1	OFDM / 20MHz	23245			
5180	1	OFDM / 40MHz	43327			
5200	1	OFDM / 40MHz	43804	None	NIA	
5205	1	OFDM / 40MHz	43360	None	NA	
5210	1	OFDM / 40MHz	43527			
5200	1	OFDM / 80MHz	89334			
5210	1	OFDM / 80MHz	89968			
5240	1	OFDM / 80MHz	88531			

	Test Data Summary – UNII 2a						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5260	1	OFDM / 20MHz	23469				
5300	1	OFDM / 20MHz	23325				
5320	1	OFDM / 20MHz	23046				
5260	1	OFDM / 40MHz	43571				
5300	1	OFDM / 40MHz	43669	None	NA		
5310	1	OFDM / 40MHz	43647				
5320	1	OFDM / 40MHz	43662				
5260	1	OFDM / 80MHz	89866				
5300	1	OFDM / 80MHz	89836				

Page 10 of 158 Report No.: 100331-23

99% Occupied Bandwidth

	Test Data Summary – UNII 1					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5180	1	OFDM / 20MHz	18026			
5200	1	OFDM / 20MHz	18014			
5240	1	OFDM / 20MHz	18020			
5180	1	OFDM / 40MHz	36421			
5200	1	OFDM / 40MHz	36398	None	NA	
5205	1	OFDM / 40MHz	36388	None	INA	
5210	1	OFDM / 40MHz	36424			
5200	1	OFDM / 80MHz	76233			
5210	1	OFDM / 80MHz	76195			
5240	1	OFDM / 80MHz	76222			

	Test Data Summary – UNII 2a						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5260	1	OFDM / 20MHz	18022				
5300	1	OFDM / 20MHz	18016				
5320	1	OFDM / 20MHz	18011				
5260	1	OFDM / 40MHz	36405				
5300	1	OFDM / 40MHz	36422	None	NA		
5310	1	OFDM / 40MHz	36377				
5320	1	OFDM / 40MHz	36414				
5260	1	OFDM / 80MHz	76230				
5300	1	OFDM / 80MHz	76296				

Page 11 of 158 Report No.: 100331-23

Plots

UNII 1

20MHz / -26dB

Low Channel

Middle Channel

High Channel

40MHz / -26dB

Low Channel

Low Channel, 5180

Middle Channel

High Channel

80MHz / -26dB

Low Channel

Low Channel, 5200

High Channel

High Channel, 5210

UNII 2a

20MHz / -26dB

Low Channel

Middle Channel

High Channel

40MHz / -26dB

Low Channel

Middle Channel

High Channel

High Channel, 5320

80MHz / -26dB

Low Channel

High Channel, 5300

Test Setup Photos

Page 23 of 158 Report No.: 100331-23

15.407(a) Output Power

Test Setup/Conditions						
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan			
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	11/14/2017 – 11/15/2017			
	v01r04 (May 2, 2017)					
Configuration:	1					
Test Setup:	The EUT is setup on a table with its antenna port directly connected to an analyzer through 11.4dB of attenuation.					
	The EUT has two antenna ports that are identical.					
	Testing was performed on Port 1					
Declaration:	Modification #1 was in place durir	ng testing.				

Environmental Conditions					
Temperature (°C) 20-22 Relative Humidity (%): 42-45					

Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Du						
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018	
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019	
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018	

Page 24 of 158 Report No.: 100331-23

	Test Data Summary - Voltage Variations-20MHz Channel Bandwidth						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
		UNII 1					
5180	OFDM / Ant Port 1	17.98	17.96	17.98	0.02		
5220	OFDM / Ant Port 1	20.43	20.44	20.42	0.02		
5240	OFDM / Ant Port 1	20.79	20.78	20.76	0.03		
	UNII 2a						
5260	OFDM / Ant Port 1	20.73	20.74	20.73	0.01		
5300	OFDM / Ant Port 1	20.04	20.06	20.07	0.03		
5320	OFDM / Ant Port 1	16.90	16.89	16.88	0.02		

Test performed using the conducted method and using the operational mode with the highest output power, representing worst case.

Test Data Summary - Voltage Variations-40MHz Channel Bandwidth							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
		UNII 1					
5180	OFDM / Ant Port 1	12.30	12.32	12.30	0.02		
5205	OFDM / Ant Port 1	17.00	17.01	17.02	0.02		
5210	OFDM / Ant Port 1	17.13	17.13	17.15	0.02		
	UNII 2a						
5260	OFDM / Ant Port 1	17.62	17.62	17.63	0.01		
5300	OFDM / Ant Port 1	17.01	16.98	17.00	0.03		
5320	OFDM / Ant Port 1	13.20	13.21	13.20	0.01		

Test performed using the conducted method and using the operational mode with the highest output power, representing worst case.

Test Data Summary - Voltage Variations-80MHz Channel Bandwidth							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
	UNII 1						
5200	OFDM / Ant Port 1	12.34	12.35	12.36	0.02		
5240	OFDM / Ant Port 1	9.21	9.22	9.21	0.01		
UNII 2a							
5260	OFDM / Ant Port 1	9.08	9.09	9.09	0.01		
5300	OFDM / Ant Port 1	12.45	12.45	12.46	0.01		

Test performed using the conducted method and using the operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	48 VDC
V _{Minimum} :	40.8 VDC
V _{Maximum} :	55.2 VDC

Page 25 of 158 Report No.: 100331-23

	UNII 1 Test	Data Summary - RF C	Conducted Mea	surement	
Measurement (Option: AVGSA-1				
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
		20MHz Channe	el BW		
5180	OFDM	17.5dBi 30DegHorn	13.17	≤ 18.5	Pass
5200	OFDM	17.5dBi 30DegHorn	13.20	≤ 18.5	Pass
5240	OFDM	17.5dBi 30DegHorn	13.46	≤ 18.5	Pass
5180	OFDM	13 dBi 50DegHorn / HexHorn	16.55	≤ 23	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	13.20	≤ 23	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	13.46	≤ 23	Pass
5180	OFDM	9dBi 90DegHorn	17.55	≤ 27	Pass
5200	OFDM	9 dBi 90DegHorn	19.84	≤ 27	Pass
5240	OFDM	9 dBi 90DegHorn	20.46	≤ 27	Pass
3240	OFBIVI	40MHz Channe		22/	1 433
5200	OFDM	17.5dBi 30DegHorn	9.48	≤ 18.5	Pass
5205	OFDM	17.5dBi 30DegHorn	9.52	≤ 18.5	Pass
5210	OFDM	17.5dBi 30DegHorn	9.65	≤ 18.5	Pass
	_				
5190	OFDM	13 dBi 50DegHorn/ HexHorn	10.74	≤ 23	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	9.8	≤ 23	Pass
5205	OFDM	13 dBi 50DegHorn/ HexHorn	9.85	≤ 23	Pass
F105	055	0.10.005			
5180	OFDM	9dBi 90DegHorn	11.77	≤ 27	Pass
5205	OFDM	9 dBi 90DegHorn	16.53	≤ 27	Pass
5210	OFDM	9 dBi 90DegHorn	16.67	≤ 27	Pass
F240	OFDM	80MHz Channe			Dana
5240	OFDM	17.5dBi 30DegHorn	8.67	≤ 18.5	Pass
5210	OFDM	13 dBi 50DegHorn/ HexHorn	9.98	≤ 23	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	10.14	≤ 23	Pass
5200	OFDM	9dBi 90DegHorn	11.5	≤ 27	Pass
5205	OFDM	9 dBi 90DegHorn	13.45	≤ 27 ≤ 27	Pass

For access points using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(i):

Limit = 30 - Roundup(G - 6)

Page 26 of 158 Report No.: 100331-23

	UNII 2a Test Data Summary - RF Conducted Measurement						
Measurement	Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results		
		20MHz Channe	el BW				
5260	OFDM	17.5dBi 30DegHorn	10.04	≤ 12.5	Pass		
5300	OFDM	17.5dBi 30DegHorn	9.43	≤ 12.5	Pass		
5320	OFDM	17.5dBi 30DegHorn	11.33	≤ 12.5	Pass		
5260	OFDM	13 dBi 50DegHorn/ HexHorn	10.04	≤ 17	Pass		
5300	OFDM	13 dBi 50DegHorn/ HexHorn	9.43	≤ 17	Pass		
5320	OFDM	13 dBi 50DegHorn/ HexHorn	12.91	≤ 17	Pass		
5260	OFDM	9dBi 90DegHorn	20.35	≤ 21	Pass		
5300	OFDM	9 dBi 90DegHorn	19.80	≤ 21	Pass		
5320	OFDM	9 dBi 90DegHorn	16.53	≤ 21	Pass		
		40MHz Channe	el BW				
5260	OFDM	17.5dBi 30DegHorn	10.21	≤ 12.5	Pass		
5300	OFDM	17.5dBi 30DegHorn	9.65	≤ 12.5	Pass		
5310	OFDM	17.5dBi 30DegHorn	6.72	≤ 12.5	Pass		
5260	OFDM	13 dBi 50DegHorn/ HexHorn	12.25	≤ 17	Pass		
5300	OFDM	13 dBi 50DegHorn/ HexHorn	14.33	≤ 17	Pass		
5320	OFDM	13 dBi 50DegHorn/ HexHorn	12.32	≤ 17	Pass		
5260	OFDM	9dBi 90DegHorn	16.74	≤ 21	Pass		
5300	OFDM	9 dBi 90DegHorn	16.17	≤ 21	Pass		
5320	OFDM	9 dBi 90DegHorn	12.42	≤ 21	Pass		
		80MHz Channe	el BW				
5260	OFDM	17.5dBi 30DegHorn	8.60	≤ 12.5	Pass		
5260	OFDM	13 dBi 50DegHorn	12.14	≤ 17	Pass		
5300	OFDM	13 dBi 50DegHorn	10.64	≤ 17	Pass		
5260	OFDM	9dBi 90DegHorn	14.09	≤ 21	Pass		
5300	OFDM	9 dBi 90DegHorn	11.72	≤ 21	Pass		

The limit is calculated in accordance with 15.407(a)(2): $Limit = The \ lesser \ of \begin{cases} 24 \ dBm - (G - 6) \\ 11 dBm + 10 LOG(B) - (G - 6) \end{cases}$

Page 27 of 158 Report No.: 100331-23

Plots

UNII 1

20MHz / 30Deg / 17.5dBi

LB, Set 16

HB, Set 16

20MHz / 90Deg / 9dBi

LB, Set 20

MB, Set 22

HB, Set 22

20MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 16

MB, Set 16

HB, Set 16

40MHz / 30Deg / 17.5dBi

LB, Set 12

MB, Set 12

HB, Set 12

40MHz / 90Deg / 9dBi

LB, Set 14

MB, Set 18.5

HB, Set 18.5

LB, Set 12

MB, Set 12

HB, Set 16

Set 10

LB, Set 14

HB, Set 16

HB, Set 10

Page 41 of 158 Report No.: 100331-23

UNII 2a

LB, Set 12.5

HB, Set 14

LB, Set 22

MB, Set 22

HB, Set 19

LB, Set 12.5

MB, Set 12.5

HB, Set 16

LB, Set 12

MB, Set 12

HB, Set 9

LB, Set 18.5

MB, Set 18.5

HB, Set 15

LB, Set 12

MB, Set 15

HB, Set 15

Set 10

LB, Set 16

HB, Set 14

Set 12

Test Setup Photos

Page 56 of 158 Report No.: 100331-23

15.407(a) Power Spectral Density

Test Setup/Conditions				
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan	
Test Method:	ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)	Test Date(s):	11/14/2017 – 11/15/2017	
Configuration:	1			
Test Setup:	The EUT is setup on a table with its antenna port directly connected to an analyzer through 11.4dB of attenuation. The EUT has two antenna ports that are identical. Testing was performed on Port 1			
Declaration:	Modification #1 was in place durir	g testing.		

	Environmental Conditions				
Temperature (°C)	20-22	Relative Humidity (%):	42-45		

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018

Page 57 of 158 Report No.: 100331-23

	UNII 1 Test	Data Summary - RF C	Conducted Mea	surement	
Measurement	Option: AVGSA-1				
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results
		20MHz Channe	el BW		
5180	OFDM	17.5dBi 30DegHorn	4.54	≤ 5.5	Pass
5200	OFDM	17.5dBi 30DegHorn	4.57	≤ 5.5	Pass
5240	OFDM	17.5dBi 30DegHorn	-0.20	≤ 5.5	Pass
5180	OFDM	13 dBi 50DegHorn/ HexHorn	4.46	≤ 10	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	4.57	≤ 10	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	-0.20	≤ 10	Pass
5180	OFDM	9dBi 90DegHorn	3.89	≤ 14	Pass
5200	OFDM	9 dBi 90DegHorn	6.18	≤ 14 ≤ 14	Pass
5240	OFDM	9 dBi 90DegHorn	6.80	≤ 14 ≤ 14	Pass
3240	OFDIVI	40MHz Channe		<u> </u>	Pass
5200	OFDM	17.5dBi 30DegHorn	-6.93	≤ 5.5	Pass
5205	OFDM	17.5dBi 30DegHorn	-6.85	≤ 5.5	Pass
5210	OFDM	17.5dBi 30DegHorn	-6.74	≤ 5.5	Pass
3210	015111	17.30B130BCB110111	0.7 1	2 3.3	1 433
5190	OFDM	13 dBi 50DegHorn/ HexHorn	-4.52	≤ 10	Pass
5200	OFDM	13 dBi 50DegHorn/ HexHorn	-6.62	≤ 10	Pass
5205	OFDM	13 dBi 50DegHorn/ HexHorn	-6.52	≤ 10	Pass
5180	OFDM	9dBi 90DegHorn	-4.59	≤ 14	Pass
5205	OFDM	9 dBi 90DegHorn	0.15	≤ 14	Pass
5210	OFDM	9 dBi 90DegHorn	0.28	≤ 14	Pass
5046	0.55.1	80MHz Channe			
5240	OFDM	17.5dBi 30DegHorn	-10.80	≤ 5.5	Pass
5210	OFDM	13 dBi 50DegHorn/ HexHorn	-7.97	≤ 10	Pass
5240	OFDM	13 dBi 50DegHorn/ HexHorn	-9.33	≤ 10	Pass
5200	OFDM	9dBi 90DegHorn	-8.01	≤ 14	Pass
5205	OFDM	9 dBi 90DegHorn	-6.09	≤ 14 ≤ 14	Pass

For access points using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(i):

Limit = 17 - Roundup(G - 6)

Page 58 of 158 Report No.: 100331-23

	UNII 2a Test	: Data Summary - RF (Conducted Mea	asurement	
Measurement (Option: AVGSA-1				
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results
		20MHz Channe	el BW		
5260	OFDM	17.5dBi 30DegHorn	-3.66	≤ -0.5	Pass
5300	OFDM	17.5dBi 30DegHorn	-4.25	≤ -0.5	Pass
5320	OFDM	17.5dBi 30DegHorn	-2.30	≤ -0.5	Pass
5260	OFDM	13 dBi 50DegHorn/ HexHorn	-3.66	≤ 4	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	-4.25	≤ 4	Pass
5320	OFDM	13 dBi 50DegHorn/ HexHorn	-0.72	≤ 4	Pass
5260	OFDM	9dBi 90DegHorn	6.64	≤8	Pass
5300	OFDM	9 dBi 90DegHorn	6.13	≤ 8	Pass
5320	OFDM	9 dBi 90DegHorn	2.91	≤ 8	Pass
5520	OFDIVI	40MHz Channe		≥ 0	PdSS
5260	OFDM	17.5dBi 30DegHorn	-6.19	≤ -0.5	Pass
5300	OFDM	17.5dBi 30DegHorn	-6.75	≤ -0.5 ≤ -0.5	Pass
5310	OFDM	17.5dBi 30DegHorn	-9.68	≤ -0.5	Pass
3310	OI DIVI	17.3dbi 30Degilolli	-9.08	3 -0.5	F 033
5260	OFDM	13 dBi 50DegHorn/ HexHorn	-4.14	≤ 4	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	-2.07	≤ 4	Pass
5320	OFDM	13 dBi 50DegHorn/ HexHorn	-2.734	≤ 4	Pass
5260	OFDM	OdD: OOD ad larm	0.35	. 0	Dace
5300	OFDM OFDM	9dBi 90DegHorn	-0.24	≤ 8 ≤ 8	Pass Pass
5320	OFDM	9 dBi 90DegHorn 9 dBi 90DegHorn	-3.98	≤ 8	Pass
3320	OFDIVI	9 dBi 90DegHoffi 80MHz Channe		≥ 0	PdSS
5260	OFDM	17.5dBi 30DegHorn	-10.94	≤ -0.5	Pass
3200	3. DIVI	17.1345. 305 Cg.10111	20.07	_ 0.5	. 433
5260	OFDM	13 dBi 50DegHorn/ HexHorn	-7.39	≤ 4	Pass
5300	OFDM	13 dBi 50DegHorn/ HexHorn	-7.772	≤ 4	Pass
5260	OFDM	9dBi 90DegHorn	-5.45	≤8	Pass
5300	OFDM	9 dBi 90DegHorn	-5.45 -7.81		
2200	OFDIVI	a doi aoneguotti	-7.01	≤8	Pass

The limit is calculated in accordance with 15.407(a)(2): Limit = 11 - Roundup(G - 6)

Page 59 of 158 Report No.: 100331-23

Plots

UNII 1

LB, Set 16-20M

HB, Set 16-20M

LB, Set 20-20M

MB, Set 22-20M

HB, Set 22-20M

LB, Set 16-20M

MB, Set 16-20M

HB, Set 16-20M

LB, Set 12-40M

MB, Set 12-40M

HB, Set 12-40M

LB, Set 14-40M

MB, Set 18.5-40M

HB, Set 18.5-40M

LB, Set 12-40M

MB, Set 12-40M

HB, Set 16-40M

Set 10-80MHz

LB, Set 14-80M

HB, Set 16-80M

80MHz / HexHorn / 50Deg Horn / 13dBi

HB, Set 10-80M

Page 73 of 158 Report No.: 100331-23

UNII 2a

20MHz / 30Deg / 17.5dBi

LB, Set 12.5-20M

MB, Set 12.5-20M

HB, Set 14-20M

20MHz / 90Deg / 9dBi

LB, Set 22-20M

MB, Set 22-20M

HB, Set 19-20M

20MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12.5-20M

MB, Set 12.5-20M

HB, Set 16-20M

40MHz / 30Deg / 17.5dBi

LB, Set 12-40M

MB, Set 12-40M

HB, Set 9-40M

40MHz / 90Deg / 9dBi

LB, Set 18.5-40M

MB, Set 18.5-40M

HB, Set 15-40M

40MHz / HexHorn / 50Deg Horn / 13dBi

LB, Set 12-40M

MB, Set 15-40M

HB, Set 15-40M

80MHz / 30Deg / 17.5dBi

Set 10-80M

80MHz / 90Deg / 9dBi

LB, Set 16-80M

HB, Set 14-80M

80MHz / HexHorn / 50Deg Horn / 13dBi

Set 12-80M

Test Setup Photos

Page 88 of 158 Report No.: 100331-23

15.407(a) EIRP at >30º Elevation

	Test Setup,	Conditions	
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan
Test Method:	ANSI C63.10 (2013), KDB 789033	11/17/2017	
	v01r04 (May 2, 2017)		
Configuration:	2, 3, and 4		
Test Setup:	EUT is parallel to the table's 0 deg The testing receive antenna is a receive antenna and EUT are cons Using a controller, the table is tur the top of the EUT to the antenr	ree marker. also oriented horizon istent. ned from 30 to 95 deg na slowly while simult	oriented such that the face of the tal so that the polarity between grees in the direction that exposes aneously taking data that is later is where the power reading was
Declaration:	Modification #1 was in place durir	g testing.	

	Environmental Conditions								
Temperature (°C)	17-21	Relative Humidity (%):	45-48						

	Test Equipment											
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due							
00327	Horn Antenna	EMCO	3115	3/4/2016	3/4/2018							
02115	Preamp	HP	83051A	2/27/2017	2/27/2019							
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019							
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018							
03543	03543 Cable		32022-29094K- 29094K-10M 11/7/201		11/7/2019							
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018							

Page 89 of 158 Report No.: 100331-23

	Test Data Summary - Radiated Measurement											
Measuremen	Measurement Option: AVGSA-1											
Frequency (MHz)	· · · Modulation · · · · · · · · · · Results											
5200	OFDM	90 deg Horn / 9dBi	90.2	-5.03	≤21	Pass						
5200	OFDM	30 deg Horn / 17.5	77.0	-18.23	≤21	Pass						
5200	OFDM	50 deg Horn/ HexHorn / 13dBi	79.3	-15.93	≤21	Pass						

RF power calculated in accordance with KDB 789033.

$$P(W) = \frac{(E \cdot d)^2}{30}$$

Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - 104.77$$

Plots

Page 90 of 158 Report No.: 100331-23

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(a)(1) Power Limit at 30 Degree Elevation

Work Order #: 100331 Date: 11/17/2017
Test Type: Radiated Scan Time: 15:22:38
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

unit is in continuous mode

Antenna: 90 degree Horn, 30 degree Horn and 50 degree Horn

Gain: 9dBi, 17.5dBi and 13dBi

Highest Generated Frequency not related to radio: 1.4GHz

Frequency Range Investigated: Mid channel 5220 MHz at the highest amplitude for that channel.

Temperature: 17.8 °C Rel. Humidity: 48%

Test method: ANSI C63.10 (2013)

The receive antenna is co-polarized with the transmit antenna. The transmit antenna is set on its side and the table will be rotated 30 degrees for this measurement.

Power is measured using the integration method.

The HexHorn 30 degree elevation test will be performed with the 50 degree horn.

The radio and antenna are identical.

Modification #1 was in place during testing.

Page 92 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 6 Date: 11/17/2017 15.407(a)(1) Power Limit at 30 Degree Elevation Test Distance: 3 Meters Horiz

Readings
 × QP Readings
 ▼ Ambient

1 - 15.407(a)(1) Power Limit at 30 Degree Elevation

O Peak Readings * Average Readings Software Version: 5.03.11

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T2	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T5	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T6	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m \\$	dB	Ant
1	5200.000M	72.3	+30.6	-32.6	+1.4	+9.8	+0.0	90.2	116.2	-26.0	Horiz
	Ave		+8.7	+0.0					9dBi - Set	22 CH40	
									5220		
2	5200.000M	61.4	+30.6	-32.6	+1.4	+9.8	+0.0	79.3	116.2	-36.9	Horiz
	Ave		+8.7	+0.0					13dBi - Se	t 16	
									CH40 5220)	
3	5200.000M	59.1	+30.6	-32.6	+1.4	+9.8	+0.0	77.0	116.2	-39.2	Horiz
	Ave		+8.7	+0.0					17.5dBi - S	Set 16	
									CH40 5220)	

Page 94 of 158 Report No.: 100331-23

Test Setup Photos

30Deg, 17.5dBi

50Deg, 13dBi

90Deg, 9dBi

15.407(b)&(b)(1) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 10/4/2017
Test Type: Radiated Scan Time: 14:41:25
Tested By: Benny Lovan Sequence#: 5

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 7

Support Equipment:

Device Manufacturer Model # S/N
Configuration 7

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

Unit is Beaconing

Antenna: 50 degree Hex Array Horn (6 horns)

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5240MHz

Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 30-1000M

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain Radio 3: 5240MHz – Max Data Rate = 86Mbps per chain

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)

This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 97 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 5 Date: 10/4/2017 15.407(b) / 15.209 Radiated Spurious Emissions Test Distance: 10 Meters Horiz

Readings

× QP Readings▼ Ambient

- 1 - 15.407(b) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.11

> Page 98 of 158 Report No.: 100331-23

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	11/1/2016	11/1/2018
T2	ANP05656	Attenuator	PE7004-6	12/22/2015	12/22/2017
T3	AN00449	Preamp-Top Amp (dB)	8447F	2/18/2016	2/18/2018
T4	ANP06847	Cable	LMR195-FR-6	7/31/2017	7/31/2019
T5	ANP06883	Cable	LMR195-FR-3	8/2/2017	8/2/2019
T6	ANP04249	Cable	CXTA04A-50	3/3/2016	3/3/2018
T7	ANP06230	Cable-Amplitude +15C	CXTA04A-50	11/29/2016	11/29/2018
		to +45C (dB)			
T8	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018

Measu	rement Data:	e ; e					Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7	T8						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	35.910M	30.5	+15.5	+6.0	-27.1	+0.2	+10.5	36.8	40.0	-3.2	Vert	
	QP		+0.1	+0.5	+0.6	+0.0						
^	35.910M	52.0	+15.5	+6.0	-27.1	+0.2	+10.5	58.3	40.0	+18.3	Vert	
			+0.1	+0.5	+0.6	+0.0						
3	479.998M	28.5	+17.7	+6.0	-27.6	+0.7	+10.5	40.6	46.0	-5.4	Horiz	
	QP		+0.4	+1.8	+2.6	+0.0						
^	479.998M	31.6	+17.7	+6.0	-27.6	+0.7	+10.5	43.7	46.0	-2.3	Horiz	
			+0.4	+1.8	+2.6	+0.0						
5	375.100M	29.9	+15.4	+6.0	-26.8	+0.6	+10.5	39.8	46.0	-6.2	Horiz	
			+0.4	+1.6	+2.2	+0.0						
6	685.100M	24.0	+20.6	+6.0	-27.9	+0.8	+10.5	39.7	46.0	-6.3	Horiz	
			+0.4	+2.2	+3.1	+0.0						
7	622.850M	23.8	+20.4	+6.0	-27.9	+0.8	+10.5	39.1	46.0	-6.9	Vert	
			+0.4	+2.1	+3.0	+0.0						
8	524.700M	25.0	+18.7	+6.0	-27.7	+0.7	+10.5	38.2	46.0	-7.8	Horiz	
			+0.4	+1.9	+2.7	+0.0						
9	581.700M	23.5	+19.9	+6.0	-27.9	+0.8	+10.5	38.1	46.0	-7.9	Vert	
			+0.4	+2.0	+2.9	+0.0						
10	60.326M	34.9	+5.8	+6.0	-27.1	+0.3	+10.5	31.9	40.0	-8.1	Vert	
			+0.1	+0.6	+0.8	+0.0						
11	431.700M	25.5	+16.7	+6.0	-27.3	+0.7	+10.5	36.5	46.0	-9.5	Vert	
			+0.3	+1.7	+2.4	+0.0						
12	53.142M	31.3	+7.4	+6.0	-27.2	+0.2	+10.5	29.7	40.0	-10.3	Horiz	
			+0.1	+0.6	+0.8	+0.0						

Page 99 of 158 Report No.: 100331-23

13	409.000M	24.9	+16.2	+6.0	-27.2	+0.7	+10.5	35.5	46.0	-10.5	Horiz
			+0.4	+1.7	+2.3	+0.0					
14	160.034M	28.8	+10.5	+6.0	-26.8	+0.4	+10.5	32.0	43.5	-11.5	Horiz
			+0.2	+1.0	+1.4	+0.0					
15	361.710M	24.3	+15.1	+6.0	-26.7	+0.6	+10.5	33.9	46.0	-12.1	Vert
			+0.3	+1.6	+2.2	+0.0					
16	240.000M	28.0	+12.0	+6.0	-26.4	+0.5	+10.5	33.9	46.0	-12.1	Vert
	QP		+0.3	+1.3	+1.7	+0.0					
^	240.000M	35.4	+12.0	+6.0	-26.4	+0.5	+10.5	41.3	46.0	-4.7	Vert
			+0.3	+1.3	+1.7	+0.0					
18	318.878M	24.3	+14.0	+6.0	-26.2	+0.6	+10.5	32.9	46.0	-13.1	Vert
			+0.3	+1.4	+2.0	+0.0					

Page 100 of 158 Report No.: 100331-23

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Work Order #: 100331 Date: 11/2/2017
Test Type: Radiated Scan Time: 15:40:00
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 7

Support Equipment:

Device Manufacturer Model # S/N
Configuration 7

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

Antenna: 50 degree Hex Array Horn (6 horns)

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5180MHz

Data Rate: Max

Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 1-26.5G

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain Radio 3: 5240MHz – Max Data Rate = 86Mbps per chain

Temperature: 20.9°C Rel. Humidity: 46.1%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)

This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 101 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 6 Date: 11/2/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Horiz

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Page 102 of 158 Report No.: 100331-23

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T2	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
Т3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018
T5	AN03543	Cable	32022-29094K-	11/2/2015	11/2/2017
			29094K-10M		
Т6	ANP06239	Attenuator	54A-10	8/8/2016	8/8/2018
T7	AN01417	High Pass Filter	84300-80039	1/18/2016	1/18/2018
T8	AN03366	Horn Antenna-ANSI	GH-62-25	2/9/2016	2/9/2018
		C63.5 Calibration			
Т9	AN02046	Horn Antenna	MWH-1826/B	10/7/2016	10/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	11527.500	31.5	-32.9	+36.5	+2.2	+0.0	+0.0	50.6	54.0	-3.4	Horiz
	M		+12.9	+0.0	+0.4	+0.0					
			+0.0								
2	10527.500	42.1	-32.1	+36.1	+2.1	+0.0	+0.0	61.2	68.2	-7.0	Horiz
	M		+12.3	+0.0	+0.7	+0.0					
			+0.0								
3	20528.500	19.1	-33.8	+0.0	+2.8	+0.0	+0.0	40.5	54.0	-13.5	Vert
	M		+17.7	+0.0	+0.9	+0.0					
	Ave		+33.8								
^	20320.300	32.0	-33.8	+0.0	+2.8	+0.0	+0.0	53.4	54.0	-0.6	Vert
	M		+17.7	+0.0	+0.9	+0.0					
		20.0	+33.8	21.1		0.0	0.0	20.5	7.1.0	444	** .
5	5429.500M	20.8	-32.5	+31.1	+1.5	+0.0	+0.0	39.6	54.0	-14.4	Horiz
	Ave		+8.8	+9.9	+0.0	+0.0					
	5.420, 5003.6	25.0	+0.0	21.1	1.7	0.0	0.0	52.0	540	0.2	TT .
	5429.500M	35.0	-32.5	+31.1	+1.5	+0.0	+0.0	53.8	54.0	-0.2	Horiz
			+8.8	+9.9	+0.0	+0.0					
7	10565,000	10.2	+0.0	.00	.20	. 0. 0	. 0. 0	20.0	540	15 1	TT
/	19565.000	18.3	-33.4	+0.0	+2.8	+0.0	+0.0	38.9	54.0	-15.1	Horiz
	M		+17.1	+0.0	+0.5	+0.0					
	Ave 19565.000	30.6	+33.6	+0.0	+2.8	+0.0	+0.0	51.2	54.0	-2.8	Horiz
	19303.000 M	30.0	-33.4 +17.1	+0.0 +0.0	+2.8	+0.0	+0.0	31.2	34.0	-2.0	попи
	IVI		+33.6	+0.0	+0.5	+0.0					
0	18915.000	17.5	-32.5	+0.0	+2.8	+0.0	+0.0	38.8	54.0	-15.2	Vert
	M	17.3	+16.8	+0.0	+0.5	+0.0	+0.0	30.0	54.0	-13.2	V CI t
	Ave		+33.7	10.0	10.5	10.0					
^	18915.000	30.9	-32.5	+0.0	+2.8	+0.0	+0.0	52.2	54.0	-1.8	Vert
	M	30.7	+16.8	+0.0	+0.5	+0.0	10.0	32.2	57.0	1.0	V C11
	141		+33.7	10.0	10.5	10.0					
			1 33.1								

Page 103 of 158 Report No.: 100331-23

11	18663.000	17.4	-32.5	+0.0	+2.7	+0.0	+0.0	38.8	54.0	-15.2	Horiz
11	M	17.1	+16.7	+0.0	+0.7	+0.0	10.0	30.0	31.0	13.2	HOHE
	Ave		+33.8								
	18663.000	29.9	-32.5	+0.0	+2.7	+0.0	+0.0	51.3	54.0	-2.7	Horiz
	M		+16.7	+0.0	+0.7	+0.0					
			+33.8								
13	5116.500M	21.2	-32.6	+30.4	+1.4	+0.0	+0.0	38.7	54.0	-15.3	Horiz
	Ave		+8.4	+9.9	+0.0	+0.0					
			+0.0								
^	5116.500M	37.3	-32.6	+30.4	+1.4	+0.0	+0.0	54.8	54.0	+0.8	Horiz
			+8.4	+9.9	+0.0	+0.0					
- 4 -	0050 00015	10.1	+0.0	2.5.2	2.0	0.0	0.0	25.6	7 40	1 - 1	**
	9352.000M	19.1	-31.8		+2.0	+0.0	+0.0	37.6	54.0	-16.4	Vert
	Ave		+11.6	+0.0	+0.5	+0.0					
	9352.000M	29.0	+0.0	+36.2	+2.0	+0.0	+0.0	47.5	54.0	-6.5	Vert
	9332.000WI	29.0	-31.8 +11.6	+30.2	+2.0	+0.0	+0.0	47.3	34.0	-0.3	vert
			+0.0	+0.0	+0.5	+0.0					
17	11587.000	18.3	-32.9	+36.4	+2.2	+0.0	+0.0	37.4	54.0	-16.6	Vert
1,	M	10.5	+13.0	+0.0	+0.4	+0.0	10.0	37.1	31.0	10.0	VOIT
	Ave		+0.0	10.0	10.1	10.0					
	11587.000	31.4	-32.9	+36.4	+2.2	+0.0	+0.0	50.5	54.0	-3.5	Vert
	M		+13.0	+0.0	+0.4	+0.0					
			+0.0								
19	17830.500	18.3	-32.5	+0.0	+2.6	+0.0	+0.0	37.2	54.0	-16.8	Horiz
	M		+16.4	+0.0	+1.1	+31.3					
	Ave		+0.0								
^	17830.500	28.9	-32.5	+0.0	+2.6	+0.0	+0.0	47.8	54.0	-6.2	Horiz
	M		+16.4	+0.0	+1.1	+31.3					
	1=000 =00		+0.0								
21	17988.300	18.0	-32.5	+0.0	+2.6	+0.0	+0.0	37.1	54.0	-16.9	Vert
	M		+16.4	+0.0	+1.2	+31.4					
	Ave 17988.300	28.5	+0.0	+0.0	12.6	ι Ο Ο	+0.0	47.6	54.0	-6.4	Vert
	17988.300 M	28.3	-32.5 +16.4	$+0.0 \\ +0.0$	+2.6 +1.2	+0.0 +31.4	+0.0	47.0	34.0	-0.4	vert
	1 V1		+10.4 $+0.0$	+0.0	+1.∠	+31.4					
23	15988.300	19.2	-34.3	+0.0	+2.5	+0.0	+0.0	33.6	54.0	-20.4	Vert
	M	17.2	+15.3			+30.1	10.0	22.0	51.0	20.1	, 511
	Ave		+0.0	. 0.0	. 0.0						
	15988.300	29.3	-34.3	+0.0	+2.5	+0.0	+0.0	43.7	54.0	-10.3	Vert
	M		+15.3	+0.0	+0.8	+30.1					
			+0.0								
25	1625.000M	29.9	-35.6	+23.2	+0.8	+0.0	+0.0	32.8	54.0	-21.2	Horiz
	Ave		+4.6	+9.9	+0.0	+0.0					
			+0.0								
^	1625.000M	38.4	-35.6	+23.2	+0.8	+0.0	+0.0	41.3	54.0	-12.7	Horiz
			+4.6	+9.9	+0.0	+0.0					
			+0.0								

Page 104 of 158 Report No.: 100331-23

27 24768.000	23.7	-34.0	+0.0	+3.2	+0.0	+0.0	46.9	68.2	-21.3	Vert
M		+19.6	+0.0	+0.0	+0.0					
Ave		+34.4								
^ 24768.000	36.7	-34.0	+0.0	+3.2	+0.0	+0.0	59.9	68.2	-8.3	Vert
M		+19.6	+0.0	+0.0	+0.0					
		+34.4								
29 24730.000	23.8	-34.0	+0.0	+3.2	+0.0	+0.0	46.9	68.2	-21.3	Horiz
M		+19.6	+0.0	+0.0	+0.0					
Ave		+34.3								
^ 24730.000	35.2	-34.0	+0.0	+3.2	+0.0	+0.0	58.3	68.2	-9.9	Horiz
M		+19.6	+0.0	+0.0	+0.0					
		+34.3								
31 13250.000	20.1	-33.6	+0.0	+2.2	+0.0	+0.0	32.0	54.0	-22.0	Horiz
M		+14.0	+0.0	+0.5	+28.8					
Ave		+0.0								
^ 13250.000	30.4	-33.6	+0.0	+2.2	+0.0	+0.0	42.3	54.0	-11.7	Horiz
M		+14.0	+0.0	+0.5	+28.8					
		+0.0								
33 14488.300	19.7	-34.4	+0.0	+2.3	+0.0	+0.0	31.9	54.0	-22.1	Vert
M		+14.6	+0.0	+0.4	+29.3					
Ave		+0.0								
^ 14488.300	31.5	-34.4	+0.0	+2.3	+0.0	+0.0	43.7	54.0	-10.3	Vert
M		+14.6	+0.0	+0.4	+29.3					
		+0.0								
35 12488.300	19.1	-33.2	+0.0	+2.2	+0.0	+0.0	30.7	54.0	-23.3	Vert
M		+13.5	+0.0	+0.5	+28.6					
Ave		+0.0								
^ 12488.300	31.8	-33.2	+0.0	+2.2	+0.0	+0.0	43.4	54.0	-10.6	Vert
M		+13.5	+0.0	+0.5	+28.6					
		+0.0								
37 16988.300	28.4	-33.4	+0.0	+2.5	+0.0	+0.0	44.8	68.2	-23.4	Vert
M		+15.9	+0.0	+0.8	+30.6					
		+0.0								
38 21781.500	18.7	-31.4	+0.0	+3.0	+0.0	+0.0	44.7	68.2	-23.5	Vert
M		+18.2	+0.0	+1.6	+0.0					
Ave		+34.6								
^ 21781.500	31.7	-31.4	+0.0	+3.0	+0.0	+0.0	57.7	68.2	-10.5	Vert
M		+18.2		+1.6	+0.0					
		+34.6								
40 12250.000	18.6	-33.1	+0.0	+2.2	+0.0	+0.0	30.2	54.0	-23.8	Horiz
M		+13.4	+0.0	+0.6	+28.5					
Ave		+0.0								
^ 12250.000	29.3	-33.1	+0.0	+2.2	+0.0	+0.0	40.9	54.0	-13.1	Horiz
M		+13.4	+0.0	+0.6	+28.5					
		+0.0								
42 21567.000	17.9	-31.7	+0.0	+3.0	+0.0	+0.0	43.4	68.2	-24.8	Horiz
M		+18.2	+0.0	+1.5	+0.0					
Ave		+34.5								
^ 21567.000	30.8	-31.7	+0.0	+3.0	+0.0	+0.0	56.3	68.2	-11.9	Horiz
M		+18.2	+0.0	+1.5	+0.0					
		+34.5								

Page 105 of 158 Report No.: 100331-23

44 6298.500M	19.7	-31.8	+32.8	+1.6	+0.0	+0.0	41.6	68.2	-26.6	Vert
Ave		+9.4	+9.9	+0.0	+0.0					
		+0.0								
^ 6298.500M	30.3	-31.8	+32.8	+1.6	+0.0	+0.0	52.2	68.2	-16.0	Vert
		+9.4	+9.9	+0.0	+0.0					
		+0.0								
46 5798.500M	21.5	-32.2	+31.7	+1.5	+0.0	+0.0	41.4	68.2	-26.8	Vert
Ave		+9.0	+9.9	+0.0	+0.0					
		+0.0								
^ 5798.500M	39.0	-32.2	+31.7	+1.5	+0.0	+0.0	58.9	68.2	-9.3	Vert
		+9.0	+9.9	+0.0	+0.0					
		+0.0								
48 5797.000M	21.1	-32.2	+31.7	+1.5	+0.0	+0.0	41.0	68.2	-27.2	Horiz
Ave		+9.0	+9.9	+0.0	+0.0					
		+0.0								
^ 5797.000M	37.8	-32.2	+31.7	+1.5	+0.0	+0.0	57.7	68.2	-10.5	Horiz
		+9.0	+9.9	+0.0	+0.0					
		+0.0								
50 10537.978	20.5	-32.1	+36.1	+2.1	+0.0	+0.0	39.6	68.2	-28.6	Horiz
M		+12.3	+0.0	+0.7	+0.0					
Ave		+0.0								
^ 10537.978	46.4	-32.1	+36.1	+2.1	+0.0	+0.0	65.5	68.2	-2.7	Horiz
M		+12.3	+0.0	+0.7	+0.0					
		+0.0								
52 10002.500	18.9	-32.1	+37.4	+2.1	+0.0	+0.0	39.1	68.2	-29.1	Vert
M		+12.1	+0.0	+0.7	+0.0					
Ave		+0.0								
^ 10002.500	31.0	-32.1	+37.4	+2.1	+0.0	+0.0	51.2	68.2	-17.0	Vert
M		+12.1	+0.0	+0.7	+0.0					
		+0.0								
54 9909.500M	18.9	-32.1	+37.2	+2.1	+0.0	+0.0	38.8	68.2	-29.4	Vert
Ave		+12.0	+0.0	+0.7	+0.0					
		+0.0								
^ 9909.500M	32.4	-32.1	+37.2	+2.1	+0.0	+0.0	52.3	68.2	-15.9	Vert
,, o, ie o o i i	J-1.	+12.0	+0.0	+0.7	+0.0		02.0	00.2	10.7	, 610
		+0.0	. 0.0							
56 10049.200	18.6	-32.2	+37.3	+2.1	+0.0	+0.0	38.7	68.2	-29.5	Horiz
M			+0.0			10.0	30.7	00.2	27.5	HOHE
Ave		+0.0	10.0	10.0	10.0					
^ 10049.200	37.2	-32.2	+37.3	+2.1	+0.0	+0.0	57.3	68.2	-10.9	Horiz
M	37.2	+12.1	+0.0	+0.8	+0.0	10.0	57.5	00.2	10.7	HOHE
141		+0.0	10.0	10.0	10.0					
58 10527.043	19.6	-32.1	+36.1	+2.1	+0.0	+0.0	38.7	68.2	-29.5	Horiz
M	17.0	+12.3	+0.0	+0.7	+0.0	10.0	30.7	00.2	27.5	HOHE
Ave		+0.0	10.0	10.7	10.0					
59 9769.500M	19.0	-32.0	+36.8	+2.0	+0.0	+0.0	38.3	68.2	-29.9	Vert
Ave	19.0	+11.9	+30.8	+2.6	+0.0	10.0	30.3	00.2	-49.9	v CI t
AVC		+0.0	10.0	10.0	10.0					
^ 9769.500M	30.3	-32.0	+36.8	+2.0	+0.0	+0.0	49.6	68.2	-18.6	Vert
7/07.JUUIVI	50.5	-32.0 +11.9	+30.8	+2.0	+0.0 +0.0	+0.0	47.0	00.2	-10.0	v ei t
		+11.9	+0.0	+0.0	+0.0					
		+0.0								

Page 106 of 158 Report No.: 100331-23

61 8549.200M	19.2		+34.9	+1.9	+0.0	+0.0	36.6	68.2	-31.6	Horiz
Ave		+11.1	+0.0	+1.0	+0.0					
		+0.0								
^ 8549.200M	39.8	-31.5	+34.9	+1.9	+0.0	+0.0	57.2	68.2	-11.0	Horiz
		+11.1	+0.0	+1.0	+0.0					
		+0.0								
63 2921.500M	23.4	-33.1	+26.7	+1.1	+0.0	+0.0	34.2	68.2	-34.0	Vert
Ave		+6.2	+9.9	+0.0	+0.0					
		+0.0								
^ 2921.500M	35.5	-33.1	+26.7	+1.1	+0.0	+0.0	46.3	68.2	-21.9	Vert
		+6.2	+9.9	+0.0	+0.0					
		+0.0								
65 15250.000	20.3	-34.4	+0.0	+2.4	+0.0	+0.0	33.7	68.2	-34.5	Horiz
M		+15.0	+0.0	+0.6	+29.8					
Ave		+0.0								
^ 15250.000	31.5	-34.4	+0.0	+2.4	+0.0	+0.0	44.9	68.2	-23.3	Horiz
M		+15.0	+0.0	+0.6	+29.8					
		+0.0								
67 1921.500M	26.1	-33.6	+24.5	+0.9	+0.0	+0.0	32.8	68.2	-35.4	Vert
Ave		+5.1	+9.8	+0.0	+0.0					
		+0.0								
^ 1921.500M	42.1	-33.6	+24.5	+0.9	+0.0	+0.0	48.8	68.2	-19.4	Vert
		+5.1	+9.8	+0.0	+0.0					
		+0.0								
69 1923.500M	24.9	-33.6	+24.5	+0.9	+0.0	+0.0	31.6	68.2	-36.6	Horiz
Ave		+5.1	+9.8	+0.0	+0.0					
		+0.0								
^ 1923.500M	45.9	-33.6	+24.5	+0.9	+0.0	+0.0	52.6	68.2	-15.6	Horiz
		+5.1	+9.8	+0.0	+0.0					
		+0.0								
71 13488.300	19.4	-33.8	+0.0	+2.2	+0.0	+0.0	31.2	68.2	-37.0	Vert
M		+14.1	+0.0	+0.5	+28.8					
Ave		+0.0								
^ 13488.300	31.3		+0.0	+2.2	+0.0	+0.0	43.1	68.2	-25.1	Vert
M		+14.1	+0.0	+0.5	+28.8					
		+0.0								
t										

Page 107 of 158 Report No.: 100331-23

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices
Work Order #: 100331 Date: 11/10/2017
Test Type: Radiated Scan Time: 06:30:36

Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

Antenna: All Horns

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5180MHz

Data Rate: Max

Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 26.5-40G

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain Radio 3: 5240MHz – Max Data Rate = 86Mbps per chain

Temperature: 20.9°C Rel. Humidity: 46.1%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)

This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 108 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 6 Date: 11/10/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Vert

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Page 109 of 158 Report No.: 100331-23

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018
T2	AN02695	Active Horn Antenna-	AMFW-5F-	5/11/2017	5/11/2019
		ANSI C63.5 Calibration	260400-33-8P		

Measi	irement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	36762.000	28.8	+25.3	+2.1			+0.0	56.2	68.2	-12.0	Horiz
	M										
	Ave										
^	36762.000	34.1	+25.3	+2.1			+0.0	61.5	68.2	-6.7	Horiz
	M										
3	36762.000	28.8	+25.3	+2.1			+0.0	56.2	68.2	-12.0	Vert
	M										
	Ave	25.0	25.2	2.1			0.0	62.2	60.2	4.0	***
	36762.000	35.9	+25.3	+2.1			+0.0	63.3	68.2	-4.9	Vert
	M										
5	34762.000	25.3	+24.6	+3.0			+0.0	52.9	68.2	-15.3	Vert
]	M	23.3	±2 4. 0	+3.0			+0.0	34.9	00.2	-13.3	VCIT
	Ave										
^	34762.000	32.3	+24.6	+3.0			+0.0	59.9	68.2	-8.3	Vert
	M	02.0	. 20				. 0.0	0,,,	00.2	0.0	, 610
7	34967.000	25.3	+24.7	+2.9			+0.0	52.9	68.2	-15.3	Horiz
	M										
	Ave										
^	34967.000	29.9	+24.7	+2.9			+0.0	57.5	68.2	-10.7	Horiz
	M										
9	30967.000	20.8	+22.9	+3.6			+0.0	47.3	68.2	-20.9	Horiz
	M										
	Ave									10.5	
^	30967.000	31.4	+22.9	+3.6			+0.0	57.9	68.2	-10.3	Horiz
	M										

Page 110 of 158 Report No.: 100331-23

11 30762.000	21.0	+22.8	+3.5	+0.0	47.3	68.2	-20.9	Vert
M								
Ave								
^ 30762.000	32.8	+22.8	+3.5	+0.0	59.1	68.2	-9.1	Vert
M								
13 26563.000	21.7	+21.1	+2.9	+0.0	45.7	68.2	-22.5	Horiz
M								
Ave								
^ 26563.000	33.9	+21.1	+2.9	+0.0	57.9	68.2	-10.3	Horiz
M								
15 26762.000	20.5	+21.2	+2.7	+0.0	44.4	68.2	-23.8	Vert
M								
Ave								
^ 26762.000	32.8	+21.2	+2.7	+0.0	56.7	68.2	-11.5	Vert
M								

Page 111 of 158 Report No.: 100331-23

Band Edge

		Band Edge S	ummary		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
Low - 5180	OFDM – 20MHz	90 Degree Horn / 9dBi	52.9	<54	Pass
High – 5320	OFDM – 20MHz	90 Degree Horn / 9dBi	53.6	<54	Pass
Low - 5180	OFDM – 40MHz	90 Degree Horn / 9dBi	52.9	<54	Pass
High – 5320	OFDM – 40MHz	90 Degree Horn / 9dBi	53.2	<54	Pass
Low - 5200	OFDM – 80MHz	90 Degree Horn / 9dBi	53.4	<54	Pass
High – 5300	OFDM – 80MHz	90 Degree Horn / 9dBi	52.2	<54	Pass
Low – 5180	OFDM – 20MHz	50 Degree Horn / HexHorn 13dBi	52.7	<54	Pass
High – 5320	OFDM – 20MHz	50 Degree Horn / HexHorn 13dBi	49.1	<54	Pass
Low – 5190	OFDM – 40MHz	50 Degree Horn / HexHorn 13dBi	53.3	<54	Pass
High – 5320	OFDM – 40MHz	50 Degree Horn / HexHorn 13dBi	52.2	<54	Pass
Low – 5210	OFDM – 80MHz	50 Degree Horn / HexHorn 13dBi	53.2	<54	Pass
High – 5300	OFDM – 80MHz	50 Degree Horn / HexHorn 13dBi	53.5	<54	Pass
Low – 5180	OFDM – 20MHz	30 Degree Horn / 17.5dBi	53.7	<54	Pass
High – 5320	OFDM – 20MHz	30 Degree Horn / 17.5dBi	53.9	<54	Pass
Low – 5200	OFDM – 40MHz	30 Degree Horn / 17.5dBi	53.2	<54	Pass
High – 5310	OFDM – 40MHz	30 Degree Horn / 17.5dBi	52.7	<54	Pass
Low – 5240	OFDM – 80MHz	30 Degree Horn / 17.5dBi	53.1	<54	Pass
High – 5260	OFDM – 80MHz	30 Degree Horn / 17.5dBi	53.3	<54	Pass

Page 112 of 158 Report No.: 100331-23

Band Edge Plots

UNII 1

30Deg / 17.5dBi

Page 113 of 158 Report No.: 100331-23

Page 114 of 158 Report No.: 100331-23

50Deg / 13dBi

Page 115 of 158 Report No.: 100331-23

Page 116 of 158 Report No.: 100331-23

90Deg / 9dBi

Page 117 of 158 Report No.: 100331-23

UNII 2a

30Deg / 17.5dBi

Page 119 of 158 Report No.: 100331-23

Page 120 of 158 Report No.: 100331-23

50Deg / 13dBi

Page 121 of 158 Report No.: 100331-23

Page 122 of 158 Report No.: 100331-23

90Deg / 9dBi

Page 123 of 158 Report No.: 100331-23

Page 124 of 158 Report No.: 100331-23

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Work Order #: 100331 Date: 11/17/2017 Test Type: Radiated Scan Time: 14:35:35

Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

unit is in continuous mode Antenna: 30 degree Horn

Gain: 17.5dBi

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain Radio 3: 5240MHz – Max Data Rate = 86Mbps per chain

Temperature: 17.8 °C Rel. Humidity: 48%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)

The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 125 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 6 Date: 11/17/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Test Distance: 3 Meters Horiz

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T2	AN02115	Preamp	83051A	2/27/2017	2/27/2019
Т3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T5	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T6	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018

Measur	rement Data:	Re	eading list	ed by ma	ırgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBμV	dB	dB	dB	dB			dBμV/m	dB	Ant
1	5350.000M	35.2	+30.9	-32.5	+1.5	+9.8	+0.0	53.9	54.0	-0.1	Horiz
			+9.0	+0.0					UBE UNII		
									5350MHz		
									Set14PWR		
									MCS9(86N	,	
	71 70 0003 7	2.5.0	20.4	22.6			0.0		(17.5dBi A	,	** .
2	5150.000M	36.0	+30.4	-32.6	+1.4	+9.8	+0.0	53.7	54.0	-0.3	Horiz
			+8.7	+0.0					LBE UNII		
									5150MHz		
									Set16PWR		
									MCS9(86N	*	
2	5250 000M	24.6	. 20. 0	22.5	.1.7	. 0. 0	. 0. 0	52.2	(17.5dBi A		TT '
3	5350.000M	34.6	+30.9	-32.5	+1.5	+9.8	+0.0	53.3	54.0	-0.7	Horiz
			+9.0	+0.0					UBE UNII		
									5350MHz		
									Set10PWR		
									MCS9(390	,	
4	5150.000M	35.5	+30.4	-32.6	+1.4	+9.8	+0.0	53.2	(17.5dBi A 54.0	-0.8	Horiz
4	3130.000WI	33.3	+30.4	-32.0 +0.0	+1.4	+9.8	+0.0	33.2	LBE UNII		попх
			+6.7	+0.0					5150MHz		
									Set12PWR		
									MCS9(180		
									(17.5dBi A		
5	5150.000M	35.4	+30.4	-32.6	+1.4	+9.8	+0.0	53.1	54.0	-0.9	Horiz
	3130.000111	33.1	+8.7	+0.0	11.1	17.0	10.0	55.1	LBE UNII		HOHE
			10.7	10.0					5150MHz		
									Set10PWR	,	
									MCS9(390		
									(17.5dBi A		
6	5350.000M	34.0	+30.9	-32.5	+1.5	+9.8	+0.0	52.7	54.0	-1.3	Horiz
			+9.0	+0.0				,	UBE UNII		
									5350MHz		
									Set9PWR		
									MCS9(180		
									(17.5dBi A	NT)	

Page 127 of 158 Report No.: 100331-23

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Work Order #: 100331 Date: 11/13/2017 Radiated Scan Time: 15:49:17

Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 4			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

unit is in continuous mode Antenna: 90 degree Horn

Gain: 9dBi

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain Radio 3: 5240MHz – Max Data Rate = 86Mbps per chain

Temperature: 14.2°C Rel. Humidity: 64%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)

The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables

Modification #1 was in place during testing.

Page 128 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 6 Date: 11/13/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Test Distance: 3 Meters Horiz

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

- 1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices

Page 129 of 158 Report No.: 100331-23

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T2	AN02115	Preamp	83051A	2/27/2017	2/27/2019
Т3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T5	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T6	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018

	rement Data:	<u> </u>			ırgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5350.000M	34.9	+30.9	-32.5	+1.5	+9.8	+0.0	53.6	54.0	-0.4	Horiz
			+9.0	+0.0					UBE UNII	2a -	
									5350MHz	@ CH64,	
									Set19PWR	20MHz-	
									MCS9(86N	Mb)	
									(9dBi ANT	7)	
2	5150.000M	35.7	+30.4	-32.6	+1.4	+9.8	+0.0	53.4	54.0	-0.6	Horiz
			+8.7	+0.0					LBE UNII	1 -	
									5150MHz	@ CH40,	
									Set14PWR	80MHz-	
									MCS9(390	Mb)	
									(9dBi ANT		
3	5350.000M	34.5	+30.9	-32.5	+1.5	+9.8	+0.0	53.2	54.0	-0.8	Horiz
			+9.0	+0.0					UBE UNII	2a -	
									5350MHz	@ CH64,	
									Set15PWR	40MHz-	
									MCS9(180	Mb)	
									(9dBi ANT	.)	
4	5150.000M	35.2	+30.4	-32.6	+1.4	+9.8	+0.0	52.9	54.0	-1.1	Horiz
			+8.7	+0.0					LBE UNII		
									5150MHz		
									Set14PWR		
									MCS9(180		
									(9dBi ANT		
5	5150.000M	35.2	+30.4	-32.6	+1.4	+9.8	+0.0	52.9	54.0	-1.1	Horiz
			+8.7	+0.0					LBE UNII		
									5150MHz		
									Set20PWR		
									MCS9(86N	,	
									(9dBi ANT		
6	5350.000M	33.5	+30.9	-32.5	+1.5	+9.8	+0.0	52.2	54.0	-1.8	Horiz
			+9.0	+0.0					UBE UNII		
									5350MHz	,	
									Set14PWR		
									MCS9(390		
									(9dBi ANT	.)	

Page 130 of 158 Report No.: 100331-23

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices
Work Order #: Date: 11/7/2017

Test Type: Radiated Scan Time: 09:59:25
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 5			

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

Unit is in continuous mode

Antenna: 50 degree Hex Array Horn (6 horns)

Data collected will be for both the HexHorn and the 50 Degree Horn. The customer declares that the antennas are exactly the same and so are the radios.

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain Radio 3: 5240MHz – Max Data Rate = 86Mbps per chain

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)

The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive table. The EUT has 6 Horn Antennas in a hexagon shape. It has 3 radios and 4 chains. Each radio is identical as well as each transmit chain. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 131 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 6 Date: 11/7/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Horiz

Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.11
- ----- 1 15.407(b)(1) / 15.209 Radiated Spurious Emissions Fixed PTP Devices

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
T1	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018	
T2	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018	
T3	AN03543	Cable	32022-29094K-	11/2/2015	11/2/2017	
			29094K-10M			
T4	AN02115	Preamp	83051A	2/27/2017	2/27/2019	
T5	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019	
			48TC			
T6	ANP05411	Attenuator	54A-10	1/18/2016	1/18/2018	

	rement Data:	Re	eading list		argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5350.000M	35.6	+0.0	+30.9	+8.6	-32.5	+0.0	53.5	54.0	-0.5	Horiz
			+1.5	+9.4					UBE UNII	2a -	
									5350MHz	@ CH62,	
									Set15PWR	40MHz-	
									MCS9(180	Mb)	
									(13dBi AN		
2	5150.000M	33.1	+0.0	+30.4	+8.4	-32.6	+0.0	50.1	54.0	-3.9	Horiz
			+1.4	+9.4					LBE UNII	1 -	
									5150MHz	@ CH36,	
									Set16PWR	20MHz-	
									MCS9(86N	Mb)	
									(13dBi AN		
3	5150.000M	32.7	+0.0	+30.4	+8.4	-32.6	+0.0	49.7	54.0	-4.3	Horiz
			+1.4	+9.4					LBE UNII	1 -	
									5150MHz		
									Set12PWR		
									MCS9(180		
									(13dBi AN	T)	
4	5350.000M	31.8	+0.0	+30.9	+8.6	-32.5	+0.0	49.7	54.0	-4.3	Horiz
			+1.5	+9.4					UBE UNII	2a -	
									5350MHz		
									Set12PWR	80MHz-	
								MCS9(390Mb)			
									(13dBi AN	T)	
5	5350.000M	31.2	+0.0	+30.9	+8.6	-32.5	+0.0	49.1	54.0	-4.9	Horiz
			+1.5	+9.4					UBE UNII	2a -	
									5350MHz	@ CH64,	
									Set16PWR	20MHz-	
									MCS9(86N	/lb)	
									(13dBi AN	T)	
6	5150.000M	31.1	+0.0	+30.4	+8.4	-32.6	+0.0	48.1	54.0	-5.9	Horiz
			+1.4	+9.4					LBE UNII		
									5150MHz		
									Set10PWR		
									MCS9(390		
									(13dBi AN	T)	
L									(1002)1111	- /	

Page 133 of 158 Report No.: 100331-23

Test Setup Photos

9dBi-30-1000MHz

9dBi-30-1000MHz

9dBi-1-12GHz, Cone placement

9dBi-12-18GHz, Cone placement

9dBi-18-26.5GHz, Cone placement

9dBi-26.5-40GHz, Cone placement

13dBi-Hex-30-1000MHz

13dBi-Hex-30-1000MHz

13dBi-Hex-1-12GHz, Cone placement

13dBi-Hex-12-18GHz, Cone placement

13dBi-Hex-18-26.5GHz, Cone placement

13dBi-Hex-26.5-40GHz, Cone placement

13dBi-Horn-30-1000MHz

13dBi-Horn-30-1000MHz-

13dBi-Horn-1-12GHz, Cone placement

13dBi-Horn-12-18GHz, Cone placement

13dBi-Horn-18-26.5GHz, Cone placement

13dBi-Horn-26.5-40GHz, Cone placement

17.5dBi-30-1000MHz

17.5dBi-30-1000MHz

17.5dBi-1-12GHz, Cone placement

17.5dBi-12-18GHz, Cone placement

17.5dBi-18-26.5GHz, Cone placement

17.5dBi-26.5-40GHz, Cone placement

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.207 AC Mains - Average

 Work Order #:
 100331
 Date:
 10/4/2017

 Test Type:
 Conducted Emissions
 Time:
 11:04:45

Tested By: Benny Lovan Sequence#: 1

Software: EMITest 5.03.11 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 5

Support Equipment:

Device Manufacturer Model # S/N
Configuration 5

Test Conditions / Notes:

Equipment is an outdoor access point

Modulation used: OFDM (802.11ac)

Unit is Beaconing

Antenna: 50 degree Hex Array Horn (6 horns)

Note: The power supply for the radio is POE and has an external unit that provides it. For testing of conducted emissions, we will perform the scans on this antenna as the worst case. The radio is identical to all other configurations using different antennas. This antenna has the ability to transmit on multiple antennas simultaneously and it was chosen to represent the conducted emissions.

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5240MHz

Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 150kHz - 30MHz

Highest Generated Frequency not related to radio: 1.4GHz

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013)

The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive tabletop. The EUT has 6 Horn Antennas in a hexagon shape. It is exercising all three radios within the system. All radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The power supply cable is shorter than 80cm so it is placed at a position above the ground plane that extends the power supply cable fully. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 146 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 1 Date: 10/4/2017 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05624	Attenuator	PE7010-10	1/15/2017	1/15/2019
T2	AN00374	50uH LISN-Line (L1) (dB)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
	AN00374	50uH LISN-Return (L2)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06231	Cable	CXTA04A-70	3/3/2016	3/3/2018
T5	ANP06232	Cable	CXTA04A-35	3/3/2016	3/3/2018
T6	ANP06847	Cable	LMR195-FR-6	7/31/2017	7/31/2019
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6						475	
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1.226M	32.5	+10.0	+0.1	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
			+0.1	+0.0					4.5.0		
2	953.754k	32.5	+10.0	+0.1	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
	1.0003.6	22.5	+0.1	+0.0	0.0	0.1	0.0	12.0	46.0	2.0	T .
3	1.889M	32.5	+10.0	+0.1	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
	1.06016	22.2	+0.1	+0.0	0.2	0.0	0.0	12.0	460	2.1	T .
4	1.962M	32.3	+10.0	+0.1	+0.2	+0.2	+0.0	42.9	46.0	-3.1	Line
	251 4261	25.6	+0.1	+0.0	.0.1	. 0. 0	. 0. 0	45.0	40.0	2.1	т
5	351.436k	35.6	+10.0	+0.1	+0.1	+0.0	+0.0	45.8	48.9	-3.1	Line
6	201 4221-	24.2	+0.0	+0.0	ı O 2	+0.0	ι Ο Ο	116	19.0	2.4	Lina
	391.432k Ave	34.3	$+10.0 \\ +0.0$	$+0.1 \\ +0.0$	+0.2	+0.0	+0.0	44.6	48.0	-3.4	Line
^	391.432k	43.9	+10.0	+0.0	+0.2	+0.0	+0.0	54.2	48.0	+6.2	Line
	371.432K	43.7	+10.0	+0.1	+0.2	+0.0	+0.0	34.2	40.0	+0.2	Line
8	196.541k	40.1	+10.0	+0.1	+0.2	+0.0	+0.0	50.4	53.8	-3.4	Line
	170.541K	40.1	+0.0	+0.0	10.2	10.0	10.0	30.4	33.0	5.4	Line
9	7.238M	35.7	+10.0	+0.1	+0.2	+0.3	+0.0	46.5	50.0	-3.5	Line
	7.230141	33.7	+0.1	+0.1	10.2	10.5	10.0	10.5	20.0	3.5	Eme
10	6.932M	35.7	+10.0	+0.1	+0.2	+0.3	+0.0	46.5	50.0	-3.5	Line
			+0.1	+0.1							
11	587.778k	32.0	+10.0	+0.1	+0.3	+0.1	+0.0	42.5	46.0	-3.5	Line
			+0.0	+0.0							
12	7.157M	35.4	+10.0	+0.1	+0.2	+0.3	+0.0	46.2	50.0	-3.8	Line
			+0.1	+0.1							
13	7.571M	35.2	+10.0	+0.1	+0.2	+0.3	+0.0	46.1	50.0	-3.9	Line
			+0.2	+0.1							
14	1.145M	31.6	+10.0	+0.1	+0.2	+0.1	+0.0	42.0	46.0	-4.0	Line
			+0.0	+0.0							
15	6.607M	35.1	+10.0	+0.1	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
			+0.1	+0.1							
16	6.905M	35.1	+10.0	+0.1	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
			+0.1	+0.1							

Page 148 of 158 Report No.: 100331-23

17	7.256M	35.1	$+10.0 \\ +0.1$	+0.1 +0.1	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
18	2.519M	31.2	+10.0	+0.1	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Line
10	2.319W	31.2	+10.0	+0.1 +0.1	+0.1	+0.2	+0.0	41.8	40.0	-4.2	Line
19	6.697M	35.0	+10.0	+0.1	+0.2	+0.3	+0.0	45.8	50.0	-4.2	Line
	0.05 / 1.1	22.0	+0.1	+0.1	. 0.2	. 0.0	. 0.0		20.0		2
20	6.752M	34.7	+10.0	+0.1	+0.2	+0.3	+0.0	45.5	50.0	-4.5	Line
			+0.1	+0.1							
21	6.472M	34.6	+10.0	+0.1	+0.2	+0.3	+0.0	45.4	50.0	-4.6	Line
			+0.1	+0.1							
22	6.851M	34.6	+10.0	+0.1	+0.2	+0.3	+0.0	45.4	50.0	-4.6	Line
			+0.1	+0.1							
23	29.054M	32.8	+10.0	+0.5	+0.3	+0.8	+0.0	45.0	50.0	-5.0	Line
			+0.4	+0.2							
24	8.013M	34.2	+10.0	+0.1	+0.1	+0.3	+0.0	44.9	50.0	-5.1	Line
			+0.1	+0.1							
25	6.148M	34.2	+10.0	+0.1	+0.1	+0.3	+0.0	44.9	50.0	-5.1	Line
			+0.1	+0.1							
26	5.995M	34.1	+10.0	+0.1	+0.1	+0.3	+0.0	44.8	50.0	-5.2	Line
			+0.1	+0.1							
27	216.175k	37.4	+10.0	+0.1	+0.2	+0.0	+0.0	47.7	53.0	-5.3	Line
20	227.0021	267	+0.0	+0.0	0.2	0.0	0.0	47.0	50.0		. .
28	235.083k	36.7	+10.0	+0.1	+0.2	+0.0	+0.0	47.0	52.3	-5.3	Line
20	25.54614	22.6	+0.0	+0.0	.0.2	.07	. 0. 0	11.6	5 0.0	<i>5</i> 1	T 1
29	25.546M	32.6	+10.0	+0.4	+0.3	+0.7	+0.0	44.6	50.0	-5.4	Line
30	29.308M	32.4	+0.4	+0.2	+0.2	+0.8	+0.0	44.6	50.0	-5.4	Lina
30	29.308W	32.4	$+10.0 \\ +0.4$	+0.5 +0.2	+0.3	+0.8	+0.0	44.0	30.0	-3.4	Line
31	1.396M	30.0	+10.0	+0.2	+0.2	+0.1	+0.0	40.5	46.0	-5.5	Line
31	1.390101	30.0	+10.0	+0.1	+0.2	+0.1	+0.0	40.3	40.0	-3.3	Line
32	865.570k	30.0	+10.0	+0.1	+0.2	+0.1	+0.0	40.4	46.0	-5.6	Line
32	003.370K	30.0	+0.0	+0.1	10.2	10.1	10.0	70.7	-10.0	-3.0	Line
33	1.405M	29.9	+10.0	+0.1	+0.2	+0.1	+0.0	40.4	46.0	-5.6	Line
	1.100111	27.7	+0.1	+0.0	10.2	10.1	10.0	10.1	10.0	2.0	Line
34	589.959k	29.8	+10.0	+0.1	+0.3	+0.1	+0.0	40.3	46.0	-5.7	Line
			+0.0	+0.0	,						
35	5.373M	33.5	+10.0	+0.1	+0.1	+0.3	+0.0	44.2	50.0	-5.8	Line
			+0.1	+0.1							
36	8.157M	33.4	+10.0	+0.2	+0.1	+0.3	+0.0	44.2	50.0	-5.8	Line
			+0.1	+0.1							
37	28.554M	32.0	+10.0	+0.5	+0.3	+0.7	+0.0	44.1	50.0	-5.9	Line
			+0.4	+0.2							
38	28.808M	31.8	+10.0	+0.5	+0.3	+0.8	+0.0	44.0	50.0	-6.0	Line
			+0.4	+0.2							
39	5.553M	33.2	+10.0	+0.1	+0.1	+0.3	+0.0	43.9	50.0	-6.1	Line
	0.05:		+0.1	+0.1							
40	8.031M	33.1	+10.0	+0.2	+0.1	+0.3	+0.0	43.9	50.0	-6.1	Line
4.1	470 1 701	25.5	+0.1	+0.1	.0.2	.0.1	.0.0	26.0	46.7	0.7	T ·
41	472.152k	26.5	+10.0	+0.1	+0.2	+0.1	+0.0	36.9	46.5	-9.6	Line
^	Ave 472 1521	36.7	+0.0	+0.0	10.2	+0.1	+0.0	47.1	16.5	10.6	Lina
	472.152k	30.7	$+10.0 \\ +0.0$	+0.1 +0.0	+0.2	+0.1	+0.0	47.1	46.5	+0.6	Line
			+0.0	+∪.∪							

Page 149 of 158 Report No.: 100331-23

43	164.544k	33.4	+10.0	+0.1	+0.5	+0.0	+0.0	44.0	55.2	-11.2	Line
	Ave		+0.0	+0.0							
44	2.625M	23.1	+10.0	+0.1	+0.1	+0.2	+0.0	33.7	46.0	-12.3	Line
	Ave		+0.1	+0.1							
^	2.625M	32.9	+10.0	+0.1	+0.1	+0.2	+0.0	43.5	46.0	-2.5	Line
			+0.1	+0.1							
46	4.909M	22.7	+10.0	+0.1	+0.1	+0.2	+0.0	33.3	46.0	-12.7	Line
	Ave		+0.1	+0.1							
^	4.909M	33.2	+10.0	+0.1	+0.1	+0.2	+0.0	43.8	46.0	-2.2	Line
			+0.1	+0.1							
48	168.907k	31.6	+10.0	+0.1	+0.4	+0.0	+0.0	42.1	55.0	-12.9	Line
	Ave		+0.0	+0.0							
^	164.544k	44.8	+10.0	+0.1	+0.5	+0.0	+0.0	55.4	55.2	+0.2	Line
			+0.0	+0.0							
^	168.907k	44.1	+10.0	+0.1	+0.4	+0.0	+0.0	54.6	55.0	-0.4	Line
			+0.0	+0.0							
51	2.459M	21.7	+10.0	+0.1	+0.1	+0.2	+0.0	32.3	46.0	-13.7	Line
	Ave		+0.1	+0.1							
^	2.459M	33.1	+10.0	+0.1	+0.1	+0.2	+0.0	43.7	46.0	-2.3	Line
			+0.1	+0.1							
53	747.036k	21.8	+10.0	+0.1	+0.2	+0.1	+0.0	32.2	46.0	-13.8	Line
	Ave		+0.0	+0.0							
^	747.036k	32.3	+10.0	+0.1	+0.2	+0.1	+0.0	42.7	46.0	-3.3	Line
			+0.0	+0.0							
55	1.711M	16.4	+10.0	+0.1	+0.2	+0.2	+0.0	27.0	46.0	-19.0	Line
	Ave		+0.1	+0.0							
^	1.711M	31.8	+10.0	+0.1	+0.2	+0.2	+0.0	42.4	46.0	-3.6	Line
			+0.1	+0.0							
57	187.815k	21.2	+10.0	+0.1	+0.3	+0.0	+0.0	31.6	54.1	-22.5	Line
	Ave		+0.0	+0.0							
^	187.815k	40.1	+10.0	+0.1	+0.3	+0.0	+0.0	50.5	54.1	-3.6	Line
			+0.0	+0.0							
59	177.634k	14.1	+10.0	+0.1	+0.3	+0.0	+0.0	24.5	54.6	-30.1	Line
	Ave		+0.0	+0.0							
^	177.634k	43.3	+10.0	+0.1	+0.3	+0.0	+0.0	53.7	54.6	-0.9	Line
1			+0.0	+0.0							

Page 150 of 158 Report No.: 100331-23

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.207 AC Mains - Average

EMITest 5.03.11

Work Order #: 100331 Date: 10/4/2017 Test Type: **Conducted Emissions** Time: 11:11:41

Tested By: Benny Lovan Sequence#: 2 120V 60Hz

Equipment Tested:

Software:

Device Manufacturer Model # S/N Configuration 5

Support Equipment:

Device Manufacturer Model # S/N Configuration 5

Test Conditions / Notes:

Equipment is an outdoor access point

Modulation used: OFDM (802.11ac)

Unit is Beaconing

Antenna: 50 degree Hex Array Horn (6 horns)

Note: The power supply for the radio is POE and has an external unit that provides it. For testing of conducted emissions, we will perform the scans on this antenna as the worst case. The radio is identical to all other configurations using different antennas. This antenna has the ability to transmit on multiple antennas simultaneously and it was chosen to represent the conducted emissions.

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5240MHz

Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 150kHz - 30MHz

Highest Generated Frequency not related to radio: 1.4GHz

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013)

The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive tabletop. The EUT has 6 Horn Antennas in a hexagon shape. It is exercising all three radios within the system. All radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The power supply cable is shorter than 80cm so it is placed at a position above the ground plane that extends the power supply cable fully. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 151 of 158 Report No.: 100331-23

Digital Path WO#: 100331 Sequence#: 2 Date: 10/4/2017 15.207 AC Mains - Average Test Lead: 120V 60Hz Return

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05624	Attenuator	PE7010-10	1/15/2017	1/15/2019
	AN00374	50uH LISN-Line (L1) (dB)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
T2	AN00374	50uH LISN-Return (L2)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06231	Cable	CXTA04A-70	3/3/2016	3/3/2018
T5	ANP06232	Cable	CXTA04A-35	3/3/2016	3/3/2018
T6	ANP06847	Cable	LMR195-FR-6	7/31/2017	7/31/2019
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Return		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		15. 11	T5	T6	15	15	m	15. 11	1D 11	175	
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV	dBμV	dB	Ant
1	395.067k	36.0	+10.0	+0.1	+0.2	+0.0	+0.0	46.3	48.0	-1.7	Retur
	Ave		+0.0	+0.0							
^	395.067k	44.1	+10.0	+0.1	+0.2	+0.0	+0.0	54.4	48.0	+6.4	Retur
			+0.0	+0.0							
3	1.894M	32.0	+10.0	+0.1	+0.2	+0.1	+0.0	42.5	46.0	-3.5	Retur
			+0.1	+0.0							
4	2.136M	31.7	+10.0	+0.1	+0.2	+0.2	+0.0	42.4	46.0	-3.6	Retur
			+0.1	+0.1							
5	1.528M	31.9	+10.0	+0.1	+0.2	+0.1	+0.0	42.4	46.0	-3.6	Retur
			+0.1	+0.0							
6	1.324M	31.9	+10.0	+0.1	+0.2	+0.1	+0.0	42.3	46.0	-3.7	Retur
			+0.0	+0.0							
7	3.225M	31.4	+10.0	+0.1	+0.1	+0.3	+0.0	42.1	46.0	-3.9	Retur
			+0.1	+0.1							
8	2.315M	31.3	+10.0	+0.1	+0.2	+0.2	+0.0	42.0	46.0	-4.0	Retur
			+0.1	+0.1							
9	2.685M	31.4	+10.0	+0.1	+0.1	+0.2	+0.0	42.0	46.0	-4.0	Retur
			+0.1	+0.1							
10	1.430M	31.4	+10.0	+0.1	+0.2	+0.1	+0.0	41.9	46.0	-4.1	Retur
			+0.1	+0.0							
11	740.490k	31.2	+10.0	+0.1	+0.2	+0.1	+0.0	41.6	46.0	-4.4	Retur
			+0.0	+0.0							
12	198.721k	38.9	+10.0	+0.1	+0.2	+0.0	+0.0	49.2	53.7	-4.5	Retur
			+0.0	+0.0							
13	962.259k	30.9	+10.0	+0.1	+0.2	+0.1	+0.0	41.4	46.0	-4.6	Retur
			+0.1	+0.0							
14	29.061M	33.1	+10.0	+0.6	+0.3	+0.8	+0.0	45.4	50.0	-4.6	Retur
			+0.4	+0.2							
15	28.308M	33.0	+10.0	+0.5	+0.3	+0.7	+0.0	45.1	50.0	-4.9	Retur
			+0.4	+0.2							
16	6.887M	34.1	+10.0	+0.2	+0.2	+0.3	+0.0	45.0	50.0	-5.0	Retur
			+0.1	+0.1							

Page 153 of 158 Report No.: 100331-23

17	351.435k	33.6	+10.0	+0.1	+0.1	+0.0	+0.0	43.8	48.9	-5.1	Retur
10	20.0001/	22.7	+0.0	+0.0	.0.2	. 0. 0	. 0. 0	44.0	50.0	<i>E</i> 1	D . 4
18	28.808M	32.7	$+10.0 \\ +0.4$	+0.5 +0.2	+0.3	+0.8	+0.0	44.9	50.0	-5.1	Retur
19	29.308M	32.3	+10.0	+0.6	+0.3	+0.8	+0.0	44.6	50.0	-5.4	Retur
17	27.300IVI	32.3	+0.4	+0.2	10.5	10.0	10.0	77.0	30.0	-3. -	Retui
20	1.141M	29.6	+10.0	+0.1	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Retur
20	1.1 11111	27.0	+0.0	+0.0	10.2	10.1	10.0	10.0	10.0	0.0	rectur
21	27.054M	31.9	+10.0	+0.5	+0.3	+0.7	+0.0	44.0	50.0	-6.0	Retur
	27.00 11.1	01.,	+0.4	+0.2	. 0.2	. 0.7	. 0.0		20.0	0.0	110101
22	28.554M	31.9	+10.0	+0.5	+0.3	+0.7	+0.0	44.0	50.0	-6.0	Retur
			+0.4	+0.2							
23	870.660k	29.5	+10.0	+0.1	+0.2	+0.1	+0.0	39.9	46.0	-6.1	Retur
			+0.0	+0.0							
24	1.694M	29.3	+10.0	+0.1	+0.2	+0.2	+0.0	39.9	46.0	-6.1	Retur
			+0.1	+0.0							
25	224.174k	36.2	+10.0	+0.1	+0.2	+0.0	+0.0	46.5	52.7	-6.2	Retur
			+0.0	+0.0							
26	25.800M	31.6	+10.0	+0.5	+0.3	+0.7	+0.0	43.7	50.0	-6.3	Retur
			+0.4	+0.2							
27	29.808M	31.3	+10.0	+0.6	+0.3	+0.8	+0.0	43.6	50.0	-6.4	Retur
			+0.4	+0.2							
28	588.504k	29.0	+10.0	+0.1	+0.3	+0.1	+0.0	39.5	46.0	-6.5	Retur
			+0.0	+0.0							
29	861.206k	29.0	+10.0	+0.1	+0.3	+0.1	+0.0	39.5	46.0	-6.5	Retur
			+0.0	+0.0							
30	212.538k	36.2	+10.0	+0.1	+0.2	+0.0	+0.0	46.5	53.1	-6.6	Retur
			+0.0	+0.0							
31	1.132M	28.9	+10.0	+0.1	+0.2	+0.1	+0.0	39.3	46.0	-6.7	Retur
			+0.0	+0.0							
32	25.553M	31.2	+10.0	+0.5	+0.3	+0.7	+0.0	43.3	50.0	-6.7	Retur
			+0.4	+0.2							
33	609.593k	28.6	+10.0	+0.1	+0.3	+0.1	+0.0	39.1	46.0	-6.9	Retur
			+0.0	+0.0							
34	614.683k	28.6	+10.0	+0.1	+0.3	+0.1	+0.0	39.1	46.0	-6.9	Retur
			+0.0	+0.0							
35	25.299M	31.1	+10.0	+0.5	+0.3	+0.7	+0.0	43.1	50.0	-6.9	Retur
			+0.3	+0.2							
36	578.323k	28.4	+10.0	+0.1	+0.3	+0.1	+0.0	38.9	46.0	-7.1	Retur
			+0.0	+0.0							
37	1.162M	28.3	+10.0	+0.1	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Retur
			+0.1	+0.0							
38	27.807M	30.7	+10.0	+0.5	+0.3	+0.7	+0.0	42.8	50.0	-7.2	Retur
20	04.7003.6	20.0	+0.4	+0.2	.0.2	.0.7	.0.0	40.7	70.0	7.0	D :
39	24.799M	30.8	+10.0	+0.4	+0.3	+0.7	+0.0	42.7	50.0	-7.3	Retur
40	20.0543.5	20.5	+0.3	+0.2	.0.2	. 0. 7	.0.0	42.7	<i>5</i> 0.0	7.0	D :
40	28.054M	30.6	+10.0	+0.5	+0.3	+0.7	+0.0	42.7	50.0	-7.3	Retur
4.1	12 2551	21.2	+0.4	+0.2	.0.2	.0.5	.0.0	12.5	50.0	7.5	D =4
41	13.355M	31.2	+10.0	+0.2	+0.2	+0.5	+0.0	42.5	50.0	-7.5	Retur
42	26 5521/	20.4	+0.2	+0.2	10.2	+0.7	+0.0	12.5	50.0	75	Dotum
42	26.553M	30.4	+10.0	+0.5	+0.3	+0.7	+0.0	42.5	50.0	-7.5	Retur
			+0.4	+0.2							

Page 154 of 158 Report No.: 100331-23

43	27.300M	30.4	+10.0	+0.5	+0.3	+0.7	+0.0	42.5	50.0	-7.5	Retur
			+0.4	+0.2							
44	361.616k	26.6	+10.0	+0.1	+0.2	+0.0	+0.0	36.9	48.7	-11.8	Retur
	Ave		+0.0	+0.0							
45	164.543k	32.3	+10.0	+0.1	+0.5	+0.0	+0.0	42.9	55.2	-12.3	Retur
	Ave		+0.0	+0.0							
46	163.089k	31.7	+10.0	+0.1	+0.5	+0.0	+0.0	42.3	55.3	-13.0	Retur
	Ave		+0.0	+0.0							
^	163.089k	43.6	+10.0	+0.1	+0.5	+0.0	+0.0	54.2	55.3	-1.1	Retur
			+0.0	+0.0							
^	164.543k	43.2	+10.0	+0.1	+0.5	+0.0	+0.0	53.8	55.2	-1.4	Retur
			+0.0	+0.0							
^	160.907k	39.2	+10.0	+0.1	+0.6	+0.0	+0.0	49.9	55.4	-5.5	Retur
			+0.0	+0.0							
50	358.707k	23.7	+10.0	+0.1	+0.2	+0.0	+0.0	34.0	48.8	-14.8	Retur
	Ave		+0.0	+0.0							
^	358.707k	39.7	+10.0	+0.1	+0.2	+0.0	+0.0	50.0	48.8	+1.2	Retur
			+0.0	+0.0							
^	361.616k	39.5	+10.0	+0.1	+0.2	+0.0	+0.0	49.8	48.7	+1.1	Retur
			+0.0	+0.0							
53	175.451k	17.5	+10.0	+0.1	+0.3	+0.0	+0.0	27.9	54.7	-26.8	Retur
	Ave		+0.0	+0.0							
54	177.633k	13.0	+10.0	+0.1	+0.3	+0.0	+0.0	23.4	54.6	-31.2	Retur
	Ave		+0.0	+0.0							
^	177.633k	43.5	+10.0	+0.1	+0.3	+0.0	+0.0	53.9	54.6	-0.7	Retur
			+0.0	+0.0							
^	175.451k	42.9	+10.0	+0.1	+0.3	+0.0	+0.0	53.3	54.7	-1.4	Retur
			+0.0	+0.0							
٨	180.541k	39.4	+10.0	+0.1	+0.3	+0.0	+0.0	49.8	54.5	-4.7	Retur
			+0.0	+0.0							

Page 155 of 158 Report No.: 100331-23

Test Setup Photos

Page 156 of 158 Report No.: 100331-23

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS								
	Meter reading (dBμV)								
+	Antenna Factor	(dB/m)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	(dBμV/m)							

Page 157 of 158 Report No.: 100331-23

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 158 of 158 Report No.: 100331-23