Digital Path

TEST REPORT FOR

5212/5213 Radio Model: G3RL10 V2

Tested To The Following Standards:

FCC Part 15 Subpart E Section(s)

15.207 &15.407 (NII 5.725 – 5.850GHz)

Report No.: 98485-14

Date of issue: July 22, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 54 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information
Test Report Information
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results
Modifications During Testing5
Conditions During Testing5
Equipment Under Test6
General Product Information7
FCC Part 15 Subpart E8
15.407(e) 6dB Bandwidth8
15.407(a) Output Power11
15.407(a) Power Spectral Density15
15.407(g) Frequency Stability
15.407(b) Radiated Emissions & Band Edge22
15.207 AC Conducted Emissions43
Appendix A: Software Settings Information
Supplemental Information
Measurement Uncertainty
Emissions Test Details

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Digital Path 275 Air Park Blvd, Suite 500 Chico, CA 95973

REPORT PREPARED BY:

Terri Rayle CKC Laboratories, Inc. Mariposa, CA 95338

REPRESENTATIVE: Brock Eastman Customer Reference Number: DP-CA-103

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

5046 Sierra Pines Drive

Project Number: 98485

May 17, 2016 May 17-31, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm **Director of Quality Assurance & Engineering Services** CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Mariposa A	US0103	SL2-IN-E-1147R	3082A-2	90477	A-0136

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart E - 15.407 (NII)

Test Procedure	Description	Modifications	Results
15.407(e)	6dB Bandwidth	NA	Pass
15.407(a)	Output Power	NA	Pass
15.407(a)	Power Spectral Density	NA	Pass
15.407(g)	Frequency Stability	NA	Pass
15.407(b)	Radiated Emissions & Band Edge	Mod. #1	Pass
15.207	AC Conducted Emissions	Mod. #1	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification #1: Added Ferrite Manuf: Steward, Model: 28A2024-0A0 to pass 240MHz on both the LAN and POE Ethernet cables going to the EUT.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
5212/5213 Radio	Digital Path	G3RL10 V2	00:0D:B9:20:90:CC
POE Power Adapter	HP	FAS24000050-C44	None
Support Equipment:			
Device	Manufacturer	Model #	S/N
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228
Laptop Computer	HP	Probook 6565b	None
Configuration 2 Equipment Tested:			
Device	Manufacturer	Model #	S/N
5212/5213 Radio	Digital Path	G3RL10 V2	00:0D:B9:2C:02:5C
11 dBi Integrated Omni Antenna (PTMP)	Digital Path Networks	DP-5G11-360	NA
18 dBi Integrated Panel Antenna (PTP)	Digital Path Networks	DP-5G18-30	NA
17 dBi External Sector Antenna (PTMP)	Ubiquity Networks	AM-5AC17-90	AM5A19587
22 dBi External Sector Antenna (PTMP)	Ubiquity Networks	AM-5AC22-45	AM5K03047
23 dBi External Panel Antenna (PTP)	Arc Wireless	ARC-5G23-10	NA
20dBi External Sector Antenna (PTMP)	Ubiquity Networks	AM-5G20	AM5C40145
21dBi External Sector Antenna (PTMP)	Ubiquity Networks	AM-5G21-60	AM5L13747
19 dBi External Sector Antenna (PTMP)	Ubiquity Networks	AM-5G19	AM5160154
V5 Battery Box	Digital Path Networks	NA	NA
Power Supply	Condor	STD-2472P	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228
Laptop Computer	НР	Probook 6565b	NA

Configuration 3 *Equipment Tested:*

Equipment Testea:			
Device	Manufacturer	Model #	S/N
5212/5213 Radio	Digital Path	G3RL10 V2	00:0D:B9:2C:02:5C
V5 Battery Box	Digital Path Networks	NA	NA
Power Supply	Condor	STD-2472P	NA
Support Equipment:			
Device	Manufacturer	Model #	S/N
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228
Laptop Computer	HP	Probook 6565b	NA

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	802.11a		
Operating Frequency Range:	5.725 – 5.85GHz		
Modulation Type(s):	OFDM		
Maximum Duty Cycle:	100%		
Number of TX Chains:	1		
	Integrated Panel / 18dBi		
	Omni / 11dBi		
	External Diamond Arc Wireless / 23dBi		
Antonno Type(s) and Cain:	Sector / 22dBi		
Antenna Type(s) and Gain.	Sector / 17dBi		
	Sector / 20dBi		
	Sector / 21dBi		
	Sector / 19dBi		
Beamforming Type:	None		
Antonno Connection Type	Integral PCB Trace (11dBi and 18dBi Antennas) and External Connector		
Antenna Connection Type:	(SMA) for 17dBi, 19dBi, 20dBi, 22dBi and 23dBi antennas		
Nominal Input Voltage:	24VDC POE		
Firmware / Software used for Test:	Web interface on EUT to Atheros TX99 Tool: Aquila 9.2.14.		

FCC Part 15 Subpart E

15.407(e) 6dB Bandwidth

Test Setup/Conditions					
Test Location:	Mariposa Lab A	Test Engineer:	Randal Clark / Benny Lovan		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/18/2016		
	KDB 789033 D02 v01r02				
Configuration: 1					
Test Setup:	The EUT is setup on a table with its antenna port directly connected to an analyzer				
	through 9dB of attenuation.				

Environmental Conditions					
Temperature (°C) 26 Relative Humidity (%): 42					

Test Equipment							
Asset#	Description	Manufacture r	Model	Cal Date	Cal Due		
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016		
02134	Attenuator	Weinschel	54-3	12/8/2014	12/8/2016		
P01949	Attenuator	Weinschel	54A-6	12/8/2014	12/8/2016		
03355	Cable	AstroLab	32026-2-29094K-48TC	12/8/2014	12/8/2016		

6dB Occupied Bandwidth

Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5740	0	OFDM	16517			
5800	0	OFDM	16517	None	NA	
5835	0	OFDM	16516			

NA = Not Applicable

99% Occupied Bandwidth

Test Data Summary						
Frequency (MHz)	Antenna Port	Limit (kHz)	Results			
5740	0	OFDM	16506			
5800	0	OFDM	16506	None	NA	
5835	0	OFDM	16548			

NA = Not Applicable

Plots

Low Channel

Middle Channel

High Channel

15.407(a) Output Power

Test Setup/Conditions – RF Conducted Measurement					
Test Location:	Mariposa Lab A	Test Engineer:	Randal Clark and Benny Lovan		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/18/2016 - 05/19/2016		
	KDB 789033 D02 v01r02				
Configuration:	1				
Test Setup:	The EUT is setup on a table wit through 9dB of attenuation.	h its antenna port d	irectly connected to an analyzer		
	The EUT has two antenna ports th	at are identical. Testir	ng was performed on Port 0.		

Environmental Conditions				
Temperature (°C) 22-26 Relative Humidity (%):				

Test Equipment						
Asset#	Asset# Description Manufacturer Model				Cal Due	
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016	
02134	Attenuator	Weinschel	54-3	12/8/2014	12/8/2016	
P01949	Attenuator	Weinschel	54A-6	12/8/2014	12/8/2016	
03355	Cable	AstroLab	32026-2-29094К- 48TC	12/8/2014	12/8/2016	
03338	Multimeter	Extech	MM570A	1/22/2015	1/2/2017	

Test Data Summary - Voltage Variations					
Frequency (MHz) Modulation / Ant Port V _{Minimum} (dBm) V _{Nominal} (dBm) V _{Maximum} (dBm) N					
5735	OFDM / Ant Port 0	13.97	13.73	13.75	0.24
5800	OFDM / Ant Port 0	12.83	12.94	13.16	0.33
5840	OFDM / Ant Port 0	13.28	13.37	13.27	0.10

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	24 VDC
V _{Minimum} :	20.4 VDC
V _{Maximum} :	27.6 VDC

Test Data Summary - RF Conducted Measurement

Measuremen	t Option: AVGSA-1				
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
5735	OFDM	18 dBi Panel	13.75	≤ 30	Pass
5800	OFDM	18 dBi Panel	12.99	≤ 30	Pass
5840	OFDM	18 dBi Panel	13.03	≤ 30	Pass
5735	OFDM	11 dBi Omni	13.75	≤ 25	Pass
5800	OFDM	11 dBi Omni	12.99	≤ 25	Pass
5840	OFDM	11 dBi Omni	13.03	≤ 25	Pass
5735	OFDM	23dBi Panel	13.75	≤ 30	Pass
5800	OFDM	23dBi Panel	12.99	≤ 30	Pass
5840	OFDM	23dBi Panel	13.03	≤ 30	Pass
5735	OFDM	22dBi Sector	13.75	≤ 14	Pass
5800	OFDM	22dBi Sector	12.99	≤ 14	Pass
5840	OFDM	22dBi Sector	13.03	≤ 14	Pass
5735	OFDM	17dBi Sector	13.75	≤ 19	Pass
5800	OFDM	17dBi Sector	12.99	≤ 19	Pass
5840	OFDM	17dBi Sector	13.03	≤ 19	Pass
5735	OFDM	19dBi Sector	13.75	≤ 17	Pass
5800	OFDM	19dBi Sector	12.99	≤ 17	Pass
5840	OFDM	19dBi Sector	13.03	≤ 17	Pass
5735	OFDM	21dBi Sector	13.75	≤ 15	Pass
5800	OFDM	21dBi Sector	12.99	≤ 15	Pass
5840	OFDM	21dBi Sector	13.03	≤ 15	Pass
5735	OFDM	20dBi Sector	13.75	≤ 16	Pass
5800	OFDM	20dBi Sector	12.99	≤ 16	Pass
5840	OFDM	20dBi Sector	13.03	≤ 16	Pass

Testing was performed on sector antennas, employing the same radio, with gains ranging from 17dBi to 22dBi. Since all antennas produced a passing result, the 19dBi antenna is determined to be covered within these measurements.

For equipment using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(3):

Limit = 30 - Roundup(G - 6)

For equipment using antennas in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(3):

Limit = 30

Plots

CHPWR All Ant-HB-5.8-Set23

CHPWR All Ant-LB-5.8-Set23

CHPWR All Ant-MB-5.8-Set23

Test Setup Photo

Page 14 of 54 Report No.: 98485-14

15.407(a) Power Spectral Density

Test Location:	Mariposa Lab A	Test Engineer:	Randal Clark and Benny Lovan
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/18/2016 - 05/20/16
	KDB 789033 D02 v01r02		
Configuration:	1		
Test Setup:	The EUT is setup on a table with its antenna port directly connected to an analyzer through 9dB of attenuation. Software setting set to the max setting determined during band edge and channel power measurements		

Environmental Conditions					
Temperature (^o C)	22-26	Relative Humidity (%):	42-51		

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016	
02134	Attenuator	Weinschel	54-3	12/8/2014	12/8/2016	
P01949	Attenuator	Weinschel	54A-6	12/8/2014	12/8/2016	
03355	Cable	AstroLab	32026-2-29094К- 48TC	12/8/2014	12/8/2016	
03338	Multimeter	Extech	MM570A	1/22/2015	1/2/2017	

Test Data Summary - RF Conducted Measurement

Measurement Option: AVGSA-1

Frequency	Modulation	Ant. Type /	Measured	Limit	Poculto		
(MHz)	Modulation	Gain (dBi)	(dBm/MHz)	(dBm/MHz)	Nesuits		
5735	OFDM	18 dBi Panel	-0.224	≤30	Pass		
5800	OFDM	18 dBi Panel	-0.897	≤30	Pass		
5840	OFDM	18 dBi Panel	-0.825	≤30	Pass		
5735	OFDM	11 dBi Omni	-0.224	≤25	Pass		
5800	OFDM	11 dBi Omni	-0.897	≤25	Pass		
5840	OFDM	11 dBi Omni	-0.825	≤25	Pass		
5735	OFDM	23dBi Panel	-0.224	≤30	Pass		
5800	OFDM	23dBi Panel	-0.897	≤30	Pass		
5840	OFDM	23dBi Panel	-0.825	≤30	Pass		
5735	OFDM	22dBi Sector	-0.224	≤14	Pass		
5800	OFDM	22dBi Sector	-0.897	≤14	Pass		
5840	OFDM	22dBi Sector	-0.825	≤14	Pass		
5735	OFDM	17dBi Sector	-0.224	≤19	Pass		
5800	OFDM	17dBi Sector	-0.897	≤19	Pass		
5840	OFDM	17dBi Sector	-0.825	≤19	Pass		
5735	OFDM	19dBi Sector	-0.224	≤ 17	Pass		
5800	OFDM	19dBi Sector	-0.897	≤ 17	Pass		
5840	OFDM	19dBi Sector	-0.825	≤ 17	Pass		
5735	OFDM	21dBi Sector	-0.224	≤15	Pass		
5800	OFDM	21dBi Sector	-0.897	≤15	Pass		
5840	OFDM	21dBi Sector	-0.825	≤15	Pass		
5735	OFDM	20dBi Sector	-0.224	≤16	Pass		
5800	OFDM	20dBi Sector	-0.897	≤16	Pass		
5840	OFDM	20dBi Sector	-0.825	≤16	Pass		

Testing was performed on sector antennas, employing the same radio, with gains ranging from 17dBi to 22dBi. Since all antennas produced a passing result, the 19dBi antenna is determined to be covered within these measurements.

The limit is calculated in accordance with 15.407(a)(3): Limit = 30 - Roundup(G - 6)

PSD All ANT-HB-5.8

PSD All ANT-LB-5.8

PSD All ANT-MB-5.8

Test Setup Photo

15.407(g) Frequency Stability

Test Setup/Conditions					
Test Location:	Mariposa Lab A	Test Engineer:	Randal Clark and Benny Lovan		
Test Method:	ANSI C63.10 (2013) KDB 789033 D02 v01r02	Test Date(s):	5/31/2016		
Configuration:	1				
Test Setup:	The EUT is setup inside of a temp 0 and it is setup to transmit at the attaches to a calibrated multimete A DC power source is used to o software setting 23.	erature chamber. A c various low and high er verifies the tempera do the voltage variation	able is connected to antenna port frequencies. A thermocouple that ture within the chamber. on. Output of transmitter set to		

Environmental Conditions						
Temperature (ºC)	Temperature (ºC) 21 Relative Humidity (%): 39					

Test Equipment									
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016				
02134	Attenuator	Weinschel	54-3	12/8/2014	12/8/2016				
P01949	Attenuator	Weinschel	54A-6	12/8/2014	12/8/2016				
03355	Cable	AstroLab	32026-2-29094К- 48TC	12/8/2014	12/8/2016				
03338	Multimeter	Extech	MM570A	1/22/2015	1/2/2017				
01879	Temperature Chamber	Thermotron	S-1.2 Min.	12/5/2014	12/5/2016				

	Test Data Summary										
Declared Temperature Range:20 – 70 ºC											
Temperature (ºC)	Voltage	Low Frequency (MHz)	Limit (MHz)	Results							
-20	V _{Nominal}	5726.42	5848.50								
-10	V _{Nominal}	5726.42	5848.50								
0	V _{Nominal}	5726.42	5848.50								
10	V _{Nominal}	5726.50	5848.58								
20	V _{Minimum}	5726.42	5848.58	All emissions	Dass						
20	V _{Nominal}	5726.42	5848.58		Pass						
20	V _{Maximum}	5726.50	5848.58	3723-3630							
30	V _{Nominal}	5726.50	5848.58								
40	V _{Nominal}	5726.50	5848.58								
50	V _{Nominal}	5726.50	5848.58								
60	V _{Nominal}	5726.58	5848.67								
70	V _{Nominal}	5726.50	5848.58								
Nominal F	requency:										

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	24 VDC
V _{Minimum} :	20.4 VDC
V _{Maximum} :	27.6 VDC

Test Setup Photos

15.407(b) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 5046	Sierra Pines Dr. • Mariposa	a, CA 95338 • 1-800-500-4EMC (4362)						
Customer:	Digital Path								
Specification:	15.407(b) / 15.209 Radiated S	purious Emissions							
Work Order #:	98485	Dat	e: 5/27/2016						
Test Type:	Radiated Scan	Tim	e: 11:43:56						
Tested By:	Randal Clark	Sequence	#: 3						
Software:	EMITest 5.03.02	20quenee							
E T									
Equipment Teste	2a:	N	CAI						
Device	Manufacturer	Nidel #	5/IN						
Configuration 2									
Support Equipm	ent:								
Device	Manufacturer	Model #	S/N						
Configuration 2									
Test Conditions	/Notes·								
Equipment is an o	butdoor access point for use in bo	oth PTP and PTMP applic	ations						
Modulation used:	OFDM (802.11a)	oni i i unu i ini uppilo							
Data rate: 54MBn	os (representative of worst case)								
Antenna: All ante	nnas (11dBi 17dBi 18dBi 22d	Bi and 23dBi)							
Operational Frequ	iency: Low mid and High (5735	5800 5840)							
Power Output Set	ting: 23dBm	, 2000, 2010)							
Frequency Range	Investigated: 30-1000MHz								
Highest Generate	d Frequency not related to radio:	500MHz							
Ingliest Generated	a requency not related to radio.								
Temperature: 64º	F								
Relative Humidity	αν· /Q0/2								
Test method: A N	$y_{1} = \frac{1}{2} \frac{1}$								
The EUT is setur	51 C05.10 (2015)	continued amontation which	is conversion tative of normal installation						
The EOT is setup	on its antenna mount in the v	ring both radias for tasti	Deth redies are identical. A review						
The unit has two	cards within it and we are utility	zing both radios for testin	ig. Boui radios are identical. A power						
supply is located of	Sin a table next to the mount.								
Testing was perio	rmed on sector antennas, employ	ying the same radio, with a	gains ranging from 1/dB1 to 22dB1.						
Since all antennas	produced a passing result, the 2	COGBI antenna as well as th	le 21dBI Antenna are determined to be						
covered within the	ese measurements.	KDD 700022 D02 01 02							
The Spurious Emi	issions limits were derived from	KDB /89033 D02 v01r02	2, G, 2, 11						
For emissions fall	ing within the restricted bands a	s defined in 15.205, the lin	mits of 15.209 were used.						
For emissions fall	ing outside of the restricted band	ds as defined in 15.205, th	e limits defined in 15.40/(b) were used						
as shown in the ca	alculation below:								
EIRP[dBm] = E[c]	IBuV/m] - 95.2								
E[dBuV/m] = EIF	P[dBm] + 95.2								
E[dBuV/m] = -27	dBm/MHz + 95.2								
$\left[E[dBuV/m] = 68.1 \right]$	2dBuV/m								
Testing was perfo	rmed on sector antennas, empl	oying the same radio, with	n gains ranging from 17dBi to 22dBi.						
Since all antennas	s produced a passing result, the	19dBi antenna is determir	ned to be covered within these						
measurements.									
Modification #1 v	vas in place during testing.								

Digital Path Networks WO#: 98485 Sequence#: 3 Date: 5/27/2016 15.407(b) / 15.209 Radiated Spurious Emissions Test Distance: 10 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05656	Attenuator	PE7004-6	12/22/2015	12/22/2017
T2	AN01993	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
Т3	ANP06847	Cable	LMR195-FR-6	7/9/2015	7/9/2017
T4	ANMA10M	Cable		8/26/2014	8/26/2016
T5	ANP06883	Cable	LMR195-FR-3	10/27/2015	10/27/2017
Т6	AN00449	Preamp-Top Amp (dB)	8447F	2/18/2016	2/18/2018
T7	ANP06230	Cable	CXTA04A-50	3/3/2016	3/3/2018
	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016

Meast	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	240.023M	36.6	+6.0	+12.2	+0.4	+4.3	+10.5	45.6	46.0	-0.4	Vert
	QP		+0.2	-26.4	+1.8						
^	240.023M	38.3	+6.0	+12.2	+0.4	+4.3	+10.5	47.3	46.0	+1.3	Vert
			+0.2	-26.4	+1.8						
3	479.995M	26.7	+6.0	+18.2	+0.5	+6.3	+10.5	43.5	46.0	-2.5	Horiz
	QP		+0.3	-27.6	+2.6						
^	479.995M	29.9	+6.0	+18.2	+0.5	+6.3	+10.5	46.7	46.0	+0.7	Horiz
			+0.3	-27.6	+2.6						
5	361.723M	28.4	+6.0	+15.3	+0.5	+5.4	+10.5	42.0	46.0	-4.0	Vert
	QP		+0.3	-26.7	+2.3						
^	361.723M	31.3	+6.0	+15.3	+0.5	+5.4	+10.5	44.9	46.0	-1.1	Vert
			+0.3	-26.7	+2.3						
7	240.008M	31.4	+6.0	+12.2	+0.4	+4.3	+10.5	40.4	46.0	-5.6	Horiz
	QP		+0.2	-26.4	+1.8						
^	240.008M	32.5	+6.0	+12.2	+0.4	+4.3	+10.5	41.5	46.0	-4.5	Horiz
			+0.2	-26.4	+1.8						
9	211.996M	28.4	+6.0	+10.2	+0.4	+4.0	+10.5	35.0	43.5	-8.5	Vert
	QP		+0.2	-26.4	+1.7						
^	211.996M	32.7	+6.0	+10.2	+0.4	+4.0	+10.5	39.3	43.5	-4.2	Vert
			+0.2	-26.4	+1.7						
11	119.988M	28.9	+6.0	+11.6	+0.3	+2.9	+10.5	34.7	43.5	-8.8	Horiz
			+0.2	-27.0	+1.3						
12	216.381M	28.5	+6.0	+10.5	+0.4	+4.0	+10.5	35.3	46.0	-10.7	Vert
	QP		+0.2	-26.5	+1.7						
^	216.381M	34.5	+6.0	+10.5	+0.4	+4.0	+10.5	41.3	46.0	-4.7	Vert
			+0.2	-26.5	+1.7						
14	160.002M	26.8	+6.0	+10.5	+0.3	+3.4	+10.5	32.4	43.5	-11.1	Horiz
			+0.2	-26.8	+1.5						
15	163.902M	24.7	+6.0	+10.2	+0.3	+3.4	+10.5	30.1	43.5	-13.4	Vert
	QP		+0.2	-26.7	+1.5						
^	163.902M	33.3	+6.0	+10.2	+0.3	+3.4	+10.5	38.7	43.5	-4.8	Vert
			+0.2	-26.7	+1.5						

CKC Laboratories, Inc. • 5046 Sierra Pines	Dr. • Mariposa, C	CA 95338 • 1-800-500-4EMC (4362)
Digital Path		
15.407(b)(1) / 15.209 Radiated Spurious	Emissions - AP	/ PTMP Devices
98485	Date:	5/26/2016
Radiated Scan	Time:	15:38:42
Randal Clark	Sequence#:	3
EMITest 5.03.02		
	CKC Laboratories, Inc. • 5046 Sierra Pines Digital Path 15.407(b)(1) / 15.209 Radiated Spurious 98485 Radiated Scan Randal Clark EMITest 5.03.02	CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, C Digital Path 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP 98485 Date: Radiated Scan Time: Randal Clark Sequence#: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

Equipment is an outdoor access point for use in both PTP and PTMP applications.

Modulation used: OFDM (802.11a)

Data rate: 54MBps (representative of worst case) Antenna: 22dBi Sector, 17dBi Sector, 23dBi Exernal Diamond, 11dBi Omni, 18dBi Integrated panel. Operational Frequency: 5735, 5800, and 5840 (Low, mid and high)

Power Output Setting: 23dBm

Frequency Range Investigated: 1-40GHz Highest Generated Frequency not related to radio: 500MHz

Temperature: 15°C Relative Humidity: 74%

Test method: ANSI C63.10 (2013)

The EUT is setup on its antenna mount in the vertical orientation which is representative of normal installation. The unit has two cards within it and we are utilizing both radios for testing. Both radios are identical. A power supply is located on a table next to the mount.

Testing was performed on sector antennas, employing the same radio, with gains ranging from 17dBi to 22dBi. Since all antennas produced a passing result, the 20dBi antenna as well as the 21dBi Antenna are determined to be covered within these measurements.

The Spurious Emissions limits were derived from KDB 789033 D02 v01r02, G, 2, iii

For emissions falling within the restricted bands as defined in 15.205, the limits of 15.209 were used. For emissions falling outside of the restricted bands as defined in 15.205, the limits defined in 15.407(b) were used as shown in the calculation below:

EIRP[dBm] = E[dBuV/m] - 95.2

E[dBuV/m] = EIRP[dBm] + 95.2

E[dBuV/m] = -27dBm/MHz + 95.2

E[dBuV/m] = 68.2dBuV/m

Testing was performed on sector antennas, employing the same radio, with gains ranging from 17dBi to 22dBi. Since all antennas produced a passing result, the 19dBi antenna is determined to be covered within these measurements.

Modification #1 was in place during testing.

All signals in this data sheet are noise floor. No EUT emissions were observed.

Digital Path Networks WO#: 98485 Sequence#: 3 Date: 5/26/2016 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices Test Distance: 3 Meters Horiz

1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - AP / PTMP Devices

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	8/14/2015	8/14/2016
T1	ANP05904	Cable	32022-2-	12/8/2014	12/8/2016
			29094K-144TC		
T2	ANP01403	Cable	58758-23	12/8/2014	12/8/2016
	AN02045	Horn Antenna-	MWH-2640/B	5/7/2015	5/7/2017
		ANSI C63.5			
		Calibration			
	AN03361	Cable	32022-2-29094-	12/8/2014	12/8/2016
			48TC		
	AN02115	Preamp	83051A	12/9/2014	12/9/2016
	AN02118	High Pass Filter	84300-80039	12/9/2014	12/9/2016
Т3	AN01273	Horn Antenna	3115	2/3/2015	2/3/2017
	AN03366	Horn Antenna-	GH-62-25	2/9/2016	2/9/2018
		ANSI C63.5			
		Calibration			
	AN02694	Horn Antenna-	AMFW-5F-	5/7/2015	5/7/2017
		ANSI C63.5 3m	18002650-20-		
			10P		

Measu	rement Data:	R	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	39787.500	13.6	+12.9	+16.2	+0.0		+0.0	50.5	54.0	-3.5	Horiz
	Μ										
									Noisefloor		
2	39787.500	13.6	+12.9	+16.2	+0.0		+0.0	50.5	54.0	-3.5	Vert
	Μ										
									Noisefloor		
3	1866.000M	33.4	+2.1	+2.0	+0.0		+0.0	62.2	68.2	-6.0	Vert
									Noisefloor		
4	32936.000	32.9	+9.6	+12.5	+0.0		+0.0	62.2	68.2	-6.0	Vert
	Μ										
									Noisefloor		
5	3371.113M	27.4	+2.8	+2.8	+0.0		+0.0	61.8	68.2	-6.4	Vert
									Noisefloor		
6	33505.000	31.3	+9.8	+12.7	+0.0		+0.0	61.1	68.2	-7.1	Horiz
	Μ										
									Noisefloor		
7	3371.000M	26.5	+2.8	+2.8	+0.0		+0.0	60.9	68.2	-7.3	Horiz
									Noisefloor		
8	1866.000M	32.0	+2.1	+2.0	+0.0		+0.0	60.8	68.2	-7.4	Horiz
									Noisefloor		
9	6210.000M	20.2	+3.9	+3.9	+31.5		+0.0	59.5	68.2	-8.7	Horiz
									Noisefloor		
10	6210.000M	16.3	+3.9	+3.9	+0.0		+0.0	55.6	68.2	-12.6	Vert
									Noisefloor		
11	19318.000	42.7	+7.2	+7.8	+0.0		+0.0	41.3	54.0	-12.7	Horiz
	М										
									Noisefloor		

12	26681.000 M	33.4	+8.7	+10.3	+0.0	+0.0	54.8	68.2	-13.4	Vert
								Noisefloor		
13	26633.000 M	33.5	+8.7	+10.2	+0.0	+0.0	54.8	68.2	-13.4	Horiz
								Noisefloor		
14	26058.000 M	51.3	+8.6	+10.0	+0.0	+0.0	54.3	68.2	-13.9	Horiz
								Noisefloor		
15	17526.000 M	36.3	+7.1	+7.4	+0.0	+0.0	50.5	68.2	-17.7	Horiz
								Noisefloor		
16	8674.000M	33.5	+4.7	+4.8	+34.1	+0.0	47.9	68.2 Noisefloor	-20.3	Vert
17	8673.500M	30.7	+4.7	+4.8	+34.1	+0.0	45.1	68.2	-23.1	Horiz
10	22210.000	45.0	10.1	10.1			15.0	Noisefloor		TT '
18	23318.000 M	45.3	+8.1	+9.1	+0.0	+0.0	45.0	68.2	-23.2	Horiz
	101							Noisefloor		
19	17061.000 M	30.6	+7.0	+7.3	+0.0	+0.0	44.3	68.2	-23.9	Vert
	101							Noisefloor		
20	14061.000	29.9	+6.2	+6.5	+0.0	+0.0	39.0	68.2	-29.2	Vert
	IVI							Noisefloor		
21	13526.000 M	30.1	+6.1	+6.3	+0.0	+0.0	38.9	68.2	-29.3	Horiz
	-							Noisefloor		

Band Edge

Band Edge Summary											
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
5725	OFDM	11dBi Omni	82.5	< 122.2	Pass						
5850	OFDM	11dBi Omni	81.5	< 122.2	Pass						
5725	OFDM	18dBi Panel	93.4	< 122.2	Pass						
5850	OFDM	18dBi Panel	90.5	< 122.2	Pass						
5725	OFDM	17dBi Sector	90.1	< 122.2	Pass						
5850	OFDM	17dBi Sector	87.6	< 122.2	Pass						
5725	OFDM	22dBi Sector	90.5	< 122.2	Pass						
5850	OFDM	22dBi Sector	88.6	< 122.2	Pass						
5725	OFDM	23dBi Panel	96.2	< 122.2	Pass						
5850	OFDM	23dBi Panel	92.3	< 122.2	Pass						

Test Setup / Conditions / Data

Test Location: Customer: Specification:	CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362) Digital Path 15.407(b)(4) / 15.209 Radiated Spurious Emissions							
Work Order #:	98485	98485 Date: 5/19/2016						
Test Type:	Radiated Scan	Tır	ne: 16:08:26					
Tested By:	Randal Clark	Sequence	e#: 3					
Software:	EMITest 5.03.02							
Equipment Test	ed:							
Device	Manufacturer	Model #	S/N					
Configuration 1								
Support Equipm	ient:							
Device	Manufacturer	Model #	S/N					
Configuration 1								
Test Conditions	/ Notes:							
Equipment is an	outdoor access point for use in bo	oth PTP and PTMP applie	cations.					
Data rate: 54MB Antenna: 23 dBi Power Output Se Frequency Range Temperature: 64 ^c Relative Humidit Test method: AN The Band Edge I D02 v01r02, G, 2	Modulation used: OFDM (802.11a) Data rate: 54MBps (representative of worst case) Antenna: 23 dBi PTP Panel Power Output Setting: 23dBm Frequency Range Investigated: Band Edge. Temperature: 64°F Relative Humidity: 49% Test method: ANSI C63.10 (2013) The Band Edge limit is 27dBm/MHz and the limit was converted using the calculation derived from KDB 789033 D02 v01r02, G, 2, iii							
$\begin{split} & \text{EIRP}[dBm] = \text{E}[dBuV/m] - 95.2 \\ & \text{E}[dBuV/m] = \text{EIRP}[dBm] + 95.2 \\ & \text{E}[dBuV/m] = 27dBm/MHz + 95.2 \\ & \text{E}[dBuV/m] = 122.2dBuV/m \\ & \text{Testing was performed on sector antennas, employing the same radio, with gains ranging from 17dBi to 22dBi. \\ & \text{Since all antennas produced a passing result, the 19dBi antenna is determined to be covered within these measurements.} \\ & \text{Antenna 2 (22dBi Sector Ant) is only being measured on the vertical port only. The manufacturer declares that the sector antenna is determined to be covered with the sector antenna is determined to be covered within these measurements.} \end{split}$								
Antenna 3 (17dB Horizontal port is	i Sector Ant) is only being meas not used.	ured on the vertical port	only. The manufacturer declares that the					

Digital Path Networks WO#: 98485 Sequence#: 3 Date: 5/19/2016 15.407(b)(4) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01273	Horn Antenna	3115	2/3/2015	2/3/2017
T2	ANP01403	Cable	58758-23	12/8/2014	12/8/2016
Т3	ANP05904	Cable	32022-2-	12/8/2014	12/8/2016
			29094K-144TC		

Measu	rement Data:	Re	eading list	ted by ma	rgin. Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	5725.000M	57.2	+31.6	+3.7	+3.7		+0.0	96.2	122.2	-26.0	Vert
									Lower Bar	nd Edge	
									UNII3 - 57	35MHz	
									@ Power S	Setting 23	
									(23dBi AN	T)	
2	5725.000M	54.4	+31.6	+3.7	+3.7		+0.0	93.4	122.2	-28.8	Vert
									Lower Bar	nd Edge	
									UNII3 - 57	35MHz	
									@ Power S	Setting 23	
									(18dBi AN	T)	
3	5850.000M	53.3	+31.5	+3.8	+3.7		+0.0	92.3	122.2	-29.9	Vert
									Upper Ban	d Edge	
									UNII3 - 58	340MHz	
									(a) Power S	Setting 23	
				• •					(23dB1 AN	(T)	
4	5850.000M	51.5	+31.5	+3.8	+3.7		+0.0	90.5	122.2	-31.7	Vert
									Upper Ban	d Edge	
									UNII3 - 58	340MHz	
									(a) Power S	Setting 23	
			. 21 . (00.5	(18dBi AN	(T)	T T .
5	5725.000M	51.5	+31.6	+3.7	+3.7		+0.0	90.5	122.2	-31.7	Vert
									Lower Bar	id Edge	
									UNII3 - 57	35MHz	
									(a) Power S	Setting 23	
									(22dBi AN	(1)	

6	5725.000M	51.1	+31.6	+3.7	+3.7	+0.0	90.1	122.2 Lower Ban	-32.1 d Edge 35MHz	Vert
								(a) Power S	etting 23	
								(17dBi AN	T)	
7	5850.000M	49.6	+31.5	+3.8	+3.7	+0.0	88.6	122.2	-33.6	Vert
								Upper Ban	d Edge	
								UNII3 - 58	40MHz	
								@ Power S	etting 23	
								(22dBi AN	T)	
8	5850.000M	48.6	+31.5	+3.8	+3.7	+0.0	87.6	122.2	-34.6	Vert
								Upper Ban	d Edge	
								UNII3 - 58	40MHz	
								(a) Power S	etting 23	
		40.5	. 01. (. 2 5			(1/dBi AN	1)	T T
9	5725.000M	43.5	+31.6	+3.7	+3.7	+0.0	82.5	122.2	-39.7	Vert
								Lower Ban	d Edge	
								ONII3 - 5/	35MHz	
								(11 + D)	etting 23	
10	5950 00014	42.5	121.5	12.0	127		01.5		1)	N 7 4
10	5850.000M	42.5	+31.5	+3.8	+3./	+0.0	81.5	122.2 Unin an Dan	-40./	vert
								Upper Ban	a Eage	
								$\bigcirc \text{Dower S}$	atting 22	
								(11dB; AN	T)	
								(TIUDI AIN	1)	

Band Edge Plots

Test Setup Photos

11dBi and 18dBi, 30MHz – 1GHz

11dBi and 18dBi, 1 – 40GHz

17dBi, 30MHz – 1GHz

17dBi, 1 – 40GHz

22dBi, 30MHz – 1GHz

22dBi, 1 – 40GHz

23dBi, 30MHz - 1GHz

23dBi, 1 – 40GHz

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	on: CKC Laboratories, Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)							
Customer:	Digital Path							
Specification:	15.207 AC Mains - Average							
Work Order #:	98485	Date:	5/17/2016					
Test Type:	Conducted Emissions	Time:	16:23:46					
Tested By:	Randal Clark	Sequence#:	4					
Software:	EMITest 5.03.02		120V 60Hz					
Equipment Tested:								

DeviceManufacturerModel #S/NConfiguration 3

Support Equipment: Device Manufacturer Model # S/N Configuration 3 Violation 3 Violation 3

Test Conditions / Notes:

Equipment is an outdoor access point for use in both PTP and PTMP applications.

Modulation used: OFDM (802.11a) Data rate: 54MBps (representative of worst case) Antenna: 5.1 OMNI and 5.8 Panel Operational Frequency: 5220MHz (5.1 Omni) and 5790MHz (Panel) Power Output Setting: 23dBm

Frequency Range Investigated: 150kHz - 30MHz Highest Generated Frequency not related to radio: 500MHz

Temperature: 64°F Relative Humidity: 49%

Test method: ANSI C63.10 (2013)

The EUT is setup on its antenna mount in the vertical orientation which is representative of normal installation. The unit has two cards within it and we are utilizing both radios for testing. Both radios are identical. A power supply is located on a table next to the mount.

Modification #1 was in place during testing.

Digital Path Networks WO#: 98485 Sequence#: 4 Date: 5/17/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06232	Cable	CXTA04A-35	3/3/2016	3/3/2018
T2	ANP05624	Attenuator	PE7010-10	1/15/2015	1/15/2017
Т3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06847	Cable	LMR195-FR-6	7/9/2015	7/9/2017
T5	ANP06231	Cable	CXTA04A-70	3/3/2016	3/3/2018
	AN00374	50uH LISN-Return	8028-TS-50-	1/4/2016	1/4/2017
		(dB)	BNC		
Т6	AN00374	50uH LISN-Line	8028-TS-50-	1/4/2016	1/4/2017
		(dB)	BNC		

Measu	rement Data:	: Re	eading lis	ted by ma	argin.			Test Lea	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	307.076k	34.9	+0.0	+9.9	+0.2	+0.0	+0.0	45.2	50.0	-4.8	Line
			+0.1	+0.1							
2	13.391M	32.4	+0.2	+9.9	+0.2	+0.1	+0.0	43.5	50.0	-6.5	Line
			+0.5	+0.2							
3	665.589k	29.0	+0.0	+9.9	+0.3	+0.0	+0.0	39.4	46.0	-6.6	Line
			+0.1	+0.1							
4	13.454M	32.1	+0.2	+9.9	+0.2	+0.1	+0.0	43.2	50.0	-6.8	Line
			+0.5	+0.2							
5	13.202M	32.0	+0.2	+9.9	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Line
			+0.5	+0.2							
6	13.508M	32.0	+0.2	+9.9	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Line
			+0.5	+0.2							
7	13.941M	31.9	+0.2	+9.9	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Line
			+0.5	+0.3							
8	13.265M	31.8	+0.2	+9.9	+0.2	+0.1	+0.0	42.9	50.0	-7.1	Line
			+0.5	+0.2							
9	13.139M	31.7	+0.2	+9.9	+0.2	+0.1	+0.0	42.8	50.0	-7.2	Line
			+0.5	+0.2							
10	12.959M	31.6	+0.2	+9.9	+0.2	+0.1	+0.0	42.7	50.0	-7.3	Line
			+0.5	+0.2							
11	246.718k	34.4	+0.0	+9.9	+0.2	+0.0	+0.0	44.6	51.9	-7.3	Line
			+0.0	+0.1							
12	14.175M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.7	50.0	-7.3	Line
			+0.5	+0.3							
13	14.049M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.7	50.0	-7.3	Line
			+0.5	+0.3							
14	13.869M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.2							
15	13.995M	31.4	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.3							
16	13.571M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.2							
17	13.328M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.2							

-											
18	13.625M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.2							
19	13.752M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.2							
20	13.688M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Line
			+0.5	+0.2							
21	13.022M	31.4	+0.2	+9.9	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Line
			+0.5	+0.2							
22	12.788M	31.4	+0.2	+9.9	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Line
			+0.5	+0.2							
23	13.085M	31.4	+0.2	+9.9	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Line
			+0.5	+0.2							
24	28.287M	30.5	+0.4	+9.9	+0.3	+0.1	+0.0	42.5	50.0	-7.5	Line
			+0.7	+0.6							
25	14.112M	31.3	+0.2	+9.9	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Line
			+0.5	+0.3							
26	12.842M	31.3	+0.2	+9.9	+0.2	+0.1	+0.0	42.4	50.0	-7.6	Line
			+0.5	+0.2							
27	13.815M	31.3	+0.2	+9.9	+0.2	+0.1	+0.0	42.4	50.0	-7.6	Line
			+0.5	+0.2							
28	14.238M	31.0	+0.2	+9.9	+0.2	+0.1	+0.0	42.2	50.0	-7.8	Line
			+0.5	+0.3							
29	28.465M	30.2	+0.4	+9.9	+0.3	+0.1	+0.0	42.2	50.0	-7.8	Line
			+0.7	+0.6							
30	183.447k	34.0	+0.0	+9.9	+0.3	+0.0	+0.0	44.3	54.3	-10.0	Line
	Ave		+0.0	+0.1							
^	183.447k	40.5	+0.0	+9.9	+0.3	+0.0	+0.0	50.8	54.3	-3.5	Line
			+0.0	+0.1							

Test Location: Customer:	CKC Laboratories, Inc. • 5046 Sierra Pines Dr. Digital Path	• Mariposa, C	CA 95338 • 1-800-500-4EMC (4362)
Specification:	15.207 AC Mains - Average		
Work Order #:	98485	Date:	5/17/2016
Test Type:	Conducted Emissions	Time:	16:27:43
Tested By:	Randal Clark	Sequence#:	5
Software:	EMITest 5.03.02		120V 60Hz

Equipment Tested:

1 1				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

$\sim r_{FF} \sim r_{-1} \sim r_{-1} \sim r_{-1}$			
Device	Manufacturer	Model #	S/N
Configuration 3			

Test Conditions / Notes:

Equipment is an outdoor access point for use in both PTP and PTMP applications.

Modulation used: OFDM (802.11a) Data rate: 54MBps (representative of worst case) Antenna: 5.1 OMNI and 5.8 Panel Operational Frequency: 5220MHz (5.1 Omni) and 5790MHz (Panel) Power Output Setting: 23dBm

Frequency Range Investigated: 150kHz - 30MHz Highest Generated Frequency not related to radio: 500MHz

Temperature: 64°F Relative Humidity: 49%

Test method: ANSI C63.10 (2013)

The EUT is setup on its antenna mount in the vertical orientation which is representative of normal installation. The unit has two cards within it and we are utilizing both radios for testing. Both radios are identical. A power supply is located on a table next to the mount.

Modification #1 was in place during testing.

Digital Path Networks WO#: 98485 Sequence#: 5 Date: 5/17/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz Return

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06232	Cable	CXTA04A-35	3/3/2016	3/3/2018
T2	ANP05624	Attenuator	PE7010-10	1/15/2015	1/15/2017
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06847	Cable	LMR195-FR-6	7/9/2015	7/9/2017
T5	ANP06231	Cable	CXTA04A-70	3/3/2016	3/3/2018
T6	AN00374	50uH LISN-Return	8028-TS-50-	1/4/2016	1/4/2017
		(dB)	BNC		
	AN00374	50uH LISN-Line	8028-TS-50-	1/4/2016	1/4/2017
		(dB)	BNC		

Measu	rement Data:	Re	Reading listed by margin.			Test Lead: Return					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	245.990k	35.8	+0.0	+9.9	+0.2	+0.0	+0.0	46.1	51.9	-5.8	Retur
			+0.0	+0.2							

2	305.621k	33.8	+0.0	+9.9	+0.2	+0.0	+0.0	44.1	50.1	-6.0	Retur
		.	+0.1	+0.1							
3	605.229k	29.4	+0.0 +0.1	+9.9 +0.1	+0.3	+0.0	+0.0	39.8	46.0	-6.2	Retur
4	13 995M	32.3	+0.1	+0.1	+0.2	+0.1	+0.0	43.6	50.0	-6.4	Retur
Т	15.775101	52.5	+0.2	+0.4	10.2	0.1	0.0	45.0	50.0	0.4	Retur
5	14.058M	32.3	+0.2	+9.9	+0.2	+0.1	+0.0	43.6	50.0	-64	Retur
5	11.050101	52.5	+0.5	+0.4	. 0.2	. 0.1	. 0.0	15.0	50.0	0.1	itetui
6	13 391M	32.2	+0.2	+9.9	+0.2	+0.1	+0.0	43 5	50.0	-65	Retur
Ū	10.091101	52.2	+0.5	+0.4	. 0.2	. 0.1	.0.0	10.0	2010	0.5	itetui
7	13.697M	32.2	+0.2	+9.9	+0.2	+0.1	+0.0	43.5	50.0	-6.5	Retur
		-	+0.5	+0.4							
8	13.752M	32.1	+0.2	+9.9	+0.2	+0.1	+0.0	43.4	50.0	-6.6	Retur
_			+0.5	+0.4							
9	13.878M	32.1	+0.2	+9.9	+0.2	+0.1	+0.0	43.4	50.0	-6.6	Retur
			+0.5	+0.4							
10	13.932M	32.1	+0.2	+9.9	+0.2	+0.1	+0.0	43.4	50.0	-6.6	Retur
			+0.5	+0.4							
11	13.328M	32.0	+0.2	+9.9	+0.2	+0.1	+0.0	43.3	50.0	-6.7	Retur
			+0.5	+0.4							
12	13.508M	32.0	+0.2	+9.9	+0.2	+0.1	+0.0	43.3	50.0	-6.7	Retur
			+0.5	+0.4							
13	13.571M	32.0	+0.2	+9.9	+0.2	+0.1	+0.0	43.3	50.0	-6.7	Retur
			+0.5	+0.4							
14	13.634M	31.9	+0.2	+9.9	+0.2	+0.1	+0.0	43.2	50.0	-6.8	Retur
			+0.5	+0.4							
15	13.815M	31.9	+0.2	+9.9	+0.2	+0.1	+0.0	43.2	50.0	-6.8	Retur
16	12.0(0)/	21.0	+0.5	+0.4	10.2	+0.1		42.0	50.0	()	D (
16	12.968M	31.9	+0.2	+9.9	+0.2	+0.1	+0.0	43.2	50.0	-6.8	Retur
17	12 021M	21.0	+0.3	+0.4	10.2	+0.1		12.2	50.0	6.9	Datum
1 /	15.051101	51.9	+0.2	+9.9 +0.4	+0.2	± 0.1	± 0.0	43.2	50.0	-0.8	Ketur
18	12 265M	21.8	+0.3 +0.2	+0.4	+0.2	+0.1	+0.0	12 1	50.0	6.0	Datur
10	13.205101	51.0	+0.2	+9.9 +0.4	10.2	+0.1	10.0	чJ.1	50.0	-0.9	Retur
19	14 355M	31.8	+0.2	+0.9	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Retur
17	14.555101	51.0	+0.2	+0.4	10.2	10.1	10.0	75.1	50.0	0.7	Retur
20	13 445M	31.7	+0.2	+9.9	+0.2	+0.1	+0.0	43.0	50.0	-7.0	Retur
20	10.110101	5117	+0.2	+0.4	. 0.2	. 011	0.0	1510	2010	7.0	itetui
21	665.588k	28.5	+0.0	+9.9	+0.3	+0.0	+0.0	38.9	46.0	-7.1	Retur
			+0.1	+0.1							
22	13.139M	31.6	+0.2	+9.9	+0.2	+0.1	+0.0	42.9	50.0	-7.1	Retur
			+0.5	+0.4							
23	13.085M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.8	50.0	-7.2	Retur
			+0.5	+0.4							
24	14.418M	31.5	+0.2	+9.9	+0.2	+0.1	+0.0	42.8	50.0	-7.2	Retur
			+0.5	+0.4							
25	13.202M	31.4	+0.2	+9.9	+0.2	+0.1	+0.0	42.7	50.0	-7.3	Retur
			+0.5	+0.4							
26	14.301M	31.3	+0.2	+9.9	+0.2	+0.1	+0.0	42.6	50.0	-7.4	Retur
			+0.5	+0.4							

27	182.625k	36.6	+0.0	+9.9	+0.3	+0.0	+0.0	47.0	54.4	-7.4	Retur
	Ave		+0.0	+0.2							
^	182.625k	43.5	+0.0	+9.9	+0.3	+0.0	+0.0	53.9	54.4	-0.5	Retur
			+0.0	+0.2							
29	16.418M	30.9	+0.3	+9.9	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Retur
			+0.6	+0.5							
30	12.905M	31.3	+0.2	+9.9	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Retur
			+0.5	+0.3							
31	14.481M	31.1	+0.2	+9.9	+0.2	+0.1	+0.0	42.4	50.0	-7.6	Retur
			+0.5	+0.4							

Test Setup Photo

Appendix A: Software Settings Information

		LOW		MID		HIGH		
Antenna	Notes	Channel	Power	Channel	Power	Channel	Power	
UNII 1 band								
DP-5G18-30	18 dbi integrated panel	5735	23	5800	23	5840	23	
DP-5G11-360	11dbi omni	5735	23	5800	23	5840	23	
ARC-5G23-10	23 dbi external diamond arc wireless	5735	23	5800	23	5840	23	
AM-5AC22-45	Ubnt 22dbi sector	5735	23	5800	23	5840	23	
AM-5G17-90 Ubnt 17dbi sector 5735 23 5800 23 5840 23						23		
Note: Testing was performed on sector antennas, employing the same radio, with gains ranging from 17dBi to								
22dBi. Since all a covered within th	22dBi. Since all antennas produced a passing result, the 19dBi, 20dBi and 21dBi antenna are determined to be covered within these measurements.							

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS								
	Meter reading (dBµV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBµV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.