

FCC PART 15, SUBPART B and C TEST REPORT

for

TRANSCEIVER

MODEL: SMART ONE PROGRAMMER

Prepared for ALEX-TRONIX 4761 WEST JACQUELYN AVENUE FRESNO, CA 93722

Prepared by:_____

MICHAEL CHRISTENSEN

Approved by:____

KYLE FUJIMOTO

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: OCTOBER 14, 2003

	REPORT	APPENDICES			TOTAL		
	BODY	A	В	С	D	Ε	
PAGES	15	2	2	2	10	18	49

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	n / Title	PAGE
GENEK	RAL REPORT SUMMARY	4
SUMM	ARY OF TEST RESULTS	4
1.	PURPOSE	5
2. 2.1 2.2 2.3 2.4 2.5 2.6 3. 4.	ADMINISTRATIVE DATA Location of Testing Traceability Statement Cognizant Personnel Date Test Sample was Received Disposition of the Test Sample Abbreviations and Acronyms APPLICABLE DOCUMENTS DESCRIPTION OF TEST CONFIGURATION	6 6 6 6 6 7 8
4.1 4.1.1	Description Of Test Configuration - EMI Cable Construction and Termination	8 9
5. 5.1 5.2	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List EMI Test Equipment	10 10 11
6. 6.1 6.2	TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding	12 12 12
7. 7.1 7.2	TEST PROCEDURES Radiated Emissions (Spurious and Harmonics) Test Bandwidth of the Fundamental	13 13 14
8.	CONCLUSIONS	15

Page 3 of 15

LIST OF APPENDICES

APPENDIX	TITLE		
А	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Radiated Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested:	Transceiver Model: Smart One Programmer S/N: N/A
Product Description:	See Expository Statement
Modifications:	The EUT was not modified in order to meet the specifications.
Manufacturer:	Alex-Tronix 4761 Jacquelyn Avenue Fresno, CA 93722
Test Date:	September 17, 25 and 26 and October 7, 2003
Test Specifications:	EMI requirements CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209 and 15.231
Test Procedure:	ANSI C63.4: 2001
Test Deviations:	The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	This test was not performed because the EUT operates on DC power only and cannot be plugged into the AC public mains.
2	Radiated RF Emissions, 10 kHz - 4180 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Transceiver Model: Smart One Programmer. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2001. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Alex-Tronix

George Alexanian Owner

Compatible Electronics, Inc.

Benigno Chavez	Test Technician
Kyle Fujimoto	Test Engineer
James Ross	Test Engineer
Michael Christensen	Sr. Test Engineer

2.4 Date Test Sample was Received

The test sample was received on August 20, 2003.

2.5 Disposition of the Test Sample

The sample has not yet been returned to Alex-Tronix as of October 14, 2003.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2001	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description Of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The Transceiver Model: Smart One Programmer (EUT) was tested as a stand alone device. The EUT was tested while it was continuously transmitting and continuously receiving. The EUT has a PCB trace as an antenna. During normal operation, which is in the X axis, the EUT will turn off within 5 seconds of releasing the button.

The final radiated data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

There are no external cables connected to the EUT.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIALNUMBER	FCC ID
TRANSCEIVER (EUT)	ALEX-TRONIX	SMART ONE PROGRAMMER	N/A	RHISAPROG

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Radiate Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	June 20, 2003	1 Year
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22279	June 20, 2003	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	2430A00424	June 20, 2003	1 Year
Preamplifier	Com Power	PA-103	1582	March 6, 2003	1 Year
Biconical Antenna	Com Power	AB-900	15226	April 21, 2003	1 Year
Log Periodic Antenna	Com Power	AL-100	16202	February 3, 2003	1 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
Loop Antenna	Com-Power	AL-130	25310	June 4, 2003	1 Year
Horn Antenna	Com-Power	AH-118	10073	January 21, 2002	2 Year
Microwave Preamplifier	Com-Power	PA-122	25195	August 19, 2003	1 Year
EMI Test Receiver	Rohde and Schwarz	ESIB40	100172	July 22, 2003	1 Year

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-103 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER	
9 kHz to 150 kHz	200 Hz	Active Loop Antenna	
150 kHz to 30 MHz	9 kHz	Active Loop Antenna	
30 MHz to 300 MHz	120 kHz	Biconical Antenna	
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna	
1 GHz to 4.18 GHz	1 MHz	Horn Antenna	

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2001. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix E.

7.2 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. A plot of the -20 dB bandwidth is located in Appendix E.

8. CONCLUSIONS

The Transceiver Model: Smart One Programmer meets all of the **Class B** specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

Page A1

APPENDIX A

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission Industry Canada Radio-Frequency Technologies (Competent Body)

Page B1

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Transceiver Model: Smart One Programmer S/N: N/A

There were no additional models covered under this report.

Page D1

APPENDIX D

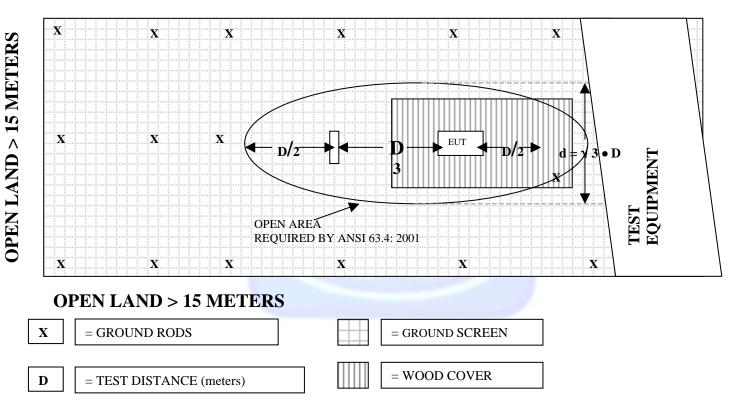

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15226

CALIBRATION DATE: APRIL 21, 2003

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	11.20	120	13.80
35	10.40	125	12.50
40	10.20	140	12.50
45	11.00	150	10.90
50	11.30	160	11.50
60	9.60	175	14.90
70	7.40	180	15.50
80	6.10	200	16.90
90	7.70	250	15.50
100	10.50	300	23.80

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16202

CALIBRATION DATE: FEBRUARY 3, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
300	12.70	700	20.60
400	15.40	800	21.80
500	16.50	900	21.00
600	17.20	1000	21.50

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: MARCH 6, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	33.6	300	33.3
40	33.6	350	33.3
50	33.6	400	33.1
60	33.6	450	33.0
70	33.5	500	32.9
80	33.5	550	33.0
90	33.5	600	32.8
100	33.6	650	32.6
125	33.6	700	32.7
150	33.4	750	32.4
175	33.5	800	32.4
200	33.4	850	32.7
225	33.3	900	31.9
250	33.2	950	31.8
275	33.3	1000	32.5

COM-POWER PA-122

MICROWAVE PREAMPLIFIER

S/N: 25195

CALIBRATION DATE: AUGUST 9, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	30.8	6.0	33.3
1.1	30.9	6.5	32.7
1.2	30.9	7.0	31.8
1.3	30.4	7.5	31.6
1.4	30.7	8.0	30.3
1.5	31.0	8.5	29.0
1.6	31.2	9.0	29.0
1.7	30.3	9.5	29.5
1.8	28.9	10.0	30.9
1.9	31.2	11.0	30.2
2.0	30.9	12.0	28.7
2.5	30.4	13.0	30.3
3.0	31.7	14.0	28.7
3.5	32.6	15.0	29.5
4.0	32.6	16.0	31.1
4.5	32.2	17.0	30.1
5.0	31.1	18.0	28.6
5.5	30.6		

COM-POWER AH-118

HORN ANTENNA

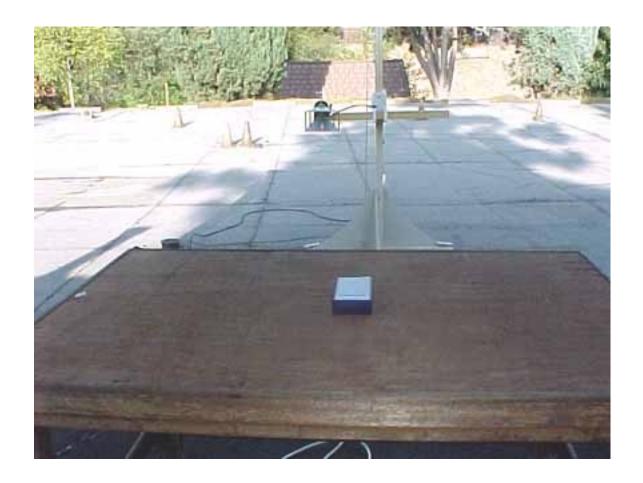
S/N: 10073

CALIBRATION DATE: JANUARY 21, 2002

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	26.6	10.0	41.8
1.5	29.2	10.5	40.4
2.0	32.4	11.0	37.5
2.5	32.3	11.5	42.2
3.0	31.4	12.0	40.4
3.5	31.8	12.5	43.6
4.0	31.1	13.0	44.2
4.5	32.0	13.5	41.8
5.0	33.9	14.0	43.3
5.5	32.0	14.5	47.0
6.0	37.8	15.0	49.4
6.5	36.8	15.5	49.9
7.0	42.4	16.0	49.9
7.5	39.5	16.5	48.2
8.0	41.3	17.0	44.0
8.5	40.3	17.5	44.8
9.0	39.5	18.0	44.7
9.5	41.4		

COM-POWER AL-130

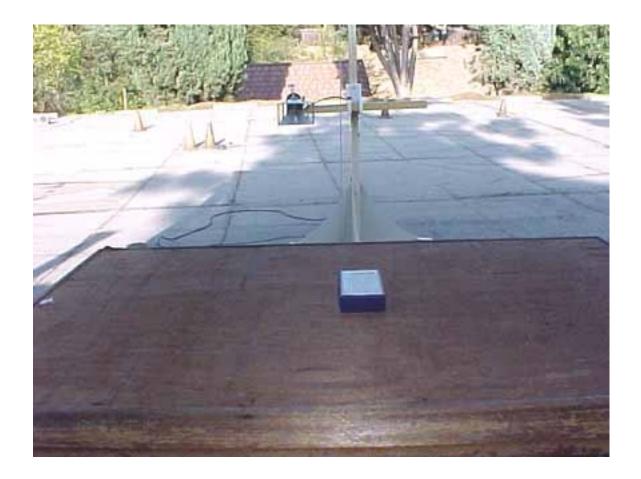
LOOP ANTENNA


S/N: 25310

CALIBRATION DATE: JUNE 4, 2003

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-41.2	10.3
0.01	-41.3	10.2
0.02	-42.3	9.2
0.05	-42.5	9.0
0.07	-42.3	9.2
0.1	-42.5	9.0
0.2	-44.6	6.9
0.3	-42.1	9.4
0.5	-42.4	9.1
0.7	-42.1	9.4
1	-41.5	10.0
2	-41.0	10.5
3	-41.3	10.2
4	-41.3	10.2
5	-40.9	10.6
10	-41.6	9.9
15	-42.1	9.4
20	-42.2	9.3
25	-42.7	8.8
30	-44.3	7.2

FRONT VIEW


ALEX-TRONIX TRANSCEIVER MODEL: SMART ONE PROGRAMMER FCC SUBPART B AND C - RADIATED EMISSIONS – 9-17-03, 9-25-03, 09-26 03 and 10-7-03

> PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Page D9

REAR VIEW

ALEX-TRONIX TRANSCEIVER MODEL: SMART ONE PROGRAMMER FCC SUBPART B AND C - RADIATED EMISSIONS – 9-17-03, 9-25-03, 09-26 03 and 10-7-03

> PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Page D10

Page E1

APPENDIX E

DATA SHEETS

Page E2

RADIATED EMISSIONS

DATA SHEETS

Model: Smart One Programmer	
D ago 1/1	

Custoner Manufact Eut nam Model Serial = Specific	turer :	ALEX-TRO ALEX-TRO TRANSCELY SMART ON N/A FCC Class ion fact	VIX VIX VER E PROGRAM s B or (20 *	WER log(tes	st/spec)	I T est Dista	Sime : 17 Lab : A unce : 3 : (0/07/2003 7: 36: 35
Test Mo	de :		o 1 GHz - Transmit		and Hori	zontal Po	larties	
				mode enigno Ch	avez			
Pol	Freq	Rdng	Cabl e	Ant	Amp	Cor' d		Delta
	MHz	dBuV	loss dB	factor dB	gai n dB	rdg = R dBuV	= L dBuV/m	R- L dB
	211.002	39.10	2.55	16.56	33. 35	24.85	43. 50	- 18. 65
	211.005	38.70	2.55	16.56	33.35	24.45	43.50	- 19. 05
	401.081	45.40	3.50	15.41	33.10	31.22	46.00	- 14. 78
	402.811 404.462	43. 10 41. 10	3. 51 3. 52	15. 43 15. 45	33. 09 33. 09	28. 95 26. 98	46.00 46.00	- 17. 05 - 19. 02
	101, 106	41.10	0.02	10.40	00.00	20.00	40.00	10.02
6H 4	405. 296	44.40	3. 52	15.46	33. 09	30. 30	46.00	- 15. 70
	406. 149	45.20	3.53	15.48	33. 09	31.11	46.00	- 14. 89
	407. 882	45.00	3. 53	15. 50	33.08	30.95	46.00	- 15. 05
	408. 749	41.60	3.54	15.51	33. 08	27.56	46.00	- 18. 44
10H 4	422.018	36.20	3. 59	15.66	33. 05	22.40	46.00	- 23. 60
	422. 026	35. 50	3. 59	15.66	33. 05	21. 70	46.00	- 24. 30
	422. 321	40.80	3. 59	15.67	33.05	27.01	46.00	- 18. 99
	424. 058	43.60	3.60	15.69	33. 05	29.84	46.00	- 16. 16
	428. 237	40.10	3.62	15.74	33.04	26.41	46.00	- 19. 59
15H (332. 994	36. 60	4. 47	18. 38	32.67	26. 78	46.00	- 19. 22

Page E3

Test Locat Customer Manufactur Eut name Model Serial # Specificat Distance co Test Mode	: er : : : : i on : prrect	ALEX-TR ALEX-TR TRANSCE SMART O N/A FCC Cla ion fac 1 GHz t Constan	ONIX IVER NE PROGRA ss B tor (20 o 4.18 GI t Transmi	AMMER * log(te Hz - Vertic	st/spec al and H	l est Dist a Orizontal	:	/17/2003 5: 20: 10 A 3. 0 0. 00
Pol Fre MHz	•	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Li mi t = L dBuV/m	Delta R-L dB

Custo Mnufa Eut na Model Seria Specia	ner acturer ane l # fication nce corre	: FCC Clas ction fact : 30 MHz t Clock(s)	DNIX DNIX VER IE PROGRA SS B tor (20 to 1 GHz : 422 ME	MER * log(te	st/spec and Hor int Recei	i est Dist :) izontal Po	Fine: Lab: A ance: S	9/26/2003 8: 31: 20
Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB		Cor'd rdg = R dBuV		Delta R-L dB
V H V V V		35. 90 35. 50	3. 59 4. 47 4. 98	18. 38 21. 44	32.67	22.75	46. 00 46. 00	- 20. 75 - 23. 90
H H H	422. 001 633. 001 844. 001	37. 40 35. 60 33. 90	3.59 4.47 4.98		33. 05 32. 67 32. 66	23. 60 25. 78 27. 65	46. 00 46. 00 46. 00	- 22. 40 - 20. 22 - 18. 35

Page	E6
------	----

Custo Mnuf Eut n Model Seria Speci	acturer ane 1 # fication nce corre	: ALEX-TRO : ALEX-TRO : TRANSCEI : SMART ON : 200040 : FCC Clas ction fact : 1 GHz to Clock(s)	ONIX VER IE PROGRA SS B t or (20 5 2 GHz - ; 422 MH	MMER * log(te	st/spec and Hori int Recei	l est Dist) zontal Pol	Fime : 1 Lab : A ance : 3	9/26/2003 0: 12: 47
Pol	Freq MHz	Rdng dBuV	Cabl e l oss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Li mi t = L dBuV/m	Delta R-L dB
H H H H V V V V V V V V	$\begin{array}{c} 1055.\ 000\\ 1266.\ 000\\ 1477.\ 000\\ 1688.\ 000\\ 1899.\ 000\\ 1055.\ 000\\ 1266.\ 000\\ 1477.\ 000\\ 1688.\ 000\\ 1899.\ 000\\ \end{array}$	$\begin{array}{c} 38.\ 10\\ 36.\ 10\\ 35.\ 30\\ 35.\ 70\\ 35.\ 10\\ 35.\ 90\\ 37.\ 60\\ 36.\ 30\\ 39.\ 20\\ 35.\ 30\\ \end{array}$	$\begin{array}{c} 2.\ 67\\ 3.\ 03\\ 3.\ 41\\ 5.\ 68\\ 4.\ 62\\ \hline 2.\ 67\\ 3.\ 03\\ 3.\ 41\\ 5.\ 68\\ 4.\ 62\\ \end{array}$	26. 94 28. 11 29. 10 30. 51 31. 82 26. 94 28. 11 29. 10 30. 51 31. 82	30. 86 30. 57 30. 93 30. 41 31. 18 30. 86 30. 57 30. 93 30. 41 31. 18		54.00 54.00 54.00 54.00	- 17. 32 - 17. 12 - 12. 51 - 13. 63 - 19. 34 - 15. 82 - 16. 12

COMPANY		ALEX-TR	ONIX												DATE		9/17/03	
EUT		SMART O		GRAM	MER										DUTY C	YCLE	64.8	%
MODEL		TBD		-											PEAK T		-3.7684998	
S/N		N/A													TEST D		3	Meters
TEST ENGINE	ER	MICHAEI	CHRIS	TENSE	N										LAB		А	
								• •	<i>a</i> 11	1 110		2.61	*0		G			
Frequency	Peak Reading	Average (A) or Quasi-		Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit			
MHz	(dBuV)	Peak (QP)			(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)		(dBuV/m)		Comments	
418.0000	54.9	51.1 A	Н	1.0	270	Х		15.6	3.6	0.0	0.0	0.0	70.3	-10.0	80.3			
			1															
418.0000	47.8	44.0 A	v	2.0	0	Х		15.6	3.6	0.0	0.0	0.0	63.2	-17.1	80.3			
11010000	17.0	11.0 11		2.0	Ŭ			15.6	5.0	0.0	0.0	0.0	0012	1/11	00.0			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 1 of PAGE 10

COMPANY		ALEX-T	RONIX												DATE		9/17/03	
EUT		SMART		OGRAM	MER										DUTY C	CYCLE	64.8	%
MODEL		TBD													PEAK T		-3.7684998	8 dB
S/N		N/A													TEST D	IST.	3	Meters
TEST ENGINE	ER	MICHAE	L CHR	ISTENSE	N										LAB		A	
Frequency	Peak		Anton	na Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
requency	Reading	Average (A or Quasi-	•)	. Height			Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP		I) (meters)			Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
836.0000	58.2	54.4 A	н	1.0	0	Х		21.5	4.9	32.6	0.0	0.0	48.3	-12.0	60.3			
836.0000	53.0	49.2 A	A V	2.0	0	Х		21.5	4.9	32.6	0.0	0.0	43.1	-17.2	60.3			
			_	_														

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 2 of PAGE 10

COMPANY		ALEX-TRO	ONIX												DATE		9/17/03	
EUT		SMART O		GRAM	MER										DUTY C	YCLE	64.8	%
MODEL		TBD		-											PEAK T		-3.76849988	
S/N		N/A													TEST D		3	Meters
TEST ENGINE	ER	MICHAEL	CHRIS	TENSE	N										LAB		Α	
									a u	1 110	D 1 /	2.61	*G ()		G			
Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit			
MHz	(dBuV)				(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)		(dBuV/m)		Comments	
1254.0000	48.7	44.9 A	Н	1.0	180	Х		27.9	3.0	30.6	0.0	0.0	45.2	-15.1	60.3			
1254.0000	48.7	44.9 A	v	3.0	0	Х		27.9	3.0	30.6	0.0	0.0	45.2	-15.1	60.3			
1254.0000	40.7	44.7 A	v	5.0	0	Λ		21.9	5.0	50.0	0.0	0.0	43.2	-13.1	00.5			
<u> </u>				1														

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 3 of PAGE 10

COMPANY		ALEX-TRO	ONIX												DATE		9/17/03	
EUT		SMART O		GRAM	MER										DUTY C	YCLE	64.8	%
MODEL		TBD													PEAK T		-3.7684998	
S/N		N/A													TEST D		3	Meters
TEST ENGINE		MICHAEL	CHRIS	TENSEN	N										LAB		Α	
_																		
Frequency	Peak Reading	Average (A)	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit			
MHz	(dBuV)	or Quasi- Peak (QP)	(V or H)		(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
1672.0000	46.8	43.0 A	Н	1.0	180	X		30.3	5.4	30.6	0.0	0.0	48.1	-5.9	54.0			
1(72,0000	45.4	41 C A	17	2.0	0	V		20.2	5.4	20.6	0.0	0.0	46.5	= 2	54.0			
1672.0000	45.4	41.6 A	V	2.0	0	Х		30.3	5.4	30.6	0.0	0.0	46.7	-7.3	54.0			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 4 of PAGE 10

COMPANY		ALEX-TRO	ONIX												DATE		9/17/03	
EUT		SMART O		GRAM	MER										DUTY C	CYCLE	64.8	%
MODEL		TBD													PEAK T	'O AVG	-3.76849988	dB
S/N		N/A													TEST D		3	Meters
TEST ENGINE	ER	MICHAEL	CHRIS	TENSE	N										LAB		Α	
Frequency	Peak		Antonno	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
	Reading	Average (A) or Quasi-	Polar.		Azimuth		Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)					Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
2090.0000	40.5	36.7 A	Н	2.0	0	Х		32.4	4.2	30.8	0.0	0.0	42.5	-17.8	60.3			
2090.0000	43.3	39.5 A	V	1.0	0	Х		32.4	4.2	30.8	0.0	0.0	45.3	-15.0	60.3			
				ļ														

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 5 of PAGE 10

COMPANY		ALEX-TR	ONIX												DATE		9/17/03	
EUT		SMART O		GRAM	MER										DUTY C	YCLE	64.8	%
MODEL		TBD													PEAK T		-3.7684998	8 dB
S/N		N/A													TEST D	IST.	3	Meters
TEST ENGINE	ER	MICHAEI	CHRIS	TENSE	N										LAB		А	
Frequency	Peak		Antonno	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
requency	Reading	Average (A) or Quasi-			Azimuth		Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)				(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
2508.0000	41.2	37.4 A	Н	3.5	0	Х		32.3	4.7	30.4	0.0	0.0	44.0	-16.3	60.3			
2508.0000	43.2	39.4 A	V	2.0	0	Х		32.3	4.7	30.4	0.0	0.0	46.0	-14.3	60.3			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 6 of PAGE 10

COMPANY		ALEX-TI	ONIX												DATE		9/17/03	
EUT		SMART			MED										DATE DUTY C	VCLE	64.8	%
			JNE PK	JGKAW	VIEK												04.8 -3.7684998	
MODEL		TBD													PEAK T			
S/N		N/A													TEST D	151.	3	Meters
TEST ENGINE	EK	MICHAE	L CHRI	STENSE	N										LAB		Α	
Frequency	Peak	Average (A	Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
	Reading	or Quasi-	Polar.		Azimuth		Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)	(V or H) (meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments					
2926.0000	43.1	39.3 A	Н	2.0	180	Х		31.5	5.5	31.5	0.0	0.0	44.8	-15.5	60.3			
2926.0000	46.0	42.2 A	v	3.0	270	Х		31.5	5.5	31.5	0.0	0.0	47.7	-12.6	60.3			
					ļ													
					T													
					1								1					

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 7 of PAGE 10

COMPANY		ALEX-TR	ONIX												DATE		9/17/03	
EUT		SMART C		GRAM	MER										DUTY C	CYCLE	64.8	%
MODEL		TBD													PEAK T	O AVG	-3.7684998	8 dB
S/N		N/A													TEST D	IST.	3	Meters
TEST ENGINE	ER	MICHAE	L CHRIS	TENSE	N										LAB		Α	
Frequency	Peak		Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
Trequency	Reading	Average (A) or Quasi-	·		Azimuth		Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)		(meters)	(degrees)	(X , Y , Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
3344.0000	39.7	35.9 A	Н	3.0	180	Х		31.7	6.2	32.3	0.0	0.0	41.5	-18.8	60.3			
3344.0000	42.5	38.7 A	V	1.0	270	Х		31.7	6.2	32.3	0.0	0.0	44.3	-16.0	60.3			
			+															

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 8 of PAGE 10

COMPANY		ALEX-TRO	ONIX												DATE		9/17/03	
EUT		SMART O		GRAM	MER										DUTY C	YCLE	64.8	%
MODEL		TBD		-											PEAK T		-3.7684998	
S/N		N/A													TEST D		3	Meters
TEST ENGINE	ER	MICHAEL	CHRIS	TENSE	N										LAB		Α	
Frequency	Peak		Antonno	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
Frequency	Reading	Average (A) or Quasi-			Azimuth		Тх	Factor	Loss	Gain	Factor	Factor	Reading	venta **	Limit			
MHz	(dBuV)				(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
3762.0000	40.0	36.2 A	Н	3.0	0	Х		31.4	6.9	32.6	0.0	0.0	42.0	-12.0	54.0			
3762.0000	41.7	37.9 A	V	1.0	0	Х		31.4	6.9	32.6	0.0	0.0	43.7	-10.3	54.0			
					-													

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

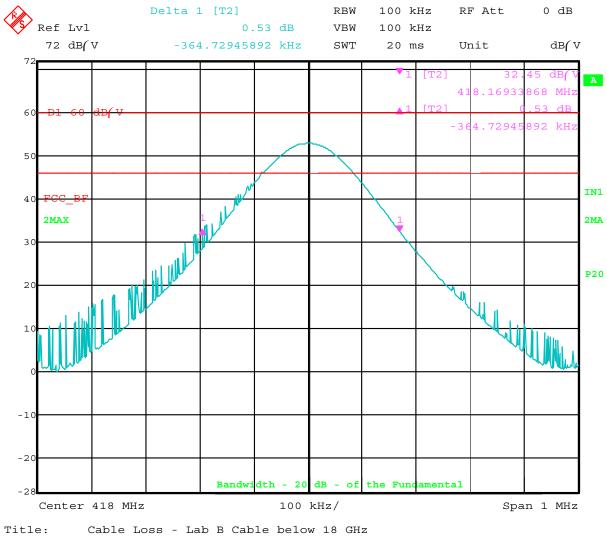
PAGE 9 of PAGE 10

COMPANY		ALEX-TR	ONIX												DATE		9/17/03	
EUT		SMART C		GRAM	MER										DUTY C	CYCLE	64.8	%
MODEL		TBD													PEAK T		-3.7684998	8 dB
S/N		N/A													TEST D	IST.	3	Meters
TEST ENGINE	ER	MICHAE	L CHRIS	TENSE	N										LAB		Α	
Frequency	Peak		Antenna	Antenna	EUT	EUT	EUT	Antenna	Cable	Amplifier	Distance	Mixer	*Corrected	Delta	Spec			
Trequency	Reading	Average (A) or Quasi-	,		Azimuth		Tx	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)		(meters)	(degrees)	(X , Y , Z)	Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
4180.0000	38.1	34.3 A	Н	3.5	0	Х		31.4	6.3	32.5	0.0	0.0	39.6	-14.4	54.0			
4180.0000	38.3	34.5 A	v	1.0	180	Х		31.4	6.3	32.5	0.0	0.0	39.8	-14.2	54.0			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 10 of PAGE 10



Page E17

-20 dB BANDWIDTH

PLOT

Comment A: Preamplifier - PA-122 - S/N: 25196 Date: 4.0CT.2003 01:11:37