Declaration on radiation safety standard conformance

To whom it may concern:

GlobespanVirata B.V. Rembrandtlaan 1a 3723 BG Bilthoven The Netherlands

declares that the following product

Description:	2.4/5 GHz IEEE 802.11g/a WLAN Cardbus card
FCC ID:	RGS39200M1
Manufacturer:	GlobespanVirata B.V.
Brand:	GlobespanVirata
Model:	RGS39200M1

(1) has a maximum e.i.r.p. of +23.9 dBm (245.5 mW, maximum conducted output power of +20.9 dbm plus antenna gain of +3.0 dBi) in the frequency range of 2412 – 2462 MHz, which means that the worst case prediction of power density (100% reflection) at 20 cm distance (worst case) can be calculated as follows :

S =	$\frac{\text{EIRP}}{4^*\pi * R^2}$	(power	density without re	eflection)			
S =	$\frac{2^{2}*EIRP}{4^{*}\pi * R^{2}}$	(power density with 100% reflection)					
S =	$\frac{2^2 * \text{EIRP}}{4^* \pi * \text{R}^2}$	=	$\frac{245.5 \text{ mW}}{\pi^*(20 \text{ cm})^2}$	=	0.195 mW/cm ²	$(limit = 1.0 \text{ mW/cm}^2)$	

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.247 (b)(5).

(2) has a maximum e.i.r.p. of +19.7 dBm (93.3 mW, maximum conducted output power of +16.7 dbm plus antenna gain of +3.0 dBi) in the frequency range of 5150 - 5350 MHz, which means that the worst case prediction of power density (100% reflection) at 20 cm distance (worst case) can be calculated as follows :

S =	$\frac{\text{EIRP}}{4^*\pi * \text{R}^2}$	(power	density without re	flection)			
S =	$\frac{2^2 * \text{EIRP}}{4^* \pi * \text{R}^2}$	(power density with 100% reflection)					
S =	$\frac{2^2 * \text{EIRP}}{4^* \pi * \text{R}^2}$	=	$\frac{93.3 \text{ mW}}{\pi^*(20 \text{ cm})^2}$	=	0.074 mW/cm ²	$(limit = 1.0 \text{ mW/cm}^2)$	

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.407 (f).

(3) has a maximum e.i.r.p. of +23.8 dBm (239.9 mW, maximum conducted output power of +20.8 dbm plus antenna gain of +3.0 dBi) in the frequency range of 5725 - 5850 MHz, which means that the worst case prediction of power density (100% reflection) at 20 cm distance (worst case) can be calculated as follows :

S =	$\frac{\text{EIRP}}{4^*\pi * R^2}$	(power	density without re	eflection)		
S =	$\frac{2^2 * \text{EIRP}}{4^* \pi * \text{R}^2}$	(power density with 100% reflection)				
S =	$\frac{2^2 * \text{EIRP}}{4^* \pi * \text{R}^2}$	=	$\frac{239.9 \text{ mW}}{\pi^*(20 \text{ cm})^2}$	=	0.191 mW/cm ²	$(limit = 1.0 \text{ mW/cm}^2)$

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.247 (b)(5).