

# **TEST REPORT**

| Applicant Name &<br>Address                                               | :           | King of Fans, Inc.<br>1951 NW 22nd.Street, Fort Lauderdale, FL 33311.USA                       |
|---------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|
| Sample Description<br>Product<br>FCC ID<br>Model No.<br>Electrical Rating | ::          | Bluetooth Audio Light Kit<br>RGB-BTADLK380950<br>380950<br>AC 120V/60Hz                        |
| Date Received<br>Date Test Conducted<br>Test standards                    | :<br>:<br>: | 01 July 2016<br>01 July 2016 – 23 August 2016<br>47 CFR PART 15 Subpart C: 2015 section 15.247 |
| Test Result<br>Conclusion                                                 | :           | Pass<br>The submitted samples complied with the above rules/standards.                         |

Prepared and Checked By:

Approved By:

Sky Zhu Sky Zhu

Sky Zhu Project Engineer Intertek Guangzhou

Ma Signature

Helen Ma Team Leader Intertek Guangzhou 30 November 2016 Date

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China Tel / Fax: 86-20-8213 9688/86-20-3205 7538 © 2016 Intertek



# **CONTENT**

| TEST R | EPORT      |                                         | 1   |
|--------|------------|-----------------------------------------|-----|
| CONTE  | NT         |                                         | 2   |
| 1.0    |            | of Test                                 |     |
| 2.0    | •          | escription                              |     |
|        | 2.1 Pr     | roduct Description                      | .4  |
|        | 2.2 Re     | elated Submittal(s) Grants              | .6  |
|        | 2.3 Te     | est Methodology                         | .6  |
|        |            | est Facility                            |     |
| 3.0    | System Te  | est Configuration                       | 7   |
|        | 3.1 Ju     | stification                             | .7  |
|        | 3.2 EU     | UT Exercising Software                  | .7  |
|        | 3.3 Sp     | pecial Accessories                      | . 8 |
|        | 3.4 M      | leasurement Uncertainty                 | . 8 |
|        | 3.5 Ec     | quipment Modification                   | . 8 |
|        | 3.6 Su     | upport Equipment List and Description   | . 8 |
| 4.0    | Measurem   | ent Results                             | .10 |
|        | 4.1 A      | ntenna Requirement                      | 0   |
|        | 4.2 20     | ) dB Bandwidth                          | 11  |
|        | 4.3 Ca     | arrier Frequencies Separated            | 9   |
|        | 4.4 He     | opping Channel Number                   | 24  |
|        | 4.5 D      | well Time                               | 26  |
|        | 4.6 Ps     | seudo random Frequency Hopping Sequence | 37  |
|        | 4.7 M      | Iaximum Peak Conducted Output Power     | 38  |
|        | 4.5 Or     | ut of Band Conducted Emissions          | 46  |
|        | 4.6 Or     | ut of Band Radiated Emissions           | 50  |
|        | 4.7 Ra     | adiated Emissions in Restricted Bands   | 51  |
|        | 4.8 Ba     | and Edges Requirement                   | 58  |
|        | 4.9 Co     | onducted Emission Test                  | 13  |
| 5.0    | Test Equip | oment List                              | .76 |



#### 1.0 **Summary of Test**

| TEST                                                 | TEST<br>REQUIREMENT                                     | TEST METHOD                                             | RESULT |
|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------|
| Antenna Requirement                                  | FCC PART 15 C<br>Clause 15.247 (c) and<br>Clause 15.203 | FCC PART 15 C<br>Clause 15.247 (c) and<br>Clause 15.203 | PASS   |
| 20 dB Bandwidth                                      | FCC PART 15 C<br>Clause 15.247 (a)(1)                   | ANSI C63.10: Clause<br>7.8.7 & 6.9.2                    | PASS   |
| Carrier Frequencies<br>Separated                     | FCC PART 15 C<br>Clause 15.247(a)(1)                    | ANSI C63.10: Clause<br>7.8.2                            | PASS   |
| Hopping Channel Number                               | FCC PART 15 C<br>Clause 15.247(a)(1)(iii)               | ANSI C63.10: Clause 7.8.3                               | PASS   |
| Dwell Time                                           | FCC PART 15 C<br>Clause 15.247(a)(1)(iii)               | ANSI C63.10: Clause<br>7.8.4                            | PASS   |
| Pseudorandom Frequency<br>Hopping Sequence           | FCC PART 15 C<br>Clause 15.247(a)(1)                    | FCC PART 15 C<br>Clause 15.247(a)(1)                    | PASS   |
| Maximum Peak Conducted<br>Output Power               | FCC PART 15 C<br>Clause 15.247(b)(1)                    | ANSI C63.10: Clause<br>7.8.5                            | PASS   |
| Out of Band Conducted<br>Emissions                   | FCC PART 15 C<br>Clause 15.247(d)                       | ANSI C63.10: Clause<br>7.8.8                            | PASS   |
| Out of Band Radiated<br>Emission                     | FCC PART 15 C<br>Clause 15.247(d)                       | ANSI C63.10: Clause 6.4, 6.5 and 6.6                    | N/A    |
| Radiated Emissions in<br>Restricted Bands            | FCC PART 15 C<br>Clause 15.209<br>&15.247(d)            | ANSI C63.10: Clause<br>6.4, 6.5 and 6.6                 | PASS   |
| Band Edges Measurement                               | FCC PART 15 C<br>Clause 15.247 (d)<br>&15.205           | ANSI C63.10: Clause<br>7.8.6 & 6.10                     | PASS   |
| Conducted Emissions at<br>Mains Terminals<br>Remark: | FCC PART 15 C<br>Clause 15.207                          | ANSI C63.10: Clause 6.2                                 | PASS   |

**Remark:** 

N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.



# 2.0 General Description

### 2.1 **Product Description**

| Operating Frequency | 2402 MHz to 2480 MHz                                           |
|---------------------|----------------------------------------------------------------|
| Type of Modulation: | GFSK, $(\pi/4)$ -DQPSK, 8-DPSK                                 |
| Number of Channels  | 79 Channels                                                    |
| Channel Separation: | 1 MHz                                                          |
| Dwell time          | Per channel is less than 0.4s.                                 |
| Antenna Type        | Integral                                                       |
| Antenna gain:       | 2 dBi                                                          |
| Speciality:         | Bluetooth 4.1                                                  |
| Function:           | Speaker with BT function to transmit and receive audio signal. |
| Power Supply:       | 120V/60Hz                                                      |
| Power cord:         | 1.1 m x 2 wires unscreened AC supply cable                     |

Remark: The device meets the requirements stated within Parts 15.247(g) & (h) in that they were developed under the Bluetooth protocol and operate as a true frequency hopping system. The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

EUT modulation and data packet during test:

For Normal mode:

The EUT has been tested on the Modulation of GFSK with DH1, DH3 and DH5 data packet. For EDR mode:

- 1. The EUT been tested on the Modulation of ( $\pi$ /4)-DQPSK with 2DH1, 2DH3 and 2DH5 data packet.
- 2. The EUT has been tested on the Modulation of 8-DPSK with 3DH1, 3DH3 and 3DH5 data packet.

EUT channels and frequencies list:

Test frequencies are lowest channel 0: 2402 MHz, middle channel 39: 2441 MHz and highest channel 78: 2480 MHz.



| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 0       | 2402               | 27      | 2429               | 54      | 2456               |
| 1       | 2403               | 28      | 2430               | 55      | 2457               |
| 2       | 2404               | 29      | 2431               | 56      | 2458               |
| 3       | 2405               | 30      | 2432               | 57      | 2459               |
| 4       | 2406               | 31      | 2433               | 58      | 2460               |
| 5       | 2407               | 32      | 2434               | 59      | 2461               |
| 6       | 2408               | 33      | 2435               | 60      | 2462               |
| 7       | 2409               | 34      | 2436               | 61      | 2463               |
| 8       | 2410               | 35      | 2437               | 62      | 2464               |
| 9       | 2411               | 36      | 2438               | 63      | 2465               |
| 10      | 2412               | 37      | 2439               | 64      | 2466               |
| 11      | 2413               | 38      | 2440               | 65      | 2467               |
| 12      | 2414               | 39      | 2441               | 66      | 2468               |
| 13      | 2415               | 40      | 2442               | 67      | 2469               |
| 14      | 2416               | 41      | 2443               | 68      | 2470               |
| 15      | 2417               | 42      | 2444               | 69      | 2471               |
| 16      | 2418               | 43      | 2445               | 70      | 2472               |
| 17      | 2419               | 44      | 2446               | 71      | 2473               |
| 18      | 2420               | 45      | 2447               | 72      | 2474               |
| 19      | 2421               | 46      | 2448               | 73      | 2475               |
| 20      | 2422               | 47      | 2449               | 74      | 2476               |
| 21      | 2423               | 48      | 2450               | 75      | 2477               |
| 22      | 2424               | 49      | 2451               | 76      | 2478               |
| 23      | 2425               | 50      | 2452               | 77      | 2479               |
| 24      | 2426               | 51      | 2453               | 78      | 2480               |
| 25      | 2427               | 52      | 2454               | /       | /                  |
| 26      | 2428               | 53      | 2455               | /       | /                  |



### 2.2 Related Submittal(s) Grants

This is an application for certification of: FHSS- Part 15 Spread Spectrum Transmitter (BT transmitter portion)

Remaining portions are subject to the following procedures: 1. Receiver portion of BT: exempt from technical requirement of this Part.

### 2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10:2013. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

### 2.4 Test Facility

All of the tests are performed at:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China 510663.

This test facility and site measurement data have been fully placed on file with the FCC, test firm registration number is 549654.



### **3.0** System Test Configuration

### 3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, AC power line was manipulated to produce worst case emissions. It was powered by AC 120V/60Hz supply.

The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

| Lowest frequency generated in the device | Upper frequency range of measurement                                                                        |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 9 kHz to below 10 GHz                    | 10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower                             |
| At or above 10 GHz to below              | 5th harmonic of highest fundamental frequency or to 100                                                     |
| 30 GHz                                   | GHz, whichever is lower                                                                                     |
| At or above 30 GHz                       | 5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified |

### Frequency range of radiated emission measurements

### Number of fundamental frequencies to be tested in EUT transmit band

| Frequency range in which | Number of   | Location in frequency                          |
|--------------------------|-------------|------------------------------------------------|
| device operates          | frequencies | range of operation                             |
| 1 MHz or less            | 1           | Middle                                         |
| 1 MHz to 10 MHz          | 2           | 1 near top and 1 near<br>bottom                |
| More than 10 MHz         | 3           | 1 near top, 1 near middle<br>and 1 near bottom |

## **3.2 EUT Exercising Software**

The test was performed under "Airoha.AB1500FamilyLabTestTool" which was provided by manufacture.



### **3.3** Special Accessories

No special accessories used.

### **3.4** Measurement Uncertainty

| No. | Item                             | Measurement Uncertainty                        |
|-----|----------------------------------|------------------------------------------------|
| 1   | RF output power (conducted)      | 1.1 dB                                         |
| 2   | Occupied Channel Bandwidth       | 2.3%                                           |
| 3   | Power Spectral Density           | 1.5dB                                          |
| 4   | Spurious Emission (TX)-Radiated  | 4.7 dB (25 MHz-1 GHz)<br>4.8 dB (1 GHz-18 GHz) |
| 5   | Spurious Emission (TX)-Conducted | 1.5 dB                                         |
| 6   | Spurious Emission (RX) -Radiated | 4.7 dB (25 MHz-1 GHz)<br>4.8 dB (1 GHz-18 GHz) |
| 7   | Spurious Emission (RX)-Conducted | 1.5 dB                                         |
| 8   | Temperature                      | 0.5 °C                                         |
| 9   | Humidity                         | 0.4 %                                          |
| 10  | Time                             | 1.2%                                           |

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

## **3.5 Equipment Modification**

Any modifications installed previous to testing by King of Fans, Inc. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

## 3.6 Support Equipment List and Description



This product was tested with corresponding accessories as below: Supplied by Intertek:

| Description | Manufacturer | Model No. | SN/Certificate NO |
|-------------|--------------|-----------|-------------------|
| NoteBook    | LENOVO       | T143      | CNU8240LF9        |

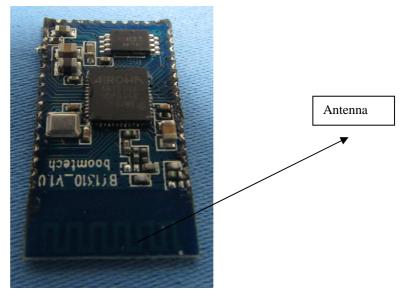


## 4.0 Measurement Results

4.1 Antenna Requirement

Standard requirement

15.203 requirement:

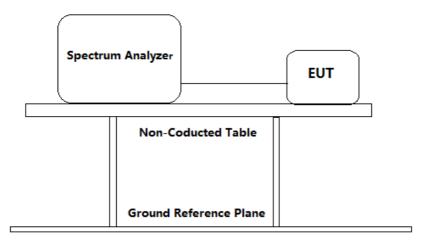

For intentional device. According to 15.203. an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

### EUT Antenna

The antenna is an integral antenna and no consideration of replacement. The best case gain of the antenna is 2 dBi.






# 4.2 20 dB Bandwidth

| Test Requirement: | FCC Part 15 C section 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | (a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. |
| Test Method:      | ANSI C63.10: Clause 7.8.7 & 6.9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Status:      | Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channels with different data package. Compliance test in normal mode (DH5) and EDR mode (3DH5) as the worst case was found.                                                                                                                                                                                                                                                             |

Test Configuration:



Test Procedure:

Removed the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. The transmitter was operated at its maximum carrier power measured under normal test conditions.

1. The instrument center frequency was set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer was between two times and five times the



OBW(20 dB Bandwidth).

- 2. The nominal IF filter bandwidth (3 dB RBW) was in the range of 1% to 5% of the OBW, and VBW was approximately three times the RBW.
- 3. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope was more than [10 log (OBW/RBW)] below the reference level.
- 4. Step 1) through step 3) might require iteration to adjust within the specified range.
- 5. The dynamic range of the instrument at the selected RBW was more than 10 dB below the target "-20 dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW was at least 30 dB below the reference value.
- 6. Peak detection and max hold mode (until the trace stabilizes) was used.
- 7. Used the 20dB bandwidth function of the instrument and reported the measured bandwidth.
- 8. The occupied bandwidth was reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division was clearly labeled. Tabular data was reported in addition to the plot(s).

### Test result:

#### Normal mode (DH5):

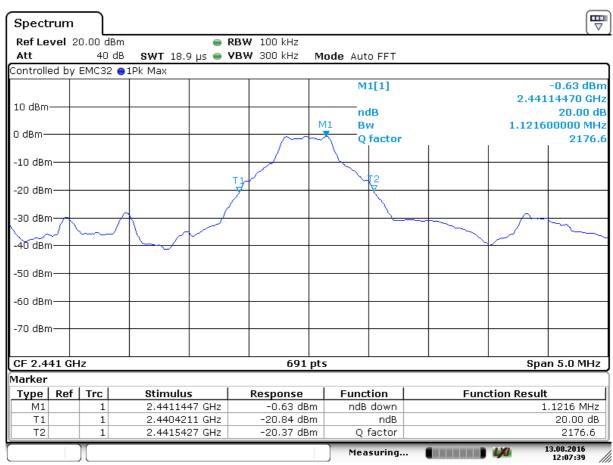
| Test Channel | Bandwidth(MHz) | 2/3 bandwidth(MHz) |
|--------------|----------------|--------------------|
| Lowest       | 1.129          | 0.755              |
| Middle       | 1.122          | 0.748              |
| Highest      | 1.122          | 0.748              |

### EDR mode (3DH5):

| Test Channel | bandwidth | 2/3 bandwidth |
|--------------|-----------|---------------|
| Lowest       | 1.426     | 0.951         |
| Middle       | 1.418     | 0.945         |
| Highest      | 1.411     | 0.941         |

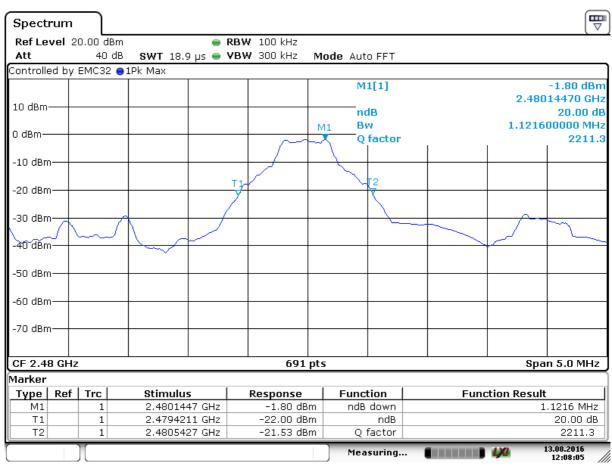
Test result: The unit does meet the FCC requirements.




# **Result plot as follows:**

# Normal mode (DH5):

Lowest Channel(2.402 GHz):


| Spect      | rum             |         |                   |            |                   |      |           |      |                 |                                    |  |
|------------|-----------------|---------|-------------------|------------|-------------------|------|-----------|------|-----------------|------------------------------------|--|
| Ref Le     | vel 2           | 0.00 di | Зm                | 👄 RB       | W 100 kHz         |      |           |      |                 |                                    |  |
| Att        |                 | 40      | dB <b>SWT</b> 18. | 9 µs 👄 🛛 🛛 | <b>SW</b> 300 kHz | Mode | Auto FFT  |      |                 |                                    |  |
| Controlle  | ed by           | EMC32   | ●1Pk Max          |            |                   |      |           |      |                 |                                    |  |
| 10 dBm·    |                 |         |                   |            |                   |      | M1[1]     |      | 2.40            | 0.56 dBm<br>214470 GHz<br>20.00 dB |  |
|            |                 |         |                   |            |                   | M1   | Bw        |      | 1.128800000 MHz |                                    |  |
| 0 dBm—     |                 |         |                   |            | - /               |      | Q factor  | I    |                 | 2128.1                             |  |
| -10 dBm    | ι <u> </u>      |         |                   |            | +                 |      |           |      |                 |                                    |  |
| -20 dBm    | <u>ا</u> ــــ   |         |                   | Т          | r                 |      | ₹         |      |                 |                                    |  |
|            |                 |         |                   |            |                   |      |           |      |                 |                                    |  |
| -30 dBm    | 1 <del>74</del> |         | -A                |            |                   |      |           |      | $\vdash \frown$ |                                    |  |
| $\searrow$ | 7               | $\sim$  |                   |            |                   |      |           |      |                 |                                    |  |
| -40 dBm    | <u>ו</u> וי     |         | ~_                |            |                   |      |           |      |                 |                                    |  |
| -50 dBm    | ι <u></u>       |         |                   |            |                   |      |           |      |                 |                                    |  |
|            |                 |         |                   |            |                   |      |           |      |                 |                                    |  |
| -60 dBm    | ∩               |         |                   |            |                   |      |           |      |                 |                                    |  |
|            |                 |         |                   |            |                   |      |           |      |                 |                                    |  |
| -70 dBm    | ι <del></del>   |         |                   |            |                   |      |           |      |                 |                                    |  |
|            |                 |         |                   |            |                   |      |           |      |                 |                                    |  |
| CF 2.40    | 02 GH           | z       |                   |            | 691               | pts  |           |      | Spa             | n 5.0 MHz                          |  |
| Marker     |                 |         |                   |            |                   |      |           |      | · · ·           |                                    |  |
| Туре       | Ref             | Trc     | Stimulu           | s          | Response          | F    | unction   | Fund | ction Resul     | t                                  |  |
| M1         |                 | 1       | 2.40214           | 47 GHz     | 0.56 dB           | m    | ndB down  |      |                 | 1.1288 MHz                         |  |
| T1         |                 | 1       | 2.40142           |            | -19.66 dB         |      | ndB       |      |                 | 20.00 dB                           |  |
| T2         |                 | 1       | 2.40254           | 99 GHz     | -19.62 dB         | m    | Q factor  |      |                 | 2128.1                             |  |
|            |                 |         |                   |            |                   |      | Measuring |      | 4/4             | 13.08.2016<br>12:05:30             |  |



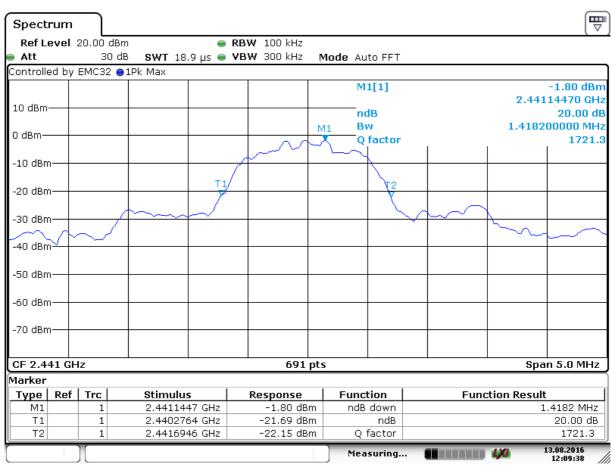


Middle Channel(2.441 GHz):



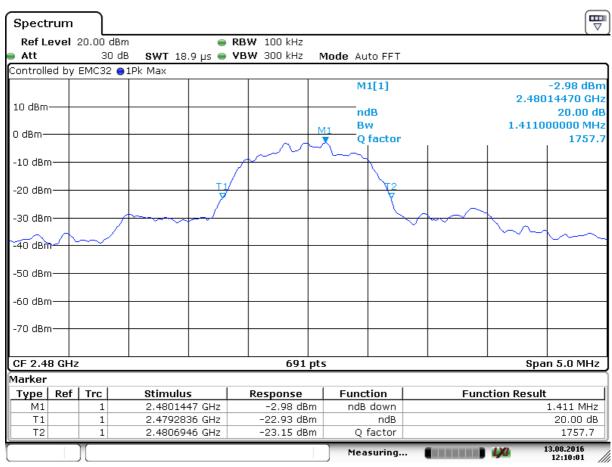


Highest Channel(2.480 GHz):




# EDR mode (3DH5):

Lowest channel(2.402 GHz):


| Spectrur     | n               |                                |            |                         |        |                                 |        |              |                        |  |
|--------------|-----------------|--------------------------------|------------|-------------------------|--------|---------------------------------|--------|--------------|------------------------|--|
| Ref Leve     | el 20.00        |                                | _          | RBW 100 kHz             |        |                                 |        |              |                        |  |
| Att 🛛        |                 |                                | 8.9 µs 👄 🎙 | <b>VBW</b> 300 kHz      | Mode A | uto FFT                         |        |              |                        |  |
| Controlled b | by EMC32        | 2 🔵 1 Pk Max                   |            |                         |        |                                 |        |              |                        |  |
|              |                 |                                |            |                         | Γ      | 41[1]                           |        |              | -0.84 dBm              |  |
| 10 dBm       |                 |                                |            |                         |        |                                 |        | 2.40         | 214470 GHz             |  |
|              |                 |                                |            |                         |        | ndB                             |        | 1 405        | 20.00 dB               |  |
| 0 dBm        |                 |                                |            |                         | _      | 3w<br>Q factor                  |        | 1.423;       | 500000 MHz<br>1685.2   |  |
|              |                 |                                |            |                         | $\sim$ |                                 | 1      | 1            | 1005.2                 |  |
| -10 dBm—     |                 |                                | _          | $A \rightarrow A$       |        |                                 |        |              |                        |  |
|              |                 |                                | т1/        | , I                     |        | 12                              |        |              |                        |  |
| -20 dBm—     |                 |                                | 7          |                         |        | - <del>\</del>                  |        |              |                        |  |
|              |                 | h                              | $\sim$     |                         |        |                                 | $\sim$ | $\neg$       |                        |  |
| -30 dBm—     | -               | /                              |            |                         |        |                                 | ~•     |              |                        |  |
| $\sim$       | $\uparrow \sim$ |                                |            |                         |        |                                 |        |              | $\gamma \sim \gamma$   |  |
| -40 dBm—     |                 |                                |            |                         |        |                                 |        |              |                        |  |
|              |                 |                                |            |                         |        |                                 |        |              |                        |  |
| -50 dBm—     |                 |                                |            |                         |        |                                 |        |              |                        |  |
| -60 dBm—     |                 |                                |            |                         |        |                                 |        |              |                        |  |
| -00 ubiii—   |                 |                                |            |                         |        |                                 |        |              |                        |  |
| -70 dBm—     |                 |                                |            |                         |        |                                 |        |              |                        |  |
| , o abiii    |                 |                                |            |                         |        |                                 |        |              |                        |  |
|              |                 |                                |            |                         |        |                                 |        |              |                        |  |
| CF 2.402     | GHz             |                                |            | 691                     | pts    |                                 |        | Spa          | an 5.0 MHz             |  |
| Marker       |                 |                                |            |                         |        |                                 |        |              |                        |  |
|              | ef Trc          | Stimul                         |            | Response                |        | Function Function I<br>ndB down |        | nction Resul |                        |  |
| M1<br>T1     | 1               | 2.4021447 GHz<br>2.4012692 GHz |            | -0.84 dBi<br>-20.93 dBi |        | B down<br>ndB                   |        |              | 1.4255 MHz<br>20.00 dB |  |
| T2           | 1               |                                | 946 GHZ    | -20.93 dBi              |        | factor                          |        |              |                        |  |
|              |                 | 2,,020                         |            | 20,10 00                |        |                                 |        | B 4.94       | 13.08.2016             |  |
|              |                 |                                |            |                         | Me     | asuring                         |        | , Da         | 12:09:11               |  |

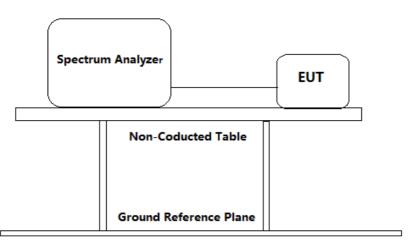




Middle channel(2.441 GHz):






# Highest channel(2.480 GHz):



### 4.3 Carrier Frequencies Separated

| Test Requirement: | FCC Part 15 C section 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | (a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. |
| Test Method:      | ANSI C63.10: Clause 7.8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Status:      | Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in hopping with normal mode (DH5) as the worst case was found.                                                                                                                                                                                                                                                     |

## **Test Configuration:**



### **Test Procedure:**

- 1. Removed the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Span: Wide enough to capture the peaks of two adjacent channels.
- 3. Set the spectrum analyzer: RBW >= 1% of the span, VBW >= RBW, Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 4. Allowed the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

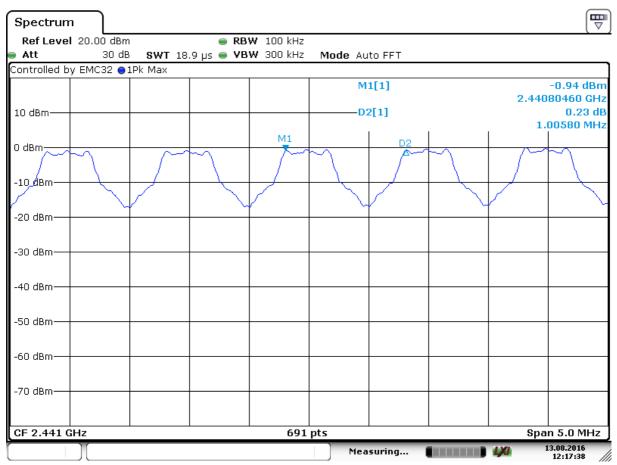


**Test result:** 

| Test Channel                | Carrier Frequencies<br>Separated | Pass/Fail |  |  |
|-----------------------------|----------------------------------|-----------|--|--|
| Lower Channels              | 984.1kHz                         | Pass      |  |  |
| (channel 0 and channel 1)   |                                  |           |  |  |
| Middle Channels             | 1005.8kHz                        | Pass      |  |  |
| (channel 39 and channel 40) | 1003.0KHZ                        | 1 455     |  |  |
| Upper Channels              | 1005.8kHz                        | Pass      |  |  |
| (channel 77 and channel 78) | 1003.04112                       | 1 455     |  |  |

Remark:

The limit is the maximum two-thirds of the 20 dB bandwidth: 951 kHz.




### **Result plot as follows:**

Lowest Channels: Carrier Frequencies Separated



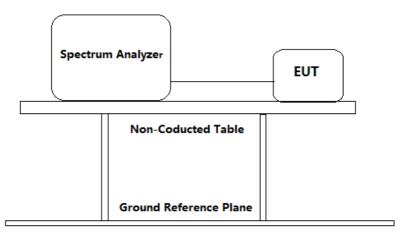




# Middle Channels: Carrier Frequencies Separated



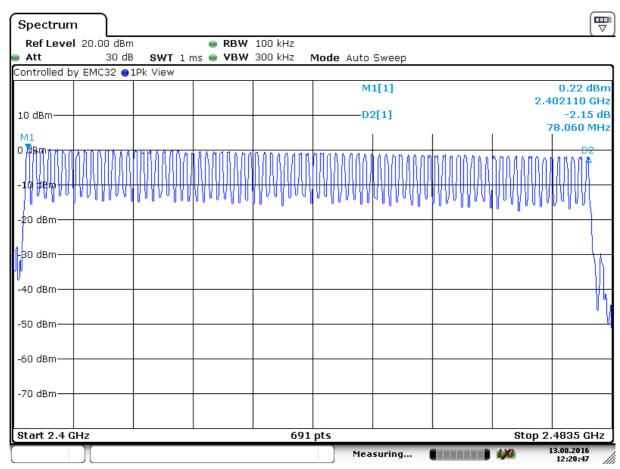



# Highest Channels: Carrier Frequencies Separated

Test result: The unit does meet the FCC requirements.



| 4.4 | Hopping Channel Number   |                                                                                                                                                   |  |  |  |  |  |  |
|-----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | <b>Test Requirement:</b> | FCC Part15 C section 15.247                                                                                                                       |  |  |  |  |  |  |
|     |                          | (a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band                                                                                 |  |  |  |  |  |  |
|     |                          | shall use at least 15 channels.                                                                                                                   |  |  |  |  |  |  |
|     | <b>Test Method:</b>      | ANSI C63.10: Clause 7.8.3                                                                                                                         |  |  |  |  |  |  |
|     | Test Status:             | Pre-test the EUT in hopping mode with different data packet.<br>Compliance test in hopping with normal mode (DH5) as the worst<br>case was found. |  |  |  |  |  |  |


## **Test Configuration:**

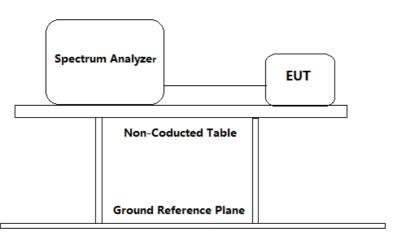


## **Test Procedure:**

- 1. Removed the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Span: The frequency band of operation
- 3. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 4. Allowed the trace to stabilize.
- 5. Set the spectrum analyzer: start frequency = 2400 MHz, stop frequency = 2483.5 MHz. Submit the test result graph.






Test result: Total channels are 79 channels.

Test result: The unit does meet the FCC requirements.



| 4.5 | Dwell Time<br>Test Requirement: | FCC Part 15 C section 15.247                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                 | (a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band<br>shall use at least 15 channels. The average time of occupancy on any<br>channel shall not be greater than 0.4 seconds within a period of 0.4<br>seconds multiplied by the number of hopping channels employed.<br>Frequency hopping systems may avoid or suppress transmissions on<br>a particular hopping frequency provided that a minimum of 15<br>channels are used. |
|     | <b>Test Method:</b>             | ANSI C63.10: Clause 7.8.4                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | Test Status:                    | Test the EUT in hopping mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in hopping mode with EDR mode (3DH1, 3DH3 and 3DH5) as the worst case was found.                                                                                                                                                                                                          |

# **Test Configuration:**



### **Test Procedure:**

- 1. Removed the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set spectrum analyzer span = 0, centered on a hopping channel.
- 3. Set RBW = 1 MHz and VBW = 1 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = Max hold;
- 4. Used the marker-delta function to determine the dwell time.



## **Test Result:**

```
The test period: T=0.4 \text{ s x } 79 \text{ Channel} = 31.6 \text{ s}
```

| 1. Channel 0: 2.4               | 402  | GHz   |      |   |    |   |             |   |         |    |
|---------------------------------|------|-------|------|---|----|---|-------------|---|---------|----|
| 3DH1 time slot                  | =    | 0.427 | (ms) | * | 32 | * | (31.6/3.16) | = | 136.640 | ms |
| 3DH3 time slot                  | =    | 1.664 | (ms) | * | 16 | * | (31.6/3.16) | = | 266.240 | ms |
| 3DH5 time slot                  | =    | 2.939 | (ms) | * | 11 | * | (31.6/3.16) | = | 323.290 | ms |
| <b>2. Channel 39:</b> 2.441 GHz |      |       |      |   |    |   |             |   |         |    |
| 3DH1 time slot                  | =    | 0.427 | (ms) | * | 32 | * | (31.6/3.16) | = | 136.640 | ms |
| 3DH3 time slot                  | =    | 1.670 | (ms) | * | 16 | * | (31.6/3.16) | = | 267.200 | ms |
| 3DH5 time slot                  | =    | 2.930 | (ms) | * | 10 | * | (31.6/3.16) | = | 293.000 | ms |
| 3. Channel 78: 2                | .480 | ) GHz |      |   |    |   |             |   |         |    |
| 3DH1 time slot                  | =    | 0.427 | (ms) | * | 32 | * | (31.6/3.16) | = | 136.640 | ms |
| 3DH3 time slot                  | =    | 1.677 | (ms) | * | 16 | * | (31.6/3.16) | = | 268.320 | ms |
| 3DH5 time slot                  | =    | 2.909 | (ms) | * | 11 | * | (31.6/3.16) | = | 319.990 | ms |

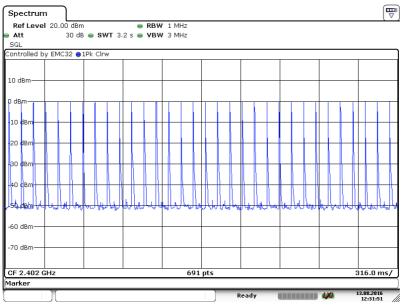
The average time of occupancy in the specified 31.6 second period is equal to pulse width x (number of pulse in observation period) x (test period / observation period)

The results are not greater than 0.4 seconds.

# The unit does meet the FCC requirements.



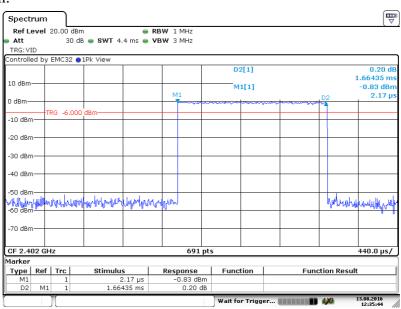
# **Result plot as follows:**


### 1. Lowest channel (2.402 GHz):

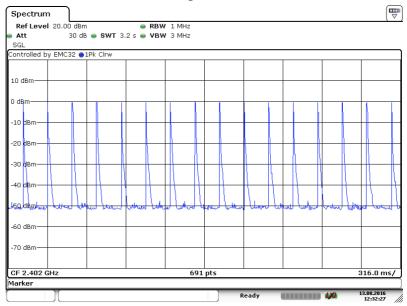
(1) 3DH1

#### Pulse Width:

| Specti             | rum   |           |                  |                     |                 |       |            |       |           |             |             | [₩           |
|--------------------|-------|-----------|------------------|---------------------|-----------------|-------|------------|-------|-----------|-------------|-------------|--------------|
|                    | evel  | 20.00 d   |                  | _                   | RBW 1 MHz       |       |            |       |           |             |             |              |
| Att                |       | 30        | dB 👄 SWT 4       | .4 ms 😑             | VBW 3 MHz       |       |            |       |           |             |             |              |
| TRG: VI            |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| Controlle          | ed by | EMC32     | ⊖1Pk View        |                     |                 |       |            |       |           |             |             |              |
|                    |       |           |                  |                     |                 |       | M1         | [1]   |           |             |             | -0.91 dBn    |
| 10 dBm-            |       |           |                  |                     |                 |       |            |       |           |             |             | -3.12 µ      |
| 10 00.00           |       |           |                  |                     |                 | М1    | D2[        | 1]    |           |             |             | -0.08 dl     |
| 0 dBm—             |       |           |                  |                     |                 |       | <u>D</u> 2 |       |           |             |             | 427.25 µ     |
|                    |       |           |                  |                     |                 |       | 1          |       |           |             |             |              |
| <del>-10 dBm</del> | н т   | RG -10.   | 000 dBm          |                     |                 |       |            |       |           |             |             |              |
|                    |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| -20 dBm            |       |           |                  |                     |                 |       |            |       |           |             |             | +            |
|                    |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| -30 dBm            |       |           |                  |                     |                 |       |            |       |           |             |             | +            |
|                    |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| -40 dBm            |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| -50 dBm            |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| -50 0Bm            |       | لماريدان  |                  | de resta            | التحديدات فالات |       |            | ي الم |           | and the set | A MUNUMANNA | La Karka     |
| -60 dBm            | MAN   | nharada ( | When with a mile | wardta              | ndurfurtenth    | M     | 4          | nangi | add frait | MINN        | ad world in | allow and an |
| 00 0.011           | .     |           |                  |                     |                 |       |            |       |           |             |             | · ·          |
| -70 dBm            |       |           |                  |                     |                 | _     |            |       |           |             |             | <u> </u>     |
|                    |       |           |                  |                     |                 |       |            |       |           |             |             |              |
| CF 2.40            | 12 CL | 1-1       |                  |                     | 60              | 1 pts |            |       |           |             |             | 440.0 µs/    |
| darker             | 52 GF | 12        |                  |                     | 09              | r pts |            |       |           |             |             | ++0.0 µ\$7   |
| Type               | Ref   | Trc       | Stimulu          | e                   | Response        |       | Functi     | on I  |           | Eupe        | tion Resul  |              |
| M1                 | Rei   | 1         |                  | <b>s</b><br>3.12 μs | -0.91 (         |       | Functi     | 011   |           | Fund        | alon Kesul  |              |
| D2                 | M1    | 1         |                  | 7.25 µs             | -0.08           |       |            |       |           |             |             |              |
|                    | -     | 7         |                  |                     |                 |       | _          | uring |           |             |             | 13.08.2016   |


### Number of Pulses in 3.16 S observation period:

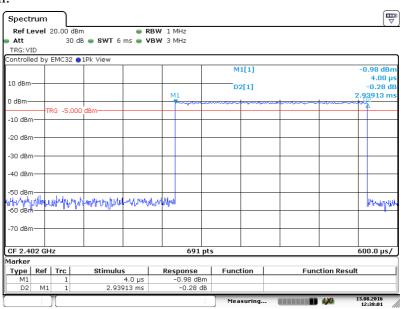




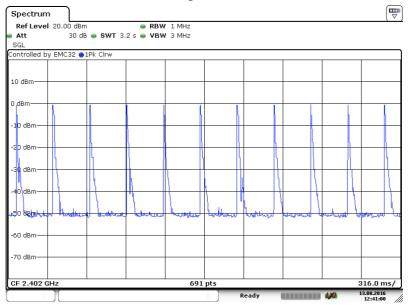

### (2) 3DH3

Pulse Width:




# Number of Pulses in 3.16 S observation period:



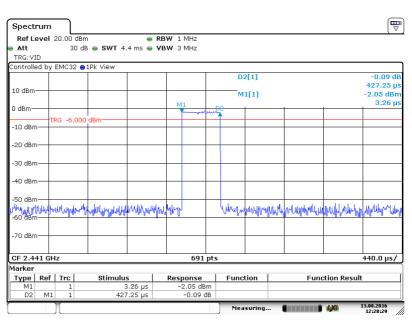



# (3) 3DH5

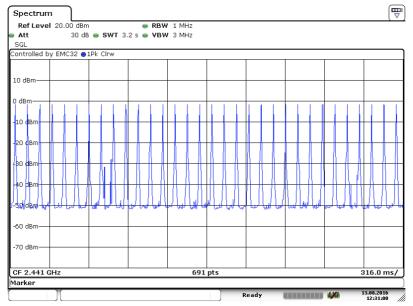
Pulse Width:



# Number of Pulses in 3.16 S observation period:



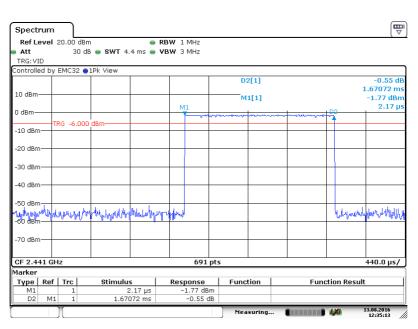




### 2. Middle Channel (2.441 GHz):

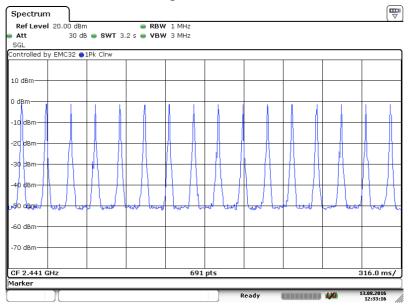
(1). 3DH1

Pulse Width:




Number of Pulses in 3.16 S observation period:

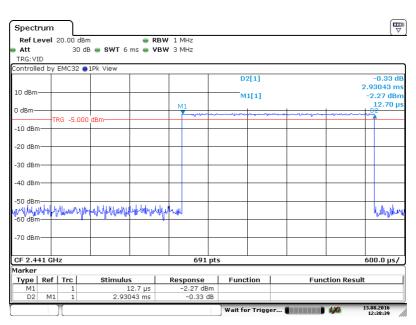




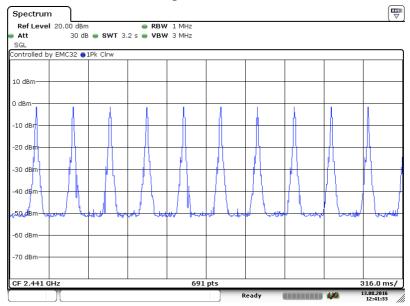

### (2) 3DH3

Pulse Width:




# Number of Pulses in 3.16 S observation period:



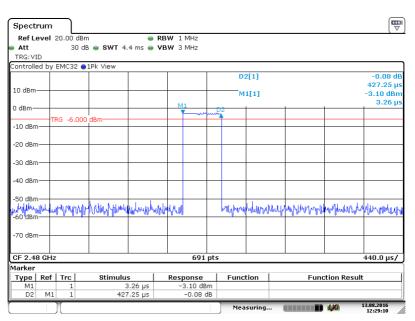



### (3) 3DH5

Pulse Width:



# Number of Pulses in 3.16 S observation period:



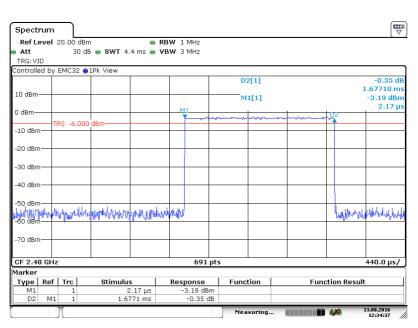



## 3. Highest Channel (2.480 GHz):

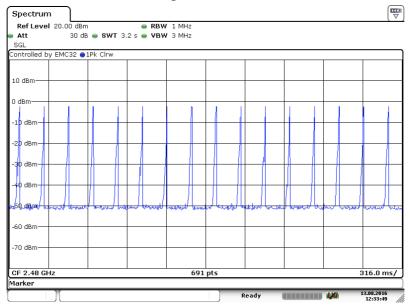
(1). 3DH1

Pulse Width:




### Number of Pulses in 3.16 S observation period:

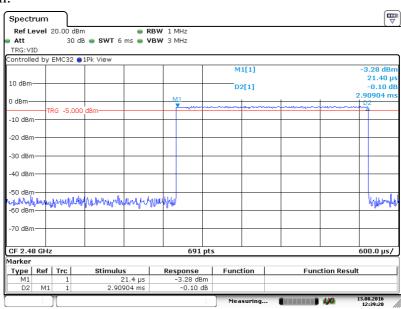




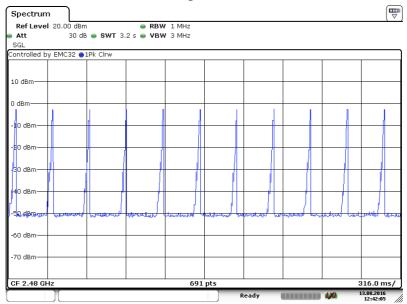

### (2) 3DH3

Pulse Width:




# Number of Pulses in 3.16 S observation period:






# (3) 3DH5

Pulse Width:



# Number of Pulses in 3.16 S observation period:



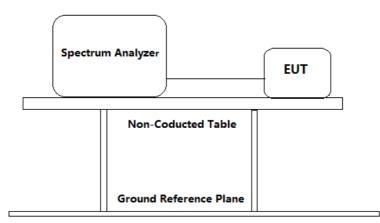


#### 4.6 Pseudo random Frequency Hopping Sequence

- 4.6.1 Standard requirement
  - 15.247(a)(1) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudo random ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### 4.6.2 EUT Pseudo random Frequency Hopping Sequence


Bluetooth protocol is utilized by the EUT. It is shown that each frequency used equally on the average by the transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



# 4.7 Maximum Peak Conducted Output Power

| Test Requirement: | FCC Part 15 C section 15.247<br>(b)(1)For frequency hopping systems operating in the 2400-<br>2483.5 MHz band employing at least 75 non-overlapping<br>hopping channels, and all frequency hopping systems in the<br>5725-5850 MHz band: 1 watt. For all other frequency hopping<br>systems in the 2400-2483.5 MHz band: 0.125 watts. Refer to the<br>result "Hopping channel number" of this report. The 1 watt (30.0 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | dBm) limit applies.<br>ANSI C63.10: Clause 7.8.5                                                                                                                                                                                                                                                                                                                                                                       |
| Test Status:      | Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal (DH5) and EDR mode (3DH5) as the worst case was found.                                                                                                                                             |

Test Configuration:

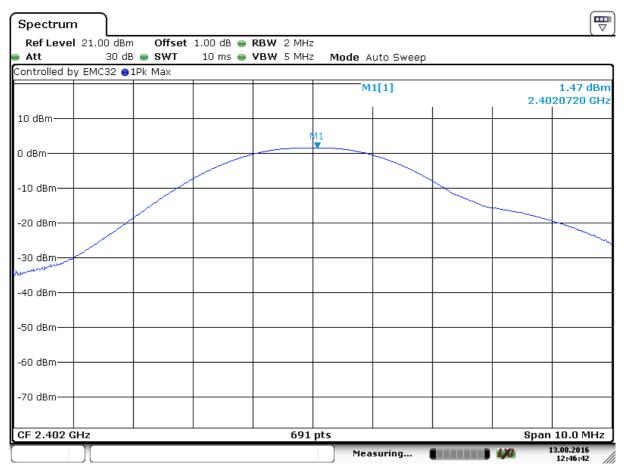




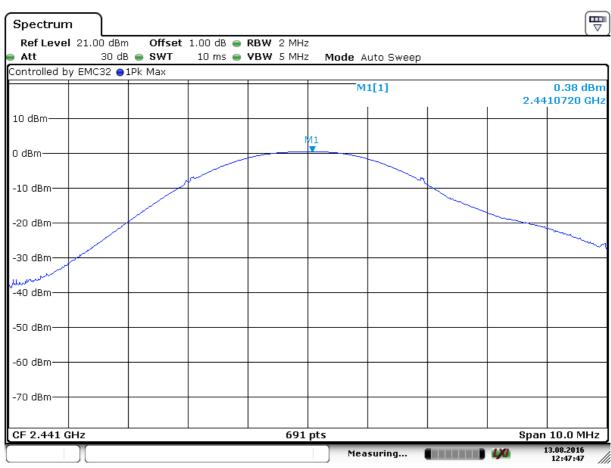
Test Procedure:

- 1. Removed the antenna from the EUT and then connect a low attenuation RF cable (cable loss=1 dB) from the antenna port to the spectrum.
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. Set the spectrum analyzer: RBW = 2 MHz (RBW > 20 dB bandwidth of the emission being measured) . VBW = 2 MHz. Sweep = auto; Detector Function = Peak. Trace: Max hold.
- 4. Kept the EUT in transmitting at lowest, medium and highest channel with different data packet individually. Record the max value.

#### Test result:


| Normal mode (DH5): |                                   |                          |                        |        |  |  |  |  |  |  |  |
|--------------------|-----------------------------------|--------------------------|------------------------|--------|--|--|--|--|--|--|--|
| Test<br>Channel    | Fundamental<br>Frequency<br>(MHz) | Output<br>Power<br>(dBm) | Limit<br>(dBm)         | Result |  |  |  |  |  |  |  |
| Lowest             | 2402                              | 1.47                     | 21.0                   | Pass   |  |  |  |  |  |  |  |
| Middle             | 2441                              | 0.38                     | 21.0                   | Pass   |  |  |  |  |  |  |  |
| Highest            | 2480                              | -0.65                    | 21.0                   | Pass   |  |  |  |  |  |  |  |
| EDR mode(3DH       | <b>Fundamental</b>                | Output<br>Power          | Limit                  | Docult |  |  |  |  |  |  |  |
| Channel            | Frequency<br>(MHz)                | (dBm)                    | (dBm)                  | Result |  |  |  |  |  |  |  |
|                    |                                   |                          | ( <b>dBm</b> )<br>21.0 | Pass   |  |  |  |  |  |  |  |
| Channel            | (MHz)                             | (dBm)                    |                        |        |  |  |  |  |  |  |  |
| Channel<br>Lowest  | ( <b>MHz</b> )<br>2402            | ( <b>dBm</b> )<br>0.82   | 21.0                   | Pass   |  |  |  |  |  |  |  |




Result plot as follows:

#### Normal mode(DH5):

Lowest Channel(2.402 MHz):





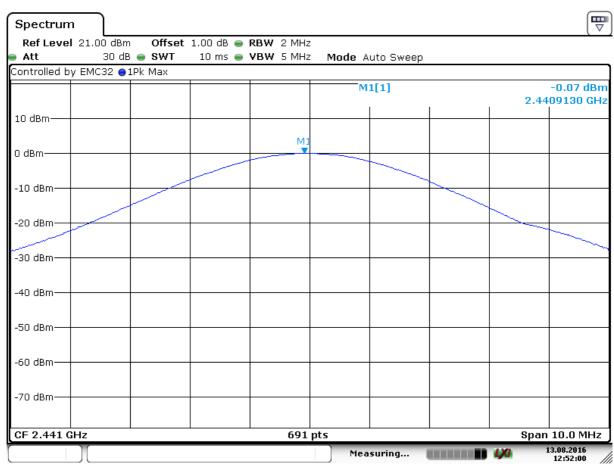


Middle Channel(2.441 GHz):



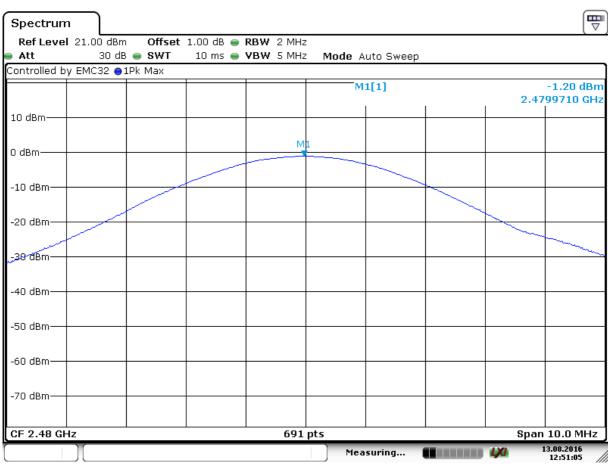
| Spectrum      | ı )        |         |           |           |        |           |   |          |                        |
|---------------|------------|---------|-----------|-----------|--------|-----------|---|----------|------------------------|
| Ref Level     | 21.00 dBm  | Offset  | 1.00 dB 👄 | RBW 2 MHz |        |           |   |          |                        |
| Att           |            | 😑 SWT   | 10 ms 😑   | VBW 5 MHz | Mode A | uto Sweep |   |          |                        |
| Controlled by | y EMC32 😑: | 1Pk Max |           |           |        |           |   |          |                        |
|               |            |         |           |           | M      | 1[1]      |   | 2.48     | -0.65 dBm<br>00580 GHz |
| 10 dBm        |            |         |           |           |        |           |   |          |                        |
|               |            |         |           |           |        |           |   |          |                        |
| 0 dBm         |            |         |           | N         | 11     |           |   |          |                        |
| o abiii       |            |         |           |           |        |           |   |          |                        |
| -10 dBm       |            |         |           |           |        |           |   |          |                        |
| -10 dBm       |            |         |           |           |        |           |   |          |                        |
| -20 dBm—      |            |         |           |           |        |           |   | <u> </u> |                        |
| 00 d0         |            |         |           |           |        |           |   |          |                        |
| -30 dBm       |            |         |           |           |        |           |   |          |                        |
| 40 dBm-       |            |         |           |           |        |           |   |          |                        |
|               |            |         |           |           |        |           |   |          |                        |
| -50 dBm       |            |         |           |           |        |           |   |          |                        |
|               |            |         |           |           |        |           |   |          |                        |
| -60 dBm       |            |         |           |           |        |           |   |          |                        |
|               |            |         |           |           |        |           |   |          |                        |
| -70 dBm—      |            |         |           |           |        |           |   |          |                        |
|               |            |         |           |           |        |           |   |          |                        |
| CF 2.48 GF    | Iz         | I       |           | 691       | pts    | 1         | 1 | Span     | 10.0 MHz               |
|               | )(         |         |           |           |        | suring    |   |          | 13.08.2016             |
|               |            |         |           |           | Mea    | surniy    |   | 140      | 12:49:01               |

Highest Channel(2.480 GHz):




# EDR mode (3DH5):

Lowest channel(2.402 GHz):


| Spectrum         | 'n                   |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|----------------------|---------------|------------------------|---------------|-----------|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level<br>Att | l 21.00 dBm<br>30 dB | Offset<br>SWT | RBW 2 MHz<br>VBW 5 MHz | <b>Mode</b> A | uto Sweep |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Controlled b     | y EMC32 🔵 1          | LPk Max       |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                      |               |                        | м             | 1[1]      |        | 2.40 | 0.82 dBm<br>18840 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 dBm           |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm            |                      |               | M1                     |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm          |                      |               |                        |               |           | $\sim$ |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                      | ~             |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm          |                      |               |                        |               |           |        |      | and the second s |
| -30 dBm          |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm          |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm          |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm          |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70 dBm          |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                      |               |                        |               |           |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 2.402 G       | Hz                   |               | 691                    | pts           |           |        |      | 10.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | ][]                  |               | <br>                   | Mea           | suring    |        | 4/0  | 13.08.2016<br>12:52:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

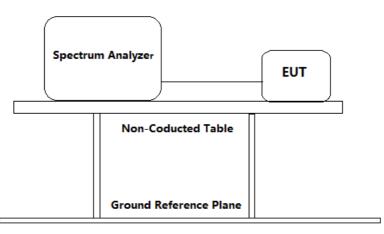




Middle channel(2.441 GHz):






Highest channel(2.480 GHz):

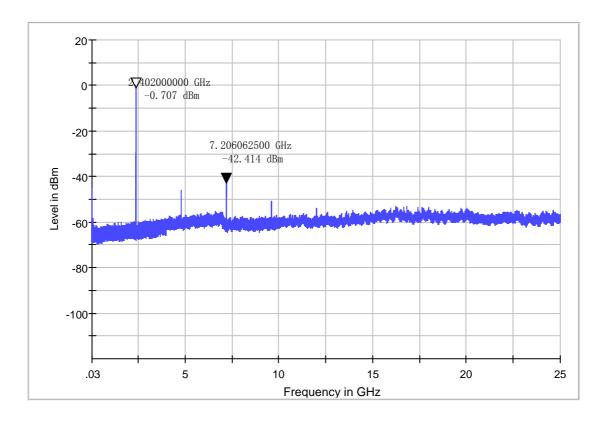


# 4.5 Out of Band Conducted Emissions

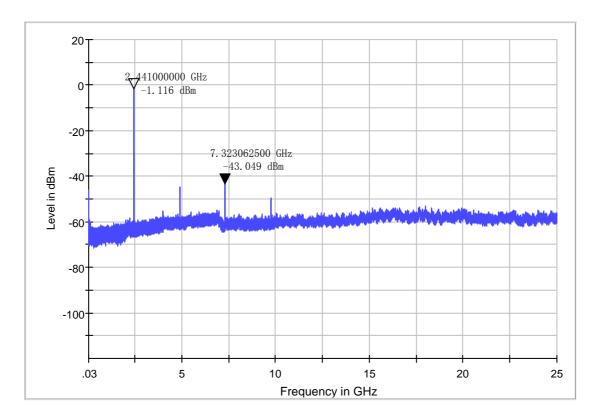
| Test Requirement: | FCC Part 15 C section 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | (d) In any 100 kHz bandwidth outside the frequency band in which<br>the spread spectrum or digitally modulated intentional radiator is<br>operating, the radio frequency power that is produced by the<br>intentional radiator shall be at least 20 dB below that in the 100<br>kHz bandwidth within the band that contains the highest level of<br>the desired power. Based on either an RF conducted or a radiated<br>measurement. Provided the transmitter demonstrates compliance<br>with the peak conducted power limits. |
| Test Method:      | ANSI C63.10: Clause 7.8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Status:      | Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with EDR mode (3DH5) as the worst case was found.                                                                                                                                                                                                                                                                      |

Test Configuration:




Test Procedure:

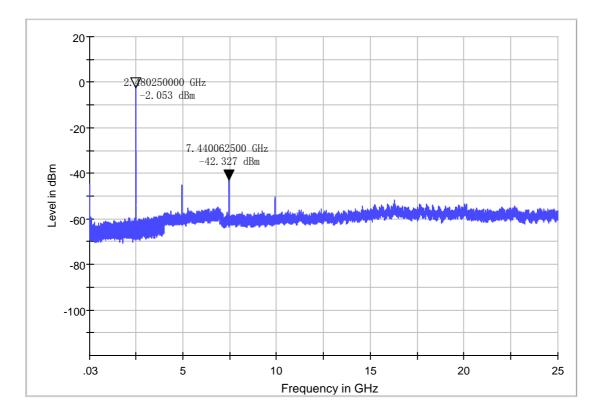
- 1. Removed the antenna from the EUT and then connect a low RF cable (cable loss =1.0dB) from the antenna port to the spectrum analyser.
- 2. Set the spectrum analyzer: RBW=100 kHz, VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max Hold, Scan up through 10<sup>th</sup> harmonic.
- 3. Measured the Conducted unwanted Emissions of the test frequency with special test status.
- 4. Repeated until all the test status was investigated.




# **Result plot as follows:**

# Lowest Channel 2402MHz: 30 M to 25 GHz








# Middle Channel 2441MHz: 30 M to 25 GHz



# Highest Channel 2480MHz: 30 M to 25 GHz





# 4.6 Out of Band Radiated Emissions

For out of band radiated emissions into Non-Restricted Frequency Bands were performed at a 3m separation distance to determine whether these emissions complied with the 20dB attenuation requirement.

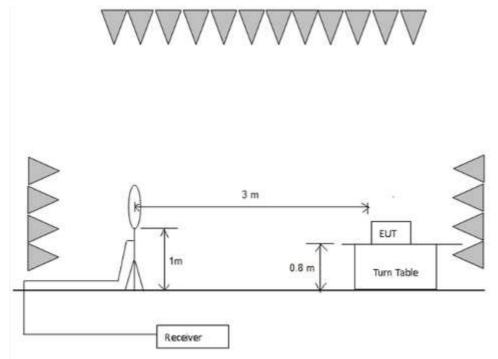
[×] Not required, since all emissions are more than 20dB below fundamental

[ ] See attached data sheet



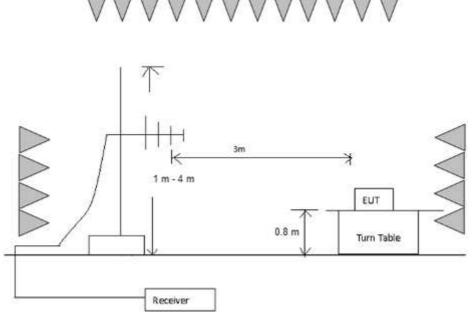
# 4.7 Radiated Emissions in Restricted Bands

| FCC Part 15 C section 15.247                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).                                       |
| ANSI C63.10: Clause 6.4, 6.5 and 6.6                                                                                                                                                                                                                      |
| Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with EDR mode (3DH5) as the worst case was found. |
| Measurement Distance: 3m (Semi-Anechoic Chamber)                                                                                                                                                                                                          |
| Section 15.209                                                                                                                                                                                                                                            |
| 40.0 dBµV/m between 30MHz & 88MHz;                                                                                                                                                                                                                        |
| 43.5 dBµV/m between 88MHz & 216MHz;                                                                                                                                                                                                                       |
| 46.0 dBµV/m between 216MHz & 960MHz;                                                                                                                                                                                                                      |
| 54.0 dBµV/m above 960MHz.                                                                                                                                                                                                                                 |
| For Peak and Quasi-Peak value:                                                                                                                                                                                                                            |
| $RBW = 1 MHz \text{ for } f \ge 1 GHz,$                                                                                                                                                                                                                   |
| 200 Hz for 9 kHz to 150 kHz                                                                                                                                                                                                                               |
| 9 kHz for 150 kHz to 30 MHz                                                                                                                                                                                                                               |
| 120 kHz for 30 MHz to 1GHz<br>VBW ≥ RBW                                                                                                                                                                                                                   |
| Sweep = auto                                                                                                                                                                                                                                              |
| Detector function = peak for $f \ge 1$ GHz, QP for $f < 1$ GHz<br>Trace = max hold                                                                                                                                                                        |
| For AV value:<br>RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz<br>VBW=3M Hz<br>Detector function =AV detector<br>Sweep = auto<br>Trace = max hold                                                                                                      |
|                                                                                                                                                                                                                                                           |



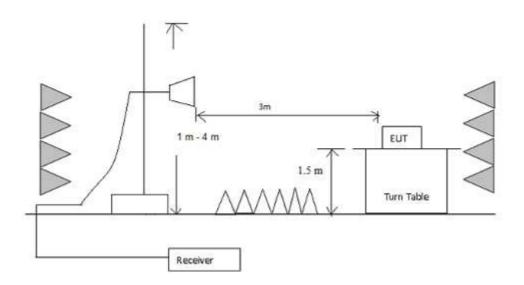

| MHz                                                                                                                                                                                                                                                                                                                                                                             | MHz                                                                                                                                                                                                                                                                                                                        | MHz                                                                                                                                                                                                                                                                                    | GHz                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 0.090 - 0.110 \\ {}^{1}0.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - \\ 12.52025 \\ 12.57675 - \\ 12.57725 \\ 13.36 - 13.41 \end{array}$ | $\begin{array}{c} 16.42 - 16.423\\ 16.69475 -\\ 16.69525\\ 16.80425 -\\ 16.80475\\ 25.5 - 25.67\\ 37.5 - 38.25\\ 73 - 74.6\\ 74.8 - 75.2\\ 108 - 121.94\\ 123 - 138\\ 149.9 - 150.05\\ 156.52475 -\\ 156.52475 -\\ 156.52525\\ 156.7 - 156.9\\ 162.0125 - 167.17\\ 167.72 - 173.2\\ 240 - 285\\ 322 - 335.4\\ \end{array}$ | $\begin{array}{r} 399.9 - 410 \\ 608 - 614 \\ 960 - 1240 \\ 1300 - 1427 \\ 1435 - 1626.5 \\ 1645.5 - 1646.5 \\ 1660 - 1710 \\ 1718.8 - 1722.2 \\ 2200 - 2300 \\ 2310 - 2390 \\ 2483.5 - 2500 \\ 2655 - 2900 \\ 3260 - 3267 \\ 3332 - 3339 \\ 3345.8 - 3358 \\ 3600 - 4400 \end{array}$ | $\begin{array}{c} 4.5 - 5.15 \\ 5.35 - 5.46 \\ 7.25 - 7.75 \\ 8.025 - 8.5 \\ 9.0 - 9.2 \\ 9.3 - 9.5 \\ 10.6 - 12.7 \\ 13.25 - 13.4 \\ 14.47 - 14.5 \\ 15.35 - 16.2 \\ 17.7 - 21.4 \\ 22.01 - 23.12 \\ 23.6 - 24.0 \\ 31.2 - 31.8 \\ 36.43 - 36.5 \end{array}$ |

Section 15.205 Restricted bands of operation.


Test Configuration:

1) 9 kHz to 30 MHz emissions:






2) 30 MHz to 1 GHz emissions:



3) 1 GHz to 40 GHz emissions:





#### **Test Procedure:**

1) 9 kHz to 30 MHz emissions:



For testing performed with the loop antenna. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the special distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2) 30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

3) 1 GHz to 25 GHz emissions:

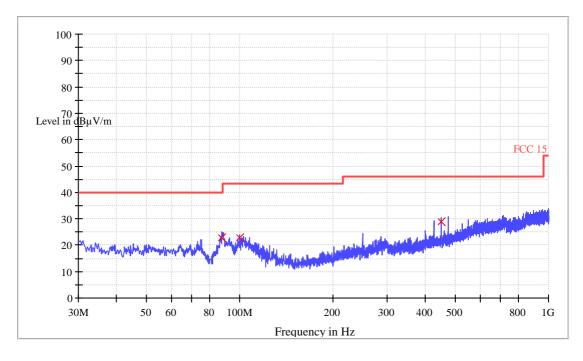
Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz.

For testing performed with the horn antenna. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

4) The receiver was scanned from 9 kHz to 25 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.



#### EDR mode (3DH5)


Test at Lowest Channel (2.402 GHz) in transmitting status

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

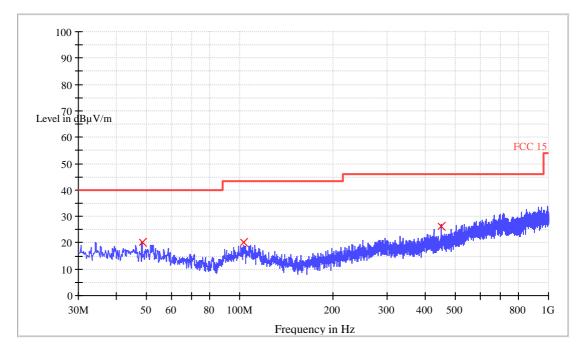
#### 30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Vertical: Peak scan Level (dBµV/m)

#### Quasi-peak measurement



QP


| Frequency  | Quasi          | Bandwidth | Pol | Corr. | Margin -    | Limit -         |
|------------|----------------|-----------|-----|-------|-------------|-----------------|
| (MHz)      | Peak<br>(dBµV/ | (kHz)     |     | (dB)  | QPK<br>(dB) | QPK<br>(dBµV/m) |
|            | m)             |           |     |       |             |                 |
| 87.600000  | 22.7           | 120.000   | v   | 9.4   | 17.3        | 40.0            |
| 99.960000  | 22.9           | 120.000   | V   | 12.9  | 20.6        | 43.5            |
| 450.040000 | 28.9           | 120.000   | V   | 18.0  | 17.1        | 46.0            |



# Horizontal:

Peak scan Level (dBµV/m)

#### Quasi-peak measurement



QP

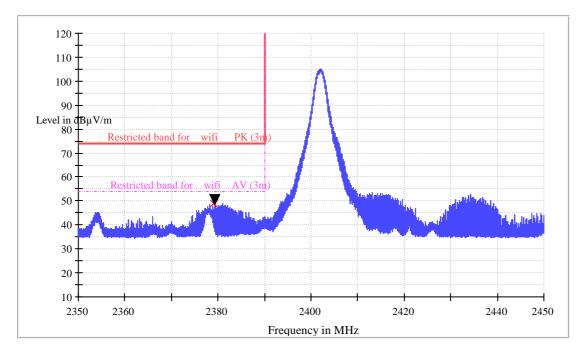
| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBµV/<br>m) | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-------------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
| 48.240000          | 20.0                          | 120.000            | н   | 13.3          | 20.0                    | 40.0                       |
| 103.200000         | 20.3                          | 120.000            | н   | 12.7          | 23.2                    | 43.5                       |
| 450.040000         | 26.1                          | 120.000            | н   | 18.0          | 19.9                    | 46.0                       |



| Polarization | Frequency<br>(MHz) | PK Net<br>at 3m<br>(dBµV/m) | AV Net<br>at 3m<br>(dBµV/m) | Correction<br>Factor<br>(dB) | PK Limit<br>at 3m<br>(dBµV/m) | PK<br>Margin<br>(dB) | AV Limit<br>at 3m<br>(dBµV/m) | AV Margin<br>(dB) |
|--------------|--------------------|-----------------------------|-----------------------------|------------------------------|-------------------------------|----------------------|-------------------------------|-------------------|
| Horizontal   | 4803.750           | 56.7                        | 51.0                        | -0.5                         | 74.0                          | -17.3                | 54.0                          | -3.0              |
| Horizontal   | 7206.062           | 59.6                        | 51.4                        | 3.4                          | 74.0                          | -14.4                | 54.0                          | -2.6              |
| Horizontal   | 9607.200           | 55.2                        | 47.6                        | 6.3                          | 74.0                          | -18.8                | 54.0                          | -6.4              |
| Vertical     | 4803.200           | 51.7                        | /                           | -0.5                         | 74.0                          | /                    | 54.0                          | -2.3              |
| Vertical     | 7204.400           | 57.8                        | 50.7                        | 3.4                          | 74.0                          | -16.2                | 54.0                          | -3.3              |
| Vertical     | 9606.800           | 53.3                        | /                           | 6.3                          | 74.0                          | /                    | 54.0                          | -0.7              |

1~25 GHz Radiated Emissions. Peak & Average Measurement

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

Remark:

When Peak emission level was below AV limit, the AV emission level did not be recorded.



# Band Edge test Restricted Bands Horizontal



| Polarization | Frequency<br>(MHz) | PK Net<br>at 3m<br>(dBµV/m) | AV Net<br>at 3m<br>(dBµV/m) | Correction<br>Factor<br>(dB) | PK Limit<br>at 3m<br>(dBµV/m) | PK<br>Margin<br>(dB) | AV Limit<br>at 3m<br>(dBµV/m) | AV Margin<br>(dB) |
|--------------|--------------------|-----------------------------|-----------------------------|------------------------------|-------------------------------|----------------------|-------------------------------|-------------------|
| Horizontal   | 2379.231           | 49.1                        | /                           | -4.6                         | 74.0                          | /                    | 54.0                          | -4.9              |



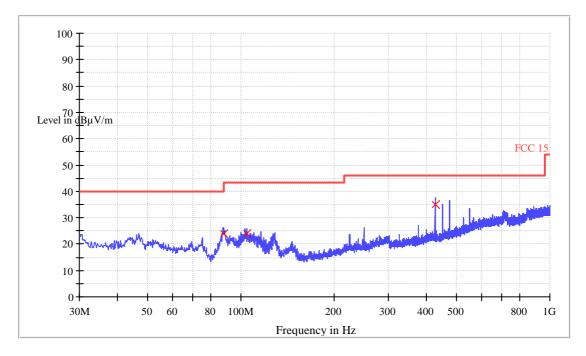


#### Vertical

| Polarization | Frequency<br>(MHz) | PK Net<br>at 3m<br>(dBµV/m) | AV Net<br>at 3m<br>(dBµV/m) | Factor | PK Limit<br>at 3m<br>(dBµV/m) | PK<br>Margin<br>(dB) | AV Limit<br>at 3m<br>(dBµV/m) | AV Margin<br>(dB) |
|--------------|--------------------|-----------------------------|-----------------------------|--------|-------------------------------|----------------------|-------------------------------|-------------------|
| Vertical     | 2389.856           | 43.7                        | /                           | -4.6   | 74.0                          | /                    | 54.0                          | -10.3             |



Test at Middle Channel (2.441 GHz) in transmitting status


9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

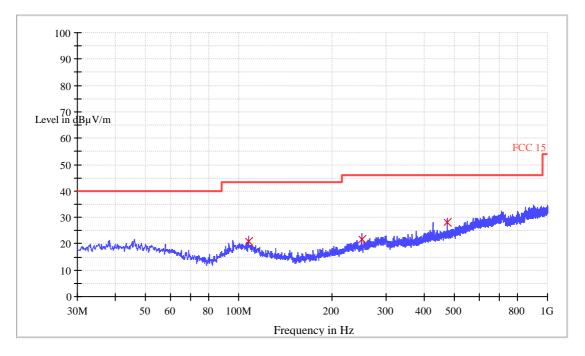
Vertical:

Peak scan Level (dBµV/m)

Quasi-peak measurement



QP


| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBµV/ | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
|                    | m)                      |                    |     |               |                         |                            |
| 88.040000          | 23.8                    | 120.000            | V   | 9.5           | 19.7                    | 43.5                       |
| 104.360000         | 23.8                    | 120.000            | V   | 12.6          | 19.7                    | 43.5                       |
| 425.040000         | 35.0                    | 120.000            | ۷   | 17.6          | 11.0                    | 46.0                       |



# Horizontal:

Peak scan Level (dBµV/m)

#### Quasi-peak measurement



QP

| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBµV/<br>m) | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-------------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
| 107.760000         | 21.0                          | 120.000            | н   | 12.3          | 22.5                    | 43.5                       |
| 250.000000         | 21.9                          | 120.000            | н   | 12.7          | 24.1                    | 46.0                       |
| 475.040000         | 28.1                          | 120.000            | н   | 18.6          | 17.9                    | 46.0                       |



| Polarization | Frequency | PK Net   | AV Net   | Correction | PK Limit | PK     | AV Limit | AV Margin |
|--------------|-----------|----------|----------|------------|----------|--------|----------|-----------|
|              | (MHz)     | at 3m    | at 3m    | Factor     | at 3m    | Margin | at 3m    | (dB)      |
|              |           | (dBµV/m) | (dBµV/m) | (dB)       | (dBµV/m) | (dB)   | (dBµV/m) |           |
|              |           |          |          |            |          |        |          |           |
| Horizontal   | 4881.843  | 60.2     | 51.8     | -0.5       | 74.0     | -13.8  | 54.0     | -2.2      |
| Horizontal   | 7322.843  | 59.3     | 50.8     | 3.8        | 74.0     | -14.7  | 54.0     | -3.2      |
| Horizontal   | 9766.865  | 58.9     | 49.8     | 6.8        | 74.0     | -15.1  | 54.0     | -4.2      |
| Vertical     | 4882.843  | 55.9     | 46.0     | -0.5       | 74.0     | -18.1  | 54.0     | -8.0      |
| Vertical     | 7322.400  | 57.6     | 50.0     | 3.8        | 74.0     | -16.4  | 54.0     | -4.0      |
| Vertical     | 17086.250 | 58.6     | 50.4     | 19.1       | 74.0     | -15.4  | 54.0     | -3.6      |

#### 1~25 GHz Radiated Emissions. Peak & Average Measurement

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

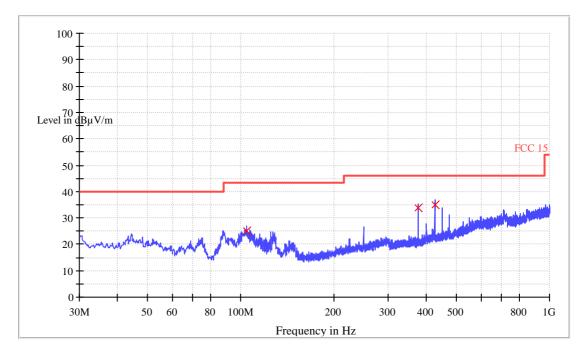
Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

#### Remark:

When Peak emission level was below AV limit, the AV emission level did not be recorded.



Test at Highest Channel (2.480 GHz) in transmitting status


9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

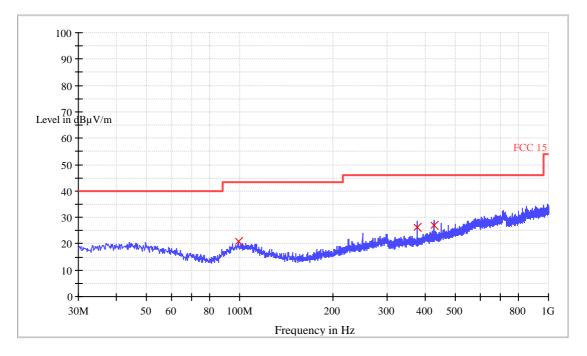
Vertical:

Peak scan Level (dBµV/m)

Quasi-peak measurement



QP


| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBµV/<br>m) | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-------------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
| 104.360000         | 25.0                          | 120.000            | V   | 12.6          | 18.5                    | 43.5                       |
| 374.920000         | 33.8                          | 120.000            | V   | 16.1          | 12.2                    | 46.0                       |
| 424.920000         | 34.9                          | 120.000            | V   | 17.6          | 11.1                    | 46.0                       |



# Horizontal:

Peak scan Level (dBµV/m)

#### Quasi-peak measurement



QP

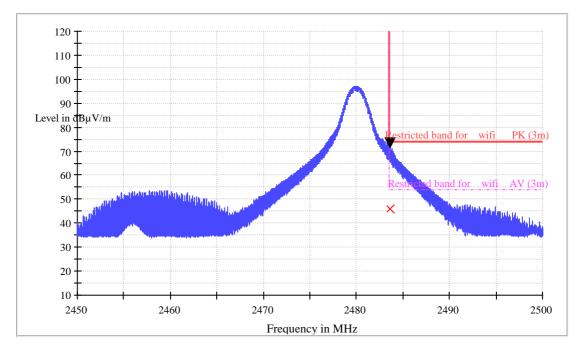
| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBµV/<br>m) | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-------------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
| 99.080000          | 20.8                          | 120.000            | н   | 12.7          | 22.7                    | 43.5                       |
| 374.920000         | 26.1                          | 120.000            | н   | 16.1          | 19.9                    | 46.0                       |
| 424.920000         | 27.2                          | 120.000            | Н   | 17.6          | 18.8                    | 46.0                       |



| Polarization | Frequency | PK Net   | AV Net   | Correction | PK Limit | PK     | AV Limit | AV Margin |
|--------------|-----------|----------|----------|------------|----------|--------|----------|-----------|
|              | (MHz)     | at 3m    | at 3m    | Factor     | at 3m    | Margin | at 3m    | (dB)      |
|              |           | (dBµV/m) | (dBµV/m) | (dB)       | (dBµV/m) | (dB)   | (dBµV/m) |           |
|              |           |          |          |            |          |        |          |           |
| Horizontal   | 4959.406  | 57.4     | 51.2     | -0.5       | 74.0     | -16.6  | 54.0     | -2.8      |
| Horizontal   | 7440.843  | 58.9     | 52.3     | 4.2        | 74.0     | -15.1  | 54.0     | -1.7      |
| Horizontal   | 17404.823 | 58.1     | 51.9     | 20.0       | 74.0     | -15.9  | 54.0     | -2.1      |
| Vertical     | 4960.435  | 55.4     | 48.0     | -0.5       | 74.0     | -18.6  | 54.0     | -6.0      |
| Vertical     | 7438.343  | 56.6     | 49.0     | -8.8       | 74.0     | -17.4  | 54.0     | -5.0      |
| Vertical     | 17356.437 | 58.6     | 50.9     | 19.9       | 74.0     | -15.4  | 54.0     | -3.1      |

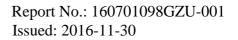
#### 1~25 GHz Radiated Emissions. Peak & Average Measurement

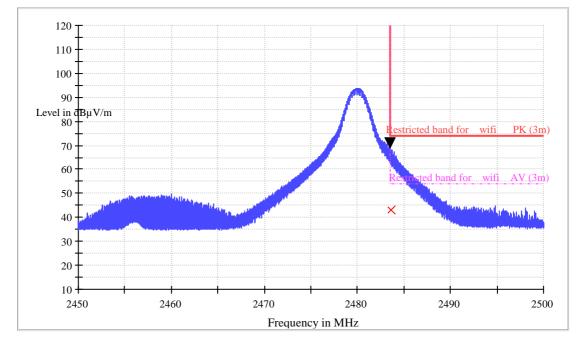
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Correction Factor = Antenna Factor + Cable Loss –Preamplifier Factor.

#### Remark:

When Peak emission level was below AV limit, the AV emission level did not be recorded.





# Band Edge test Restricted Bands Horizontal



| Polarization | Frequency<br>(MHz) | PK Net<br>at 3m<br>(dBµV/m) | AV Net<br>at 3m<br>(dBµV/m) | Correction<br>Factor<br>(dB) | PK Limit<br>at 3m<br>(dBµV/m) | PK<br>Margin<br>(dB) | AV Limit<br>at 3m<br>(dBµV/m) | AV Margin<br>(dB) |
|--------------|--------------------|-----------------------------|-----------------------------|------------------------------|-------------------------------|----------------------|-------------------------------|-------------------|
| Horizontal   | 2483.625           | 71.9                        | 45.9                        | -7.1                         | 74.0                          | -2.1                 | 54.0                          | -8.1              |





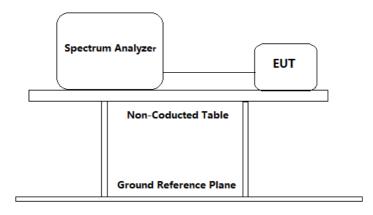


#### Vertical

| Polarization | Frequency<br>(MHz) | PK Net<br>at 3m<br>(dBµV/m) | at 3m | Correction<br>Factor<br>(dB) | PK Limit<br>at 3m<br>(dBµV/m) | Margin | AV Limit<br>at 3m<br>(dBµV/m) | AV Margin<br>(dB) |
|--------------|--------------------|-----------------------------|-------|------------------------------|-------------------------------|--------|-------------------------------|-------------------|
| Vertical     | 2483.565           | 69.7                        | 43.1  | -4.6                         | 74.0                          | -4.3   | 54.0                          | -10.9             |

As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

No any other emissions level which are attenuated less than 20dB below the limit.




#### 4.8 Band Edges Requirement

| Test Requirement: | FCC Part 15 C section 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | (d) In any 100 kHz bandwidth outside the frequency band in which<br>the spread spectrum or digitally modulated intentional radiator is<br>operating. The radio frequency power that is produced by the<br>intentional radiator shall be at least 20 dB below that in the 100<br>kHz bandwidth within the band that contains the highest level of<br>the desired power. Based on either an RF conducted or a radiated<br>measurement. Provided the transmitter demonstrates compliance<br>with the peak conducted power limits. |
| Frequency Band:   | 2400 MHz to 2483.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Method:      | ANSI C63.10: Clause 7.8.6 & 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Status:      | Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in continuous transmitting mode with EDR mode (3DH5) as the worst case was found.                                                                                                                                                                                                                                                                       |

Test Configuration:

For Band Edges Emission in Radiated mode, Please refer to clause 4.7



Test Procedure:For Band Edges Emission in Radiated mode, Please refer to clause4.7

- 1. Removed the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
- 2. Set RBW of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 100 kHz bandwidth from band edge.
- 3. Repeated until all the test status was investigated.
- 4. Reported the worst case.



#### Test result with plots as follows:

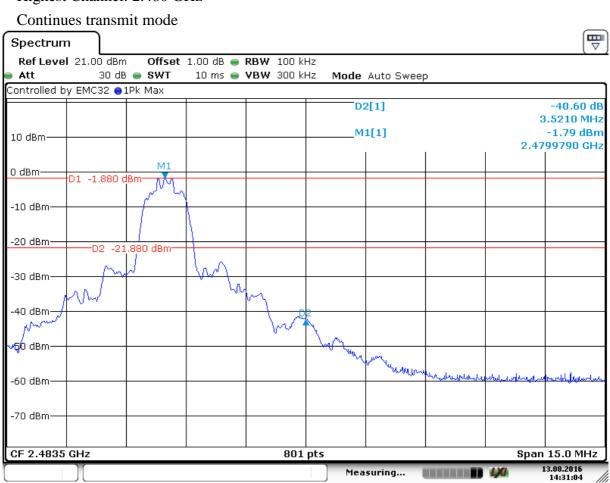
#### For conducted mode:

The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB.

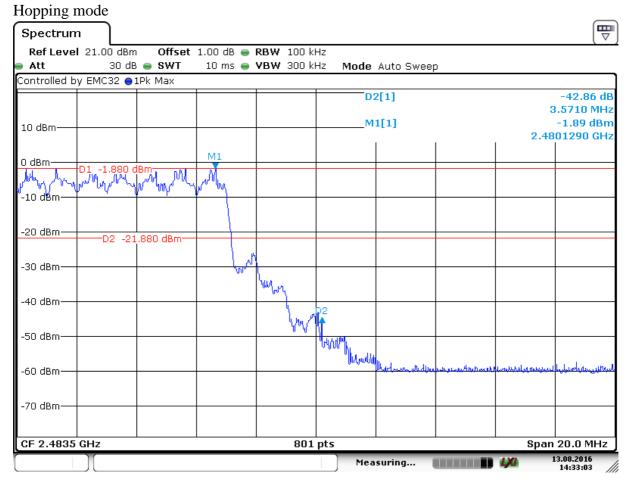
The Upper Edges attenuated more than 20dB. Result plot as follows:

EDR mode (3DH5): Lowest channel: 2.402 GHz Continues transmit mode






# Hopping mode


| Spectrun     | n                                                                                                              |                     |         |                  |         |              |             |                        |                        |
|--------------|----------------------------------------------------------------------------------------------------------------|---------------------|---------|------------------|---------|--------------|-------------|------------------------|------------------------|
|              | l 21.00 dBm                                                                                                    |                     |         | <b>RBW</b> 100 k |         |              |             |                        |                        |
| 🗕 Att        |                                                                                                                | e swt               | 10 ms 😑 | <b>VBW</b> 300 k | Hz Mode | Auto Swee    | эр          |                        |                        |
| Controlled b | у ЕМСЗ2 😑:                                                                                                     | LPk View            |         |                  |         |              |             |                        |                        |
|              |                                                                                                                |                     |         |                  | D       | 2[1]         |             |                        | -32.99 dB              |
|              |                                                                                                                |                     |         |                  |         |              |             | -4                     | 1.2700 MHz             |
| 10 dBm       |                                                                                                                |                     |         |                  | M       | 1[1]         |             | 9.40                   | 0.25 dBm<br>139700 GHz |
|              |                                                                                                                |                     |         |                  |         | 1            | <b>M</b> 1  | 2.40                   | 39700 GHZ              |
| 0 dBm        | D1 0.189 di                                                                                                    | 3m                  |         |                  |         | · ·          |             |                        |                        |
|              |                                                                                                                |                     |         |                  | الم     | "hup why for | ANN MANAN M | كسعي دليا العلوم ومراك | n a oken m             |
| -10 dBm      |                                                                                                                |                     |         |                  |         | and a state  | a and i the | <u></u>                |                        |
| 10 0.011     |                                                                                                                |                     |         |                  |         |              |             |                        |                        |
| 00 JD        |                                                                                                                | 011.0               |         |                  |         |              |             |                        |                        |
| -20 dBm-     | D2 -19                                                                                                         | .811 dBm            |         |                  | Í       |              |             | 1                      |                        |
|              |                                                                                                                |                     |         |                  | word    |              |             |                        |                        |
| -30 dBm—     |                                                                                                                |                     |         | 02               |         |              |             |                        |                        |
|              |                                                                                                                |                     |         | l Pri            | ۲V      |              |             |                        |                        |
| -40 dBm—     |                                                                                                                |                     |         | L UNE OF         |         |              |             | <u> </u>               |                        |
|              |                                                                                                                | mardulally          |         | had              |         |              |             |                        |                        |
| -50 dBm—     |                                                                                                                | l.                  | 1 PATUR | Ť                |         |              |             |                        |                        |
|              | L                                                                                                              | . hudish            | իկս     |                  |         |              |             |                        |                        |
| healdeonth   | للدهوي والمحالي والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والم | WARDING CONTRACTION |         |                  |         |              |             |                        |                        |
|              |                                                                                                                |                     |         |                  |         |              |             |                        |                        |
| -70 dBm—     |                                                                                                                |                     |         |                  |         |              |             | <u> </u>               |                        |
|              |                                                                                                                |                     |         |                  |         |              |             |                        |                        |
| CF 2.4 GH    | <br>Z                                                                                                          |                     |         | 801              | nts     |              |             | <br>Span               | 20.0 MHz               |
|              |                                                                                                                |                     |         |                  |         | suring       |             |                        | 13.08.2016             |
| (            |                                                                                                                |                     |         |                  | mea     | suring       |             |                        | 14:35:21               |

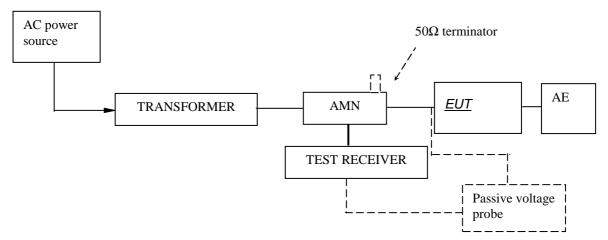




Highest Channel: 2.480 GHz






# For radiated mode:

Please refer Clause 4.7 Radiated Emissions in Restricted Bands of this test report for more details. The resultant field strength in band edges meet the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54dB $\mu$ V/m (Average Limit).



#### 4.9 Conducted Emission Test

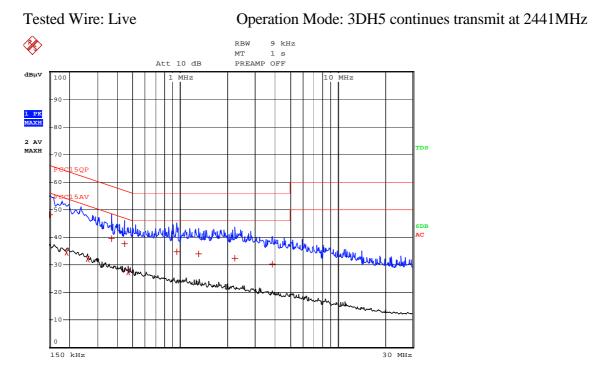
Test Configuration:



Test Setup and Procedure

Test was performed according to ANSI C63.10 Clause 6.2. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50 $\Omega$  linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

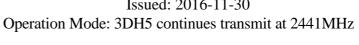
The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

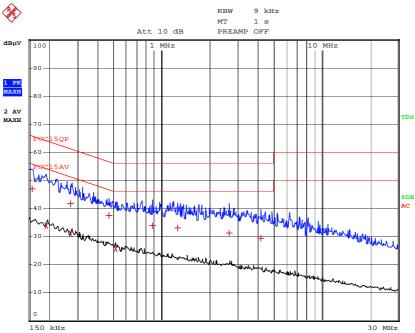

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.



#### Test Data


At main terminal: Pass




|     | EDI        | T PEAK LIST (Final | Measurement Resu | lts)           |
|-----|------------|--------------------|------------------|----------------|
| Tra | cel:       | FCC15QP            |                  |                |
| Tra | ce2:       | FCC15AV            |                  |                |
| Tra | ce3:       |                    |                  |                |
|     | TRACE      | FREQUENCY          | LEVEL dBµV       | DELTA LIMIT de |
| 1   | Quasi Peak | 150 kHz            | 48.27 Ll         | -17.72         |
| 1   | Quasi Peak | 366 kHz            | 39.49 L1         | -19.09         |
| 1   | Quasi Peak | 442 kHz            | 37.78 Ll         | -19.23         |
| 2   | Average    | 466 kHz            | 27.32 L1         | -19.26         |
| 2   | Average    | 258 kHz            | 32.18 L1         | -19.31         |
| 2   | Average    | 194 kHz            | 34.45 L1         | -19.41         |
| 1   | Quasi Peak | 954 kHz            | 34.87 L1         | -21.12         |
| 1   | Quasi Peak | 1.306 MHz          | 33.95 L1         | -22.05         |
| 1   | Quasi Peak | 2.234 MHz          | 32.34 L1         | -23.65         |
| 1   | Quasi Peak | 3.894 MHz          | 30.27 L1         | -25.72         |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |
|     |            |                    |                  |                |



Tested Wire: Neutral





|     | EDI        | T PEAK LIST (Final | Measurement Resul | .ts)           |
|-----|------------|--------------------|-------------------|----------------|
| Tra | cel:       | FCC15QP            |                   |                |
| Tra | ce2:       | FCC15AV            |                   |                |
| Tra | ce3:       |                    |                   |                |
|     | TRACE      | FREQUENCY          | LEVEL dBµV        | DELTA LIMIT dB |
| 1   | Quasi Peak | 158 kHz            | 46.81 L1          | -18.75         |
| 1   | Quasi Peak | 466 kHz            | 37.34 L1          | -19.24         |
| 1   | Quasi Peak | 274 kHz            | 41.58 L1          | -19.41         |
| 2   | Average    | 194 kHz            | 33.79 Ll          | -20.06         |
| 2   | Average    | 274 kHz            | 30.83 L1          | -20.16         |
| 2   | Average    | 514 kHz            | 25.71 L1          | -20.28         |
| 1   | Quasi Peak | 874 kHz            | 33.73 L1          | -22.26         |
| 1   | Quasi Peak |                    | 32.82 L1          | -23.17         |
| 1   | Quasi Peak | 2.658 MHz          | 31.18 L1          | -24.81         |
| 1   | Quasi Peak | 4.174 MHz          | 29.27 L1          | -26.72         |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |
|     |            |                    |                   |                |



# 5.0 Test Equipment List

#### **Radiated Emission**

| Equipment No.  | Equipment                                                         | Model                | Manufacturer      | Cal. Due date                 | Calibration             |
|----------------|-------------------------------------------------------------------|----------------------|-------------------|-------------------------------|-------------------------|
| Equipment 140. | Equipment                                                         | model                |                   | (YYYY-MM-DD)                  | Interval                |
| EM030-04       | 3m Semi-Anechoic Chamber                                          | 9×6×6 m <sup>3</sup> | ETS• LINDGRE<br>N | 2017/5/9                      | 1Y                      |
| EM031-02       | EMI Test Receiver (9 kHz~7 GHz)                                   | R&S ESR7             | R&S               | 2017/6/7                      | 1Y                      |
| EM031-03       | Signal and Spectrum Analyzer (10 Hz~40 GHz)                       | R&S FSV40            | R&S               | 2017/6/3                      | 1Y                      |
| EM011-04       | Loop antenna (9 kHz-30 MHz)                                       | HFH2-Z2              | R&S               | 2017/6/6                      | 1Y                      |
| EM061-03       | TRILOG Super Broadband test<br>Antenna (30 MHz-1.5 GHz) (TX)      | VULB 9161            | SCHWARZBECK       | 2017/6/6                      | 1Y                      |
| EM033-01       | TRILOG Super Broadband test<br>Antenna(30 MHz-3 GHz) (RX)         | VULB 9163            | SCHWARZBECK       | 2017/9/8                      | 1Y                      |
| EM033-02       | Bouble-Ridged Waveguide Horn<br>Antenna (800 MHz-18 GHz)(RX)      | R&S HF907            | R&S               | 2017/6/6                      | 1Y                      |
| EM033-03       | High Frequency Antenna &<br>preamplifier(18 GHz~26.5 GHz)<br>(RX) | R&S SCU-26           | R&S               | 2017/4/1                      | 1Y                      |
| EM033-04       | High Frequency Antenna & preamplifier (26 GHz-40 GHz)             | R&S SCU-40           | R&S               | 2017/4/1                      | 1Y                      |
| EM031-02-01    | Coaxial cable(9 kHz-1 GHz)                                        | N/A                  | R&S               | 2017/5/30                     | 1Y                      |
| EM033-02-02    | Coaxial cable(1 GHz-18 GHz)                                       | N/A                  | R&S               | 2017/5/30                     | 1Y                      |
| EM033-04-02    | Coaxial cable(18 GHz~40 GHz)                                      | N/A                  | R&S               | 2017/4/1                      | 1Y                      |
| EM031-01       | Signal Generator (9 kHz~6 GHz)                                    | SMB100A              | R&S               | 2017/6/11                     | 1Y                      |
| SZ180-10       | Signal Generator (10MHz-40GHz)                                    | 68369B               | Wiltron           | 2017/5/23                     | 1Y                      |
| EM040-01       | Band Reject/Notch Filter                                          | WRHFV                | Wainwright        | N/A                           | 1Y                      |
| EM040-02       | Band Reject/Notch Filter                                          | WRCGV                | Wainwright        | N/A                           | 1Y                      |
| EM040-03       | Band Reject/Notch Filter                                          | WRCGV                | Wainwright        | N/A                           | 1Y                      |
| EM022-03       | 2.45 GHz Filter                                                   | BRM50702             | Micro-Tronics     | 2017/5/9                      | 1Y                      |
| SA016-16       | Programmable Temperature &<br>Humidity Test Chamber               | MHU-800LJ            | TERCHY            | 2017/10/21                    | 1Y                      |
| SA012-74       | Digital Multimeter                                                | FLUKE175             | FLUKE             | 2017/10/13                    | 1Y                      |
| EM010-01       | Regulated DC Power supply                                         | PAB-3003A            | GUANHUA           | N/A                           | 1Y                      |
| SA040-22       | Regulated DC Power supply                                         | IT6721               | ITECH             | 2017/9/18                     | 1Y                      |
| EM084-06       | Audio Analyzer                                                    | 8903B                | HP                | 2017/3/29                     | 1Y                      |
| EM084-07       | Modulation Analyzer                                               | 8901B                | HP                | 2017/6/5                      | 1Y                      |
| Conducted emis | ssion at the mains terminals                                      |                      |                   |                               |                         |
| Equipment No.  | Equipment                                                         | Model                | Manufacturer      | Cal. Due date<br>(YYYY-MM-DD) | Calibration<br>Interval |
| EM080-05       | EMI receiver                                                      | ESCI                 | R&S               | 2017/7/26                     | 1Y                      |
| EM006-05       | LISN                                                              | ENV216               | R&S               | 2017/9/18                     | 1Y                      |
| EM006-06       | LISN                                                              | ENV216               | R&S               | 2017/9/18                     | 1Y                      |
|                |                                                                   |                      |                   |                               |                         |

R&S

Zhongyu

8m×3m×3m

2017/4/11

2017/1/25

FCC ID: RGB-BTADLK380950 TRF No.: FCC BT 3.0-a

EM006-06-01

EM004-04

Coaxial cable

EMC shield Room

1Y

1Y