

MAXIMUM PERMISSIBLE EXPOSURE FOR SUBPART C 5.8 GHz BAND

Calculations

Given

 $E = \sqrt{(30*P*G)} / d$

and

 $S = E ^2 / 3770$

where

E= Field Strength in Volts / Meter

P = Power in Watts

G = Numeric antenna gain d = distance in meters

S = Power Density in milliwatts / square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields

$$d = \sqrt{((30*P*G)/(3770*S))}$$

Changing to units of mW and cm, using:

$$P (mW) = P (W) / 1000$$
 and $d (cm) = 100*d (m)$

yields

$$d = 100\sqrt{((30*(P/1000)*G) / (3770*S))}$$

$$d = 0.282*\sqrt{(P*G/S)}$$

where

d = distance in cm P = Power in mW

G = Numeric Antenna Gain

S = Power Density in mW / cm 2 P (mW) = $10 ^ (P(dBm)/10)$ and G (numeric) = $10 ^ (G(dBi)/10)$

MAXIMUM PERMISSIBLE EXPOSURE FOR SUBPART C 5.8 GHz BAND (continued)

yields

 $d = 0.282*10^{(P+G)/20} \sqrt{S}$ Equation (1)

where

d = MPE safe distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW / cm^2$

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields

$$d = \sqrt{((30*P*G)/(3770*S))}$$

Changing to units of mW and cm, using:

$$P (mW) = P (W) / 1000 \text{ and}$$

d (cm) = 100*d (m)

yields

$$d = 100 \sqrt{((30*(P/1000)*G) / (3770*S))}$$

$$d = 0.282 * \sqrt{(P*G/S)}$$

where

d = distance in cm P = Power in mW

G = Numeric Antenna Gain

 $S = Power Density in mW / cm^2$

Results

EUT output power = 22.99 dBm

Antenna Gain = 0.0 dBi

 $S = 1.0 \text{ mW} / \text{cm}^2 \text{ from } 1.1310 \text{ Table } 1$

Substituting these parameters into equation (1) above:

MPE Safe Distance = 4.0 centimeters

Note: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.