RF Exposure – MPE Calculations - Uplink

<u>Input</u>

Transmitter Power:	439 mW
Antenna Gain:	12 dB
Cable loss:	1.5 dB @ 806 – 869 MHz
Eroquency renge	806-869 MHz
Frequency range:	800-809 MIRZ
<u>Assumptions</u>	
1. A single ¹ / ₄ wavelength radiating antenna is assumed.	

2. Closest exposure distance is assumed to be 50 cm

RF Exposure – MPE Calculations - Uplink

Calculations

The following results shall be assumed to be accurate for the far-field only. These predictions will over-estimate power density in the near–field. Based on the use of a ¹/₄ wavelength radiator, a distance of 50 cm is considered to be in the far-field for all cases.

For the purposes of these calculations a distance of 50cm was used. The actual distance as specified in the user manual is 50 centimeters. 50cm represents the worst case configuration assuming an incorrect installation.

 $S = PG/4*PI*R^2$

@ 806 – 869 MHz

P is 439 mW G is 10.5 dB (Antenna gain – loss) or 10^(10.5/10) or 11.22 R is 50 cm

$S = 0.157 \text{ mW/cm}^2$

For Occupational/Controlled Exposure

From 300 to 1500 MHz, power density limit is f/300 mW/cm² @ 806 MHz, power density limit is <u>2.687 mW/cm² for 6 minutes.</u>

For General Population/Uncontrolled Exposure

From 300 to 1500 MHz, power density limit is f/1500 mW/cm² @ 806 MHz, Power density limit is <u>0.537 mW/cm² for 30 minutes</u>.

Conclusion: Meets MPE limits