RF Exposure – MPE Calculations

<u>Input</u>

Transmitter Power:	202 mW
Antenna Gain:	15 dB
Cable loss:	1.13 dB @ 824 – 894 MHz
Frequency range:	824-894 MHz
Assumptions	

- 1. A single ¼ wavelength radiating antenna is assumed.
- 2. Closest exposure distance is assumed to be 30 cm (50 cm recommended in manual)

Calculations

The following results shall be assumed to be accurate for the far-field only. These predictions will over-estimate power density in the near–field. Based on the use of a ¹/₄ wavelength radiator, a distance of 20 cm is considered to be in the far-field for all cases.

For the purposes of these calculations a distance of 30cm was used. The actual distance as specified in the user manual is 50cm. 30cm represents the worst case configuration assuming an incorrect installation.

 $S = PG/4*PI*R^2$

@ 824 – 894 MHz

P is 202 mW G is 13.87dB (Antenna gain – loss) or $10^{(13.87/10)}$ or 24.378 R is 30 cm

$S = 0.436 \text{ mW/cm}^2$

For Occupational/Controlled Exposure

From 300 to 1500 MHz, power density limit is f/300 mW/cm² @ 824 MHz, power density limit is **2.75 mW/cm² for 6 minutes.**

For General Population/Uncontrolled Exposure

From 300 to 1500 MHz, power density limit is f/1500 mW/cm² @ 824 MHz, Power density limit is <u>0.55 mW/cm² for 30 minutes.</u>

Conclusion: Meets MPE limits