

FCC Test Report (RFID)

Report No.: RF160421D16-4

FCC ID: RFHIKARPC07AA9

Test Model: IKARPC-07A-A9

Received Date: Apr. 21, 2016

Test Date: May 13 ~ 26, 2016

Issued Date: Jun. 14, 2016

Applicant: IEI Integration Corp.

Address: No.29, Zhongxing Rd., Xizhi Dist., New Taipei City 221, Taiwan, R.O.C.

- Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 3				
1	C	Pertificate of Conformity	4		
2	Summary of Test Results		5		
	2.1 2.2	Measurement Uncertainty Modification Record	5 5		
3	G	eneral Information	6		
	3.1 3.2 3.2.1 3.3 3.3.1 3.4	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards	6 6 7 8 9 10		
4	Т	est Types and Results	.11		
	4.1 4.1.1	Radiated Emission Measurement Limits of Radiated Emission Measurement	.11 .11		
	4.1.2	Test Procedures	12		
	4.1.4	Deviation from Test Standard	13		
	4.1.5	Test Set Up	14		
	4.1.6	EUT Operating Conditions	14		
	4.1.7	Test Results	15		
	4.2	Frequency Stability	19		
	4.2.1		19		
	4.2.2	Test Selup	19		
	4.2.3	Test Procedure	10		
	425	Deviation fromTest Standard	10		
	426	FUT Operating Conditions	19		
	4.2.7	Test Result	20		
	4.3	20dB bandwidth	21		
	4.3.1	Limits Of 20dB bandwidth Measurement	21		
	4.3.2	Test Setup	21		
	4.3.3	Test Instruments	21		
	4.3.4	Test Procedures	21		
	4.3.5	Deviation from Test Standard	21		
	4.3.6	EUT Operating Conditions.	21		
	4.3.7	Test Results	22		
5	Р	ictures of Test Arrangements	23		
A	ppendix – Information on the Testing Laboratories				

Release Control Record

Issue No.	Description	Date Issued
RF160421D16-4	Original release.	Jun. 14, 2016

1 Certificate of Conformity

Panel PC
iEi
IKARPC-07A-A9
Engineering sample
IEI Integration Corp.
May 13 ~ 26, 2016
47 CFR FCC Part 15, Subpart C (Section 15.225)
47 CFR FCC Part 15, Subpart C (Section 15.215)
ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

ne CA Prepared by :

Annie Chang / Senior Specialist

, Date: Jun. 14, 2016

Approved by :

Kex. Jai

Date: Jun. 14, 2016

Rex Lai / Assistant Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)					
FCC Clause	Test Item	Result	Remarks		
15.207	Conducted emission test	N/A	Power supply is 12Vdc from battery		
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -75.86dB at 13.56MHz.		
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.		
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.		
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -7.39dB at 64.24MHz.		
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.		
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	4.00 dB
Radiated Emissions above 1 GHz	Above 1GHz	3.36 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Panel PC
Brand	iEi
Test Model	IKARPC-07A-A9
Status of EUT	Engineering sample
Power Supply Rating	12/24Vdc
Modulation Type	ASK
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Internal PCB loop antenna
Antenna Connector	I-PEX
Accessory Device	N/A
	I/O connector 1 cable (20-pin)
Data Cable Supplied	I/O connector 2 cable (24-pin)
	Video In connector cable (8-pin)

Note:

The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

Eut Configure Mode	Applicable To				Description	
	RE	PLC	FS	EB		
-	\checkmark	Note 2	\checkmark	\checkmark		
Nhere RE: Radiate	ed Emission	mission PLC: Power Line Conducted Emission				
FS: Frequency Stability EB: 20dB Bandwidth measurement						
NOTE: 1. The EUT had been pre-tee 2. No need to concern of Cor	sted on the positio nducted Emission	ned of each 2 axi due to the EUT is	s. The worst case powered by batte	was found when ry	positioned on X-plane .	
Radiated Emission Test:						
 Pre-Scan has been con between available modu architecture). Following channel(s) was 	ducted to dete ulations, data r as (were) selec	rmine the wors ates and anter ated for the fina	st-case mode f nna ports (if El al test as listed	rom all possib JT with antenr below.	le combinations na diversity	
EUT CONFIGURE MODE	AVAILABLE	CHANNEL	TESTED CHA	NNEL	MODULATION TYPE	
-	1		1		ASK	
 Pre-Scan has been con between available modu architecture). Following channel(s) was 	aucted to dete ulations, data r as (were) selec	rmine the wors ates and anter cted for the fina	st-case mode f nna ports (if EL al test as listed	Tom all possib JT with antenr below.	le combinations ha diversity	
EUT CONFIGURE MODE	AVAILABLE (CHANNEL	TESTED CHA	NNEL	MODULATION TYPE	
-	1		1		ASK	
 20dB Bandwidth: ☑ This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). ☑ Following channel(s) was (were) selected for the final test as listed below. 						
		CHANNEL	TESTED CHA	NNEL	MODULATION TYPE	
-	1		1		ASK	
TEST CONDITION:						

Applicable To	Environmental Conditions	Input Power	Tested By
RE 25deg. C, 73%RH		12Vdc	lan Chang
APCM	25deg. C, 60%RH	12Vdc	Dalen Dai

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	DC Power Supply	Topward	6303D	N/A	N/A	Provided by Lab
В.	RFID Card	N/A	N/A	N/A	N/A	Supplied by client
C.	SIM Card	N/A	N/A	N/A	N/A	Provided by Lab
D.	GPS simulator	PENDULUM	GSG-5	200447	N/A	Provided by Lab
E.	HORN Antenna	ETS	3117	00034127	N/A	Provided by Lab
	Radio					
F.	Communication	Anritsu	MT8820C	6201300640	N/A	Provided by Lab
	Analyzer					

Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Items D~F acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC power cord	1	1.8	Ν	0	Provided by Lab

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in \S 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SENIAL NO.	DATE	UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 26, 2016	Feb. 25, 2017
HP Preamplifier	8449B	3008A01201	Feb. 26, 2016	Feb. 25, 2017
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Mar. 01, 2016	Feb. 28, 2017
Agilent TEST RECEIVER	N9038A	MY51210129	Feb. 02, 2016	Feb. 01, 2017
Schwarzbeck Antenna	VULB 9168	139	Jan. 04, 2016	Jan. 03, 2017
Schwarzbeck Antenna	VHBA 9123	480	May 29, 2015	May 28, 2017
Schwarzbeck Horn Antenna	BBHA-9170	212	Jan. 08, 2016	Jan. 07, 2017
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Jan. 21, 2016	Jan. 20, 2017
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.4	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF104	CABLE-CH6	Aug. 15, 2015	Aug. 14, 2016
SUHNER RF cable With 3dB PAD	SF102	Cable-CH8-3.6m	Aug. 15, 2015	Aug. 14, 2016
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 14, 2015	Jul. 13, 2016
Loop Antenna EMCI	LPA600	270	Aug. 20, 2015	Aug. 19, 2017
EMCO Horn Antenna	3115	00028257	Jan. 19, 2016	Jan. 18, 2017
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2015	Sep. 22, 2016
Anritsu Power Sensor	MA2411B	0738404	Apr. 28, 2016	Apr. 27, 2017
Anritsu Power Meter	ML2495A	0842014	Apr. 28, 2016	Apr. 27, 2017
Temperature & Humidity Chamber	MHU-225AU	920409	May 25, 2016	May 24, 2017

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 3. The test was performed in Chamber No. 6.
- 4. The Industry Canada Reference No. IC 7450E-6.
- 5. The FCC Site Registration No. is 447212.

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

CHANNEL	Channel 1	DETECTOR	
FREQUENCY RANGE	13.553 ~ 13.567MHz	FUNCTION	Quasi-Peak

		Antenna	Polarity & T	est Distance	e: Loop Antei	nna Open At	3m	
	Frog	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MU-)	Level	(dRu)//m)	(dP)	Height	Angle	Value	Factor
		(dBuV/m)	(ubuviii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	13.56	48.14 QP	124.00	-75.86	1.00	2	40.33	7.81
The r streng Exam 13.56	ARKS: measured fi gth varies a pple: SMHz = { = { = { = {	1. Emission I 2. Correction 3. The other 4. Margin val 5. Above limi eld strength v s the inverse 15848uV/m 34dBuV/m 34+20log(30/ 124dBuV/m	evel(dBuV/m Factor(dB/n emission lev ue = Emissio ts have beer was extrapol distance sq 3^{10} 3^{10} 3^{10}	n)=Raw Valu – Pre-Am els were ver on level – Lir n translated b ated to dista uare (40dB p 0m 0m	e(dBuV) + C Factor (dB/ pplifier Facto y low agains mit value. by the formul nce 30 mete per decade c	orrection Fa m) + Cable F r(dB) t the limit. la rs, using the of distance)	ctor(dB/m) ⁻ actor (dB) formula tha	t the limit of fi
Spectrum ♥ Ref Level 79.00 dBµV ● RBW 10 kHz ● Att 0 dB ● SWT 8 ms ● VBW 30 kHz								
					M1[1]			48.14 dBuV
							13.5	60000 MHz
70 de	3µV							
60 dB	3μV							
50 df	вил			M1				
40 dr	2.07							
40 ut					Ν.			
			, AW		Mal			1 11
30 de	виV	in another	al A MA		*¥1	1. Marian		1
A Aus	11 B 1 B	and and	in my V			MUCH JUNA	NAMAM	the Marrie N
20 df	ᡲᡗᢍᡃᢂᡃᡊᡀᠰ	Man My Land	+			• • V W~	- Mayor	a Pa manant
	a la constantion						10 10	
10 df	вил-		1 1					<u> </u>
0.45								
U dBL								
1112-200								
-10 d	IBµV-		++					+
Start 13.51 MHz 501 pts Stop 13.61 MHz								
						and the second se		33 35 3345

CHANNEL	Channel 1	DETECTOR	Oueei Deek	
FREQUENCY RANGE	13.553 ~ 13.567MHz	FUNCTION	Quasi-Peak	

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m							
	Frea	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	/MU	Level	vel (dBu)/(m) (dB)	(dP)	Height	Angle	Value	Factor
(IVIHZ)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	13.56	43.16 QP	124.00	-80.84	1.00 V	251	35.35	7.81

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

– Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

Example.	
13.56MHz	

=	15848uV/m	30m
=	84dBuV/m	30m
=	84+20log(30/3) ²	3m

= 124dBuV/m

Report No.: RF160421D16-4

CHANNEL	Channel 1	DETECTOR	Over Deals
FREQUENCY RANGE	Below 30MHz	FUNCTION	Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m							
	Freq	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MU-)	Level	(dPu)//m)	(dP)	Height	Angle	Value	Factor
	(IVITZ)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	27.12	22.82 QP	69.54	-46.72	1.00	360	16.14	6.68
	Antenna Polarity & Test Distance: Loop Antenna Close At 3m							
	Frog	Emission	Limit	Morgin	Antenna	Table	Raw	Correction
No.		Level		iviaryiri (ملک)	Height	Angle	Value	Factor
	(MHZ)	(dBuV/m)	(abuv/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	27.12	20.15 QP	69.54	-49.39	1.00	180	13.47	6.68

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

CHANNEL	Channel 1	DETECTOR	Quasi Daak
FREQUENCY RANGE	Below 1000MHz	FUNCTION	Quasi-Peak

	Antenna Polarity & Test Distance: Horizontal At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	101.44	28.10 QP	43.50	-15.40	3.41 H	226	41.97	-13.87
2	125.01	28.74 QP	43.50	-14.76	2.95 H	269	40.22	-11.48
3	216.00	30.07 QP	43.50	-13.43	1.78 H	92	41.76	-11.69
4	408.01	36.92 QP	46.00	-9.08	1.85 H	124	42.40	-5.48
5	504.04	35.80 QP	46.00	-10.20	2.31 H	108	39.32	-3.52
6	746.73	37.58 QP	46.00	-8.42	3.65 H	173	36.64	0.94
	Antenna Polarity & Test Distance: Vertical At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	40.72	29.83 QP	40.00	-10.17	1.67 V	360	40.25	-10.42
2	64.24	32.61 QP	40.00	-7.39	1.13 V	158	43.06	-10.45
3	99.21	35.73 QP	43.50	-7.77	2.34 V	0	49.97	-14.24
4	216.05	26.02 QP	46.00	-19.98	1.00 V	290	37.71	-11.69
5	456.02	30.36 QP	46.00	-15.64	1.08 V	154	35.08	-4.72
6	504.04	34.42 QP	46.00	-11.58	1.10 V	193	37.94	-3.52
7	600.02	32.92 QP	46.00	-13.08	1.41 V	222	34.53	-1.61

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

– Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Frequency Stability

4.2.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 4.2.5 Deviation fromTest Standard

No deviation.

4.2.6 EUT Operating Conditions

Same as Item 4.1.6.

4.2.7 Test Result

OPERATING FREG	UENCY: 13.56MHz	LIMIT: ± 0.01%		
ТЕМР . (℃)	POWER SUPPLY (Vdc)	(MHz)	(%)	
	12.0	13.5602	0.00147492	
20	13.8	13.5601	0.00073750	
	10.2	13.5603	0.00221239	
-20	12.0	13.5608	0.00589970	
60	12.0	13.5597	-0.00221239	

Note: Operating temperature of EUT is -20 degrees C to 55 degrees C.

4.3.1 Limits Of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Pass/Fail		
1	13.56	2.562	Pass		

					S	pectrum	Plot C	f Value	;				
Spectr	um												₽
Ref Lev	rel 79	9.00 dBj	UV		RBW	/ 1 kHz							1
Att		o	dB 👄 SWT	10 ms 🥃	VBW	🖌 3 kHz	Mode	Sweep					
😑 1Pk Vie	w												
								D3	[1]				-0.23 dB
70 deux/												2	.5620 kHz
70 UBHV								M1	[1]			4	8.14 dBµV
eo deux												13.559	7970 MHz
00 000													
50 dBuV						M:	L						
	— D:	1 48.14	0 dBµV										
40 dBuV													
30 dBuV				M	2/				3				
		—D2 2	28.140 dBµV-		,				<u> </u>				
20 dBuV									1				
20 0001													
10 dBuV							_		<u> </u>	_			
0 dBuV-							_						
-10 dBu/\	/						_		I				
10 000				EI				F	2				
							_						
CF 13.5	6 MH	z				69	1 pts					Span	10.0 kHz
Marker	7.65												100
Туре	Ref	Trc	X-value			Y-value	ue Functi		ion	Function Result			
M1		1	13.559797 MHz		-	48.13 dBµV							
M2		1	13.558524 MHz			28.18 dBµV							
D3	M2	1	2	.562 kHz		-0.23	dB						
								Minas	wring			0	1.06.2016

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---