	BUREA VERITA
	FCC Test Report (BT LE)
Beport No -	RF171114D24-4
•	RFHAFOBOT
Test Model:	
Received Date:	Nov. 16, 2017
Test Date:	Dec. 12 ~ 19, 2017
Issued Date:	Jan. 10, 2018
Applicant:	IEI Integration Corp.
Address:	No.29, Zhongxing Rd., Xizhi Dist., New Taipei City 221, Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.
FCC Registration / Designation Number:	198487 / TW2021
	TAFF Testing Laboratory 2021
hly with our prior written permission. The port are not indicative or representativ less specifically and expressly noted. rovided to us. You have 60 days from powever, that such notice shall be in writ nall constitute your unqualified acceptar ention, the uncertainty of measurement	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permit is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in the of the quality or characteristics of the lot from which a test sample was taken or any similar or identical prod Our report includes all of the tests requested by you and the results thereof based upon the information that y date of issuance of this report to notify us of any material error or omission caused by our negligence, provid ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed ti ice of the completeness of this report, the tests conducted and the correctness of the report contents. Unless spect thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The rep roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4						
1	С	Certificate of Conformity	5				
2	S	ummary of Test Results	6				
	2.1 2.2	Measurement Uncertainty Modification Record					
3	G	eneral Information	7				
	3.1 3.2	General Description of EUT Description of Test Modes					
	3.2.1 3.3 3.4 3.4.1 3.5	Test Mode Applicability and Tested Channel Detail Duty cycle of test signal Description of Support Units Configuration of System under Test General Description of Applied Standards	.11 12 12				
4		est Types and Results					
•	• 4.1	Radiated Emission and Bandedge Measurement					
	4.1.1 4.1.2	Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures	14 15				
		Deviation from Test Standard					
	4.1.5	Test Setup	17				
		EUT Operating Conditions					
		Test Results					
	4.2	Conducted Emission Measurement Limits of Conducted Emission Measurement					
		Test Instruments					
		Test Procedure					
		Deviation from Test Standard					
		Test Setup					
	4.2.6	EUT Operating Condition	24				
	4.2.7	Test Results					
	4.3	6dB Bandwidth Measurement					
		Limits of 6dB Bandwidth Measurement					
		Test Setup					
		Test Instruments					
		Deviation fromTest Standard					
		EUT Operating Conditions					
		Test Result					
	4.4	Conducted Output Power Measurement					
	4.4.1	Limits OF Conducted Output Power Measurement	29				
		Test Setup					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		EUT Operating Conditions					
	4.4.7 4.5	Test Results Power Spectral Density Measurement					
	- 1 .J		50				

5	6.7 Test Results Pictures of Test Arrangements	
	6.7 Test Results	. 33
4.6		
4.6	6.6 EUT Operating Condition	. 32
4.6	6.5 Deviation from Test Standard	. 32
	6.4 Test Procedure	
4.6	5.3 Test Instruments	. 32
4.6	5.2 Test Setup	. 32
	6.1 Limits of Conducted Out of Band Emission Measurement	
4.6		
	5.7 Test Results	
	5.6 EUT Operating Condition	
	5.5 Deviation from Test Standard	
	5.4 Test Procedure	
4.5	5.3 Test Instruments	. 30
	5.2 Test Setup	
4.5	5.1 Limits of Power Spectral Density Measurement	. 30

Release Control Record

Issue No.	Description	Date Issued	
RF171114D24-4	Original release.	Jan. 10, 2018	

1 **Certificate of Conformity**

Product:	Smart Video Device
Brand:	iEi,QNAP
Test Model:	AfoBot
Sample Status:	Engineering sample
Applicant:	IEI Integration Corp.
Test Date:	Dec. 12 ~ 19, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

nie Chang, Date: Jan. 10, 2018

Annie Chang / Senior Specialist

Date:

Jan. 10, 2018

Approved by :

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -14.60dB at 0.47422 MHz.			
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -2.52dB at 250.11 MHz.			
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.77 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.54 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.48 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Video Device
Brand iEi,QNAP	
Test Model	AfoBot
Status of EUT	Engineering Sample
Power Supply Rating	12Vdc from adapter or 3.7Vdc from Battery
Modulation Type	GFSK
Transfer Rate	Up to 1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	4.920mW
Antenna Type	INNER PCB Antenna with 2 dBi gain
Antenna Connector I-PEX	
Accessory Device	Adapter
Data Cable Supplied	N/A

Note:

1. The EUT uses following adapter.

Adapter	1	2	
Brand	FSP	Elementech International Co., Ltd.	
Model	FSP040-DHMN2	A130-11202550	
Input Power	100-240V, 1.2A, 50-60Hz	100-240V, 50-60Hz, 0.8A	
Output Power	12V, 3.4A	12V, 2.5A	
Power Cord	Non-shielded DC cable (1.5m) with one ferrite core		

After pre-tested, Adapter 1 was the worst for final test.

2. WLAN 2.4GHz, WLAN 5.0GHz and Bluetooth can not transmit simultaneously.

3. The EUT was pre-tested with the following modes:

EUT Operating Mode + powered from Adapter

EUT Operating Mode + powered from Battery The worst emission level was found when the EUT tested under EUT Operating Mode + powered from Adapter therefore, only its test data was recorded in this report.

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

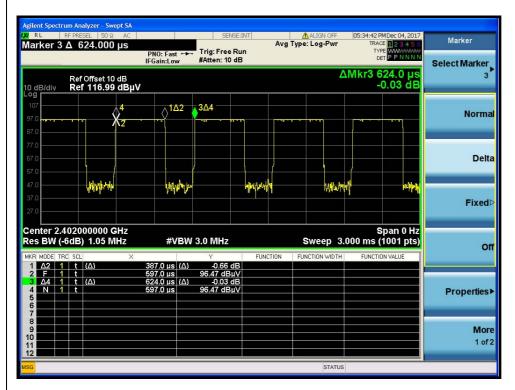
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT		APPLICABLE TO		DESCRIPTION	
ONFIGURE MODE	RE≥1G	RE<1G PLC	АРСМ		
-	\checkmark	√ √	√ -		
ere RE≥1	G: Radiated	Emission above 1GHz	RE<1G: Radiated	Emission below 1GHz	
PLC:	Power Line	Conducted Emission	APCM: Antenna P	ort Conducted Measuremen	t
adiated Em	nission Te	est (Above 1GHz):			
7 - -					
				mode from all possible s (if EUT with antenna	
architectu		mouulations, uata la	les and antenna por		uiversity
_		(s) was (were) select	ed for the final test a	s listed below.	
Following channel(s) was (were) selected for the final tes EUT CONFIGUURE			TESTED CHANNEL		
EUT CONFIC	JUURE	AVAILADIE OLIANNEL		MODULATION TYPE	DATA RATE (Mbps)
EUT CONFIC MODE		AVAILABLE CHANNEL	TESTED SHAMEE		
MODE - adiated Em	nission Te	0 to 39 est (Below 1GHz): n conducted to deterr	0, 19, 39 mine the worst-case	GFSK mode from all possible s (if EUT with antenna	1 combinations
MODE - adiated Em Pre-Scan between architectu	iission To has beer available ire).	0 to 39 est (Below 1GHz): n conducted to deterr	0, 19, 39 mine the worst-case tes and antenna por	GFSK mode from all possible s (if EUT with antenna	1 combinations
adiated Em	has beer available ire). channele	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra	0, 19, 39 mine the worst-case tes and antenna por	GFSK mode from all possible s (if EUT with antenna	1 combinations
Adiated Em Adiated Em Pre-Scan between architectu Following EUT CONFIG	has beer available ire). channele	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a	GFSK mode from all possible s (if EUT with antenna s listed below.	1 combinations diversity
Addiated Em Addiated Em Pre-Scan between architectu Following EUT CONFIG	has beer available ire). channele	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL	GFSK mode from all possible s (if EUT with antenna s listed below. MODULATION TYPE	1 combinations diversity DATA RATE (Mbps)
MODE 	has beer has beer available ire). channel GUURE	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL	GFSK mode from all possible s (if EUT with antenna s listed below. MODULATION TYPE	1 combinations diversity DATA RATE (Mbps)
MODE - - - - - - - - - - - - -	has beer has beer available ire). channel GUURE	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL	GFSK mode from all possible s (if EUT with antenna s listed below. MODULATION TYPE	1 combinations diversity DATA RATE (Mbps)
Adiated Em adiated Em Pre-Scan between architectu Following EUT CONFIC MODE - - Power Line (Pre-Scan	has beer has beer available ire). channeli auure	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39 ed Emission Test: n conducted to detern	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL 39 mine the worst-case	GFSK GFSK GFSK GFSK GFSK GFSK mode from all possible	1 combinations diversity DATA RATE (Mbps) 1 combinations
Adiated Em Adiated Em Pre-Scan between architectu Following EUT CONFIC MODE - Power Line (Pre-Scan between	has beer available ire). channeli auure Conducte has beer available	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39 ed Emission Test: n conducted to detern	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL 39 mine the worst-case	GFSK mode from all possible s (if EUT with antenna s listed below. MODULATION TYPE GFSK	1 combinations diversity DATA RATE (Mbps) 1 combinations
Adiated Em Adiated Em Pre-Scan between architectu Following EUT CONFIC MODE - Power Line Pre-Scan between architectu	has beer available ire). channele aure bas beer available ire).	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39 ed Emission Test: n conducted to detern modulations, data ra	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL 39 mine the worst-case tes and antenna por	GFSK GFSK GFSK GFSK GFSK GFSK mode from all possible GFSK mode from all possible s (if EUT with antenna	1 combinations diversity DATA RATE (Mbps) 1 combinations
Adiated Em Adiated Em Pre-Scan between architectu Following EUT CONFIC MODE Power Line (Pre-Scan between architectu Following Following Following	has beer available ire). channeli auure bas beer available ire). channeli	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39 ed Emission Test: n conducted to detern	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL 39 mine the worst-case tes and antenna por	GFSK GFSK GFSK GFSK GFSK GFSK mode from all possible GFSK mode from all possible s (if EUT with antenna	1 combinations diversity DATA RATE (Mbps) 1 combinations
Adiated Em adiated Em Pre-Scan between architectu Following EUT CONFIC MODE - Power Line Pre-Scan between architectu	has beer available ire). channelo auure bas beer available ire). channelo auure	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39 ed Emission Test: n conducted to detern modulations, data ra	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL 39 mine the worst-case tes and antenna por	GFSK GFSK GFSK GFSK GFSK GFSK mode from all possible GFSK mode from all possible s (if EUT with antenna	1 combinations diversity DATA RATE (Mbps) 1 combinations
Addiated Em Radiated Em Pre-Scan between architectu Following EUT CONFIC MODE Power Line (Pre-Scan between architectu Following EUT CONFIC	has beer available ire). channelo auure bas beer available ire). channelo auure	0 to 39 est (Below 1GHz): n conducted to detern modulations, data ra (s) was (were) select AVAILABLE CHANNEL 0 to 39 ed Emission Test: n conducted to detern modulations, data ra (s) was (were) select	0, 19, 39 mine the worst-case tes and antenna por ed for the final test a TESTED CHANNEL 39 mine the worst-case tes and antenna por ed for the final test a	GFSK GFSK GFSK GFSK GFSK GFSK GFSK GFSK	1 combinations diversity DATA RATE (Mbps) 1 1 combinations diversity

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.


EUT CONFIGUURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
-	0 to 39	0, 19, 39	GFSK	1

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	19deg. C, 77%RH	120Vac, 60Hz	James Wei
RE<1G	21deg. C, 73%RH	120Vac, 60Hz	James Wei
PLC	22deg. C, 75%RH	120Vac, 60Hz	James Wei
APCM	25deg. C, 76%RH	120Vac, 60Hz	Saxon Lee

3.3 Duty cycle of test signal

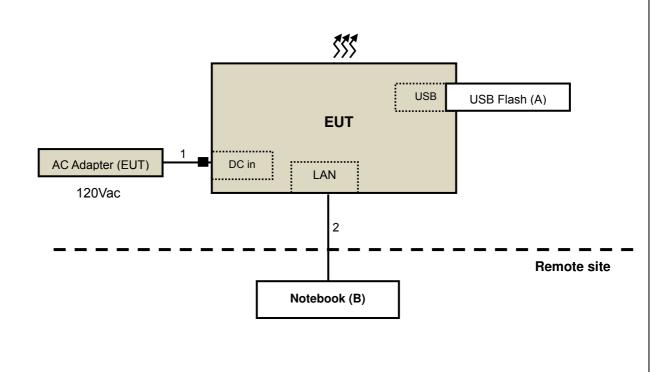
Duty cycle of test signal is < 98% Duty cycle = 0.387/0.624 = 0.620, Duty factor = 10 * log(1/0.620) = 2.07

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
Α.	USB 3.0 Flash Drive	HP	v250w	N/A	FCC DoC Approved	Provided by Lab
В.	NOTEBOOK PC	DELL	PP27L	8SNZ12S	FCC DoC Approved	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

2. Item B acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC cable	1	1.5	N	1	Supplied by client
2.	LAN cable	1	10	N	0	Provided by Lab

Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
HP Preamplifier	8447D	2432A03504	Feb. 21, 2017	Feb. 20, 2018	
HP Preamplifier	8449B	3008A01201	Feb. 22, 2017	Feb. 21, 2018	
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 21, 2017	Feb. 20, 2018	
Agilent TEST RECEIVER	N9038A	MY51210129	Feb. 8, 2017	Feb. 7, 2018	
Schwarzbeck Antenna	VULB 9168	139	Nov. 29, 2017	Nov. 28, 2018	
Schwarzbeck Antenna	VHBA 9123	480	May 19, 2017	May 18, 2019	
Schwarzbeck Horn Antenna	BBHA-9170	212	Dec. 1, 2017	Nov. 30, 2018	
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Dec. 1, 2017	Nov. 30, 2018	
ADT. Turn Table	TT100	0306	NA	NA	
ADT. Tower	AT100	0306	NA	NA	
Software	Radiated_V7.6.15.9.5	NA	NA	NA	
SUHNER RF cable	SF104	CABLE-CH6	Aug. 14, 2017	Aug. 13, 2018	
With 4dB PAD	3F104	CABLE-CITO	Aug. 14, 2017	Aug. 10, 2010	
SUHNER RF cable	SF102	Cable-CH8-3.6m	Aug. 14, 2017	Aug. 13, 2018	
With 3dB PAD	01 102		Aug. 14, 2017	Aug. 10, 2010	
KEYSIGHT MIMO	U2021XA	U2021XA-001	May 31,2017	May 30,2018	
Powermeasurement Test set	02021/01	02021/001	May 01,2017	May 30,2010	
KEYSIGHT	N9030A	MY54490260	Jul. 26, 2017	Jul. 25, 2018	
Spectrum Analyzer					
Loop Antenna EMCI	LPA600	270	Aug. 11, 2017	Aug. 10, 2019	
EMCO Horn Antenna	3115	00028257	Nov. 30, 2017	Nov. 29, 2018	
Highpass filter	WHK 3.1/18G-10SS	SN 8	NA	NA	
Wainwright Instruments		0110			
ROHDE & SCHWARZ	FSV40	101042	Sep. 29, 2017	Sep. 28, 2018	
Spectrum Analyzer	10110	101012	2007. 20, 2017	2007. 20, 2010	
Anritsu	MA2411B	0738404	Apr. 24, 2017	Apr. 23, 2018	
Power Sensor		0.00101			
Anritsu Bower Motor	ML2495A	0842014	Apr. 24, 2017	Apr. 23, 2018	
Power Meter					

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4. The Industry Canada Reference No. IC 7450E-6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

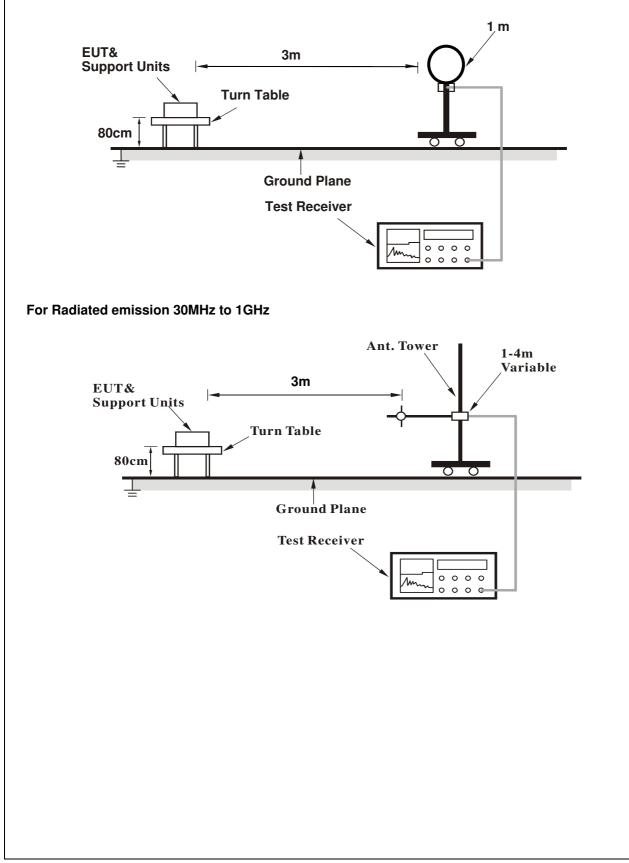
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

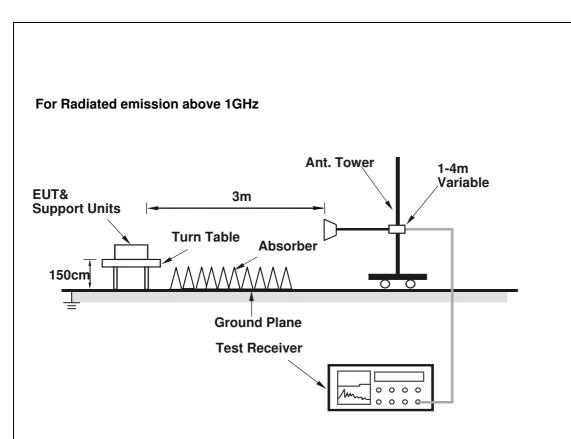
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected the EUT with the Adapter.
- b. EUT read and wrote messages to/ from eMMC & ext. USB Flash.
- c. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	51.07 PK	74.00	-22.93	1.47 H	238	53.38	-2.31	
2	2390.00	38.90 AV	54.00	-15.10	1.47 H	238	41.21	-2.31	
3	*2402.00	91.69 PK			1.47 H	238	93.93	-2.24	
4	*2402.00	90.75 AV			1.47 H	238	92.99	-2.24	
5	4804.00	44.96 PK	74.00	-29.04	1.05 H	80	40.83	4.13	
6	4804.00	33.26 AV	54.00	-20.74	1.05 H	80	29.13	4.13	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	52.56 PK	74.00	-21.44	2.64 V	283	54.87	-2.31	
2	2390.00	40.16 AV	54.00	-13.84	2.64 V	283	42.47	-2.31	
3	*2402.00	96.62 PK			2.64 V	283	98.86	-2.24	
4	*2402.00	95.73 AV			2.64 V	283	97.97	-2.24	
5	4804.00	46.31 PK	74.00	-27.69	1.55 V	208	42.18	4.13	
6	4804.00	35.12 AV	54.00	-18.88	1.55 V	208	30.99	4.13	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	91.88 PK			1.58 H	223	93.87	-1.99	
2	*2440.00	90.87 AV			1.58 H	223	92.86	-1.99	
3	4880.00	44.87 PK	74.00	-29.13	1.00 H	53	40.62	4.25	
4	4880.00	33.27 AV	54.00	-20.73	1.00 H	53	29.02	4.25	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	96.55 PK			2.22 V	275	98.54	-1.99	
2	*2440.00	95.41 AV			2.22 V	275	97.40	-1.99	
3	4880.00	46.28 PK	74.00	-27.72	1.57 V	195	42.03	4.25	
4	4880.00	35.12 AV	54.00	-18.88	1.57 V	195	30.87	4.25	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	93.30 PK			1.68 H	244	95.03	-1.73	
2	*2480.00	92.39 AV			1.68 H	244	94.12	-1.73	
3	2483.50	51.38 PK	74.00	-22.62	1.68 H	244	53.09	-1.71	
4	2483.50	39.30 AV	54.00	-14.70	1.68 H	244	41.01	-1.71	
5	4960.00	45.29 PK	74.00	-28.71	1.14 H	91	40.97	4.32	
6	4960.00	33.70 AV	54.00	-20.30	1.14 H	91	29.38	4.32	
		ANTENNA	POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	97.67 PK			1.96 V	300	99.40	-1.73	
2	*2480.00	96.76 AV			1.96 V	300	98.49	-1.73	
3	2483.50	52.38 PK	74.00	-21.62	1.96 V	300	54.09	-1.71	
4	2483.50	40.39 AV	54.00	-13.61	1.96 V	300	42.10	-1.71	
5	4960.00	46.83 PK	74.00	-27.17	1.69 V	311	42.51	4.32	
6	4960.00	35.50 AV	54.00	-18.50	1.69 V	311	31.18	4.32	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

BELOW 1GHz WORST-CASE DATA

CHANNEL	TX Channel 39	DETECTOR	Quasi Bask (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	38.59	21.60 QP	40.00	-18.40	1.05 H	87	31.55	-9.95		
2	182.54	20.64 QP	43.50	-22.86	1.15 H	201	31.22	-10.58		
3	250.10	42.74 QP	46.00	-3.26	1.01 H	230	52.19	-9.45		
4	488.59	27.11 QP	46.00	-18.89	1.99 H	277	30.26	-3.15		
5	705.29	31.31 QP	46.00	-14.69	2.41 H	214	30.05	1.26		
6	918.17	36.35 QP	46.00	-9.65	2.28 H	31	31.29	5.06		
		ANTENNA	POLARIT	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	37.82	25.80 QP	40.00	-14.20	1.05 V	244	35.89	-10.09		
2	182.53	23.53 QP	43.50	-19.97	1.05 V	300	34.11	-10.58		
3	250.11	43.48 QP	46.00	-2.52	1.00 V	284	52.93	-9.45		
4	388.52	25.51 QP	46.00	-20.49	1.02 V	227	31.15	-5.64		
5	842.22	34.99 QP	46.00	-11.01	1.07 V	164	31.24	3.75		
6	903.56	35.96 QP	46.00	-10.04	1.15 V	208	31.24	4.72		
	ADVC.									

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

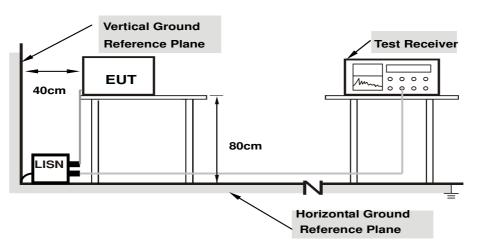
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	100276	Apr. 10, 2017	Apr. 9, 2018
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ENV216	101197	May 22, 2017	May 21, 2018
LISN With Adapter (for EUT)	AD10	C10Ada-002	May 22, 2017	May 21, 2018
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Nov. 23, 2017	Nov. 22, 2018
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 9, 2017	May 8, 2018
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 14, 2017	Feb. 13, 2018
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-011484	May 18, 2017	May 17, 2018
ROHDE & SCHWARZ Artificial Mains Network (For TV EUT)	ESH3-Z5	100220	Nov. 14, 2017	Nov. 13, 2018
LISN With Adapter (for TV EUT)	100220	N/A	Nov. 14, 2017	Nov. 13, 2018

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

4.2.3 Test Procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as item 4.1.6.

4.2.7 Test Results

Phas	e	Line (L) Detector Function Quasi-Pea Average (A			· · ·	,				
	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)		on Level uV)		mit SuV)		ʻgin B)
Ì	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	9.65	38.66	23.31	48.31	32.96	65.58	55.58	-17.27	-22.62
2	0.32578	9.68	17.43	9.82	27.11	19.50	59.56	49.56	-32.45	-30.06
3	0.47422	9.70	27.41	22.14	37.11	31.84	56.44	46.44	-19.33	-14.60

21.49

20.42

14.71

13.05

60.00

60.00

50.00

50.00

-38.51

-39.58

-35.29

-36.95

Remarks:

5.97266

13.17578

5

6

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.

4.62

2.81

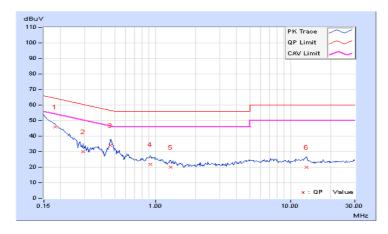
3. Margin value = Emission level – Limit value

10.09

10.24

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

11.40


10.18

Phas	Phase Neutral (N) Detector Func			tion	Quasi-Pe Average	eak (QP) / (AV)				
	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value SuV)		on Level BuV)		mit BuV)		ʻgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.18125	9.69	36.34	21.13	46.03	30.82	64.43	54.43	-18.40	-23.61
2	0.29453	9.71	20.45	10.58	30.16	20.29	60.40	50.40	-30.24	-30.11
3	0.46641	9.74	24.46	17.81	34.20	27.55	56.58	46.58	-22.38	-19.03
4	0.91563	9.79	12.00	7.47	21.79	17.26	56.00	46.00	-34.21	-28.74
5	1.30469	9.83	10.00	4.20	19.83	14.03	56.00	46.00	-36.17	-31.97
6	13.09375	10.31	9.58	4.42	19.89	14.73	60.00	50.00	-40.11	-35.27

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

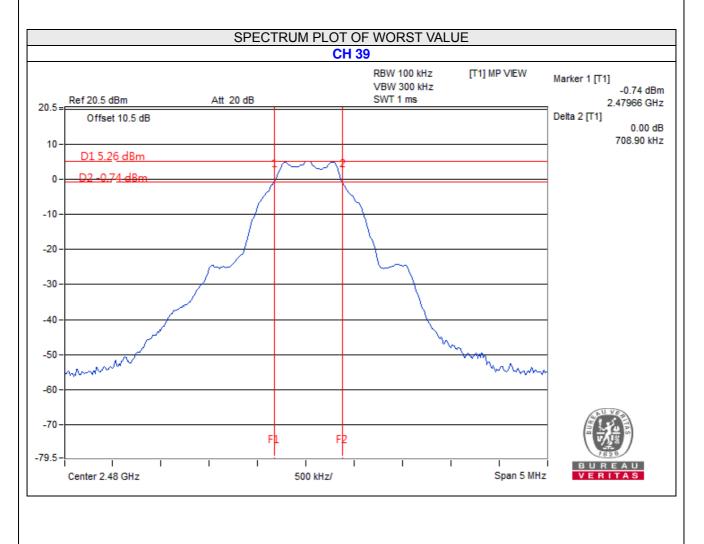
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation fromTest Standard

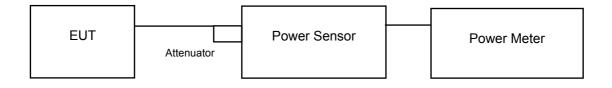
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	0.70	0.5	PASS
19	2440	0.70	0.5	PASS
39	2480	0.70	0.5	PASS



4.4 Conducted Output Power Measurement

4.4.1 Limits OF Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	3.963	5.98	30	Pass
19	2440	4.920	6.92	30	Pass
39	2480	4.375	6.41	30	Pass

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

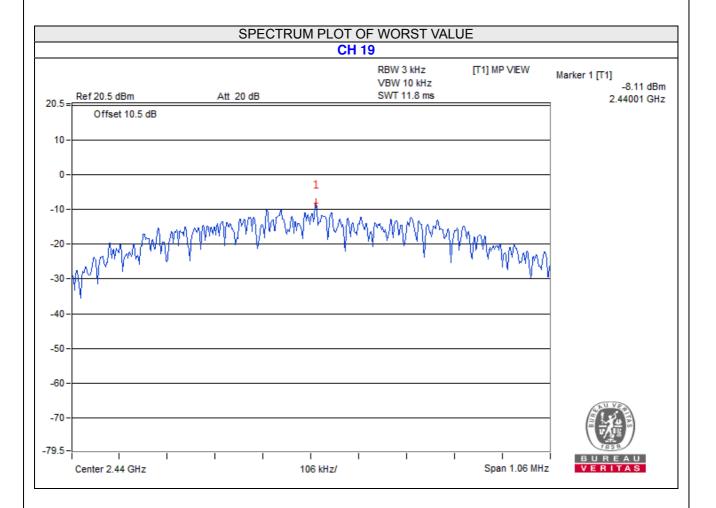
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
0	2402	-8.50	8	PASS
19	2440	-8.11	8	PASS
39	2480	-8.18	8	PASS

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

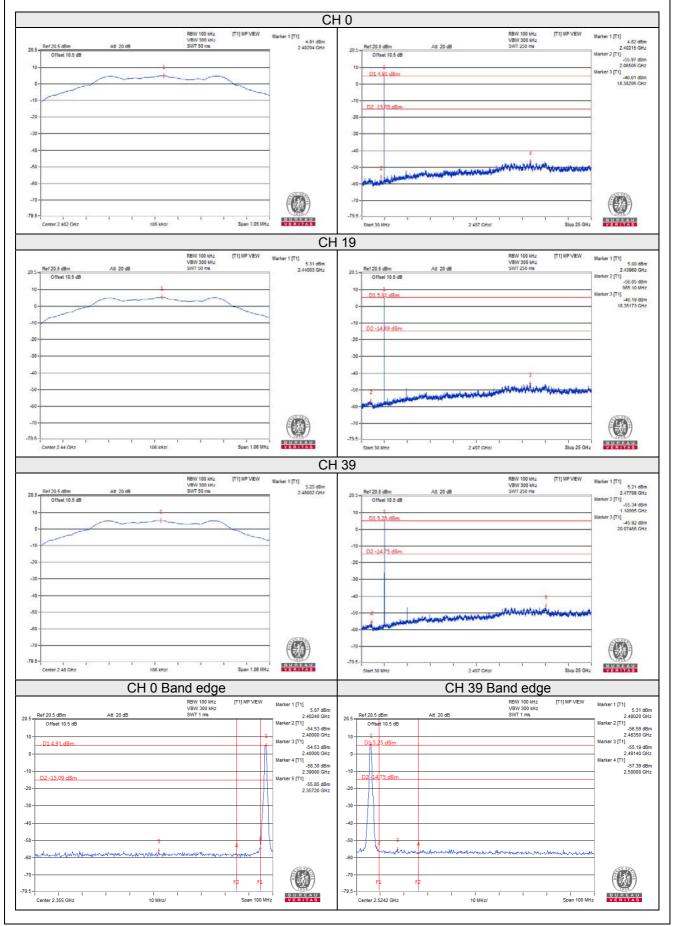
4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


4.6.5 Deviation from Test Standard No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6

4.6.7 Test Results

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---