

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. Jiangsu TÜV Product Service Ltd. - Shenzhen Branch shall have no liability for any , deductions, inferences or generalizations drawn by the client or others from Jiangsu TÜV Product Service Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

Report Number: 68.850.0.010.01

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Technical Requirements.7.1Conducted Emission AC Power Port.7.2Maximum transmit power.7.3Band edge compliance of RF emission.7.5Spurious Radiated Emissions.7.620dB Bandwidth.7.7Carrier Frequency Separation.7.8Number of Hopping Frequencies7.9Dwell Time.	8 12 14 20 24 30 36 40
8	System Measurement Uncertainty	48

2 Details about the Test Laboratory

Details about the Test Laboratory

Company name:	Jiangsu TÜV Product Service Ltd. – Shenzhen Branch 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001, Fuqiang Road, Futian District 518048, Shenzhen,P.R.C.
Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299
Company name:	China Shenzhen Academy of Metrology and Quality Inspection, Metrology and Quality Inspection building, Central Section of LongZhu Road, Nan Shan, Shenzhen,
Telephone:	86 755 2694 1599
Fax:	86 755 2694 1545
Company name:	Audix Technology (shenzhen) Co.,Ltd Block Shenzhen, Science & Industry Park, Nantou, Shenzhen, Guangdong, China
Telephone:	86 755 2663 9496
Fax:	86 755 2663 2877

Report Number: 68.850.0.010.01

3 Description of the Equipment Under Test

Description of the Equipment Under Test

Product:	GPS
Model no.:	LEICA mojoMINI
Serial number:	NIL
Options and accessories:	NIL
Rating:	DC 5V 2A Test with Car Charger: Input: DC 12-24V, 1.2A Max Output: DC 5V, 2A
Antenna:	Integral antenna inside the EUT, NOT accessible by end user
RF Transmission Frequency:	2400-2483.5MHz
Description of the EUT:	NIL

Auxiliary Equipment and Cable Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Battery	BYD		
PC	Lenovo	X61	L3-L3729
Serial Port Line	Lenovo		
LCD monitor	Lenovo	9227-AE1	V1TDB38
Keyboard	Lenovo	SK-8825 (L)	02553778
Mouse	Lenovo	MO28UOL	4418011108
PC host	Lenovo	9439	L3BDF2K
Headphone	Ouyun	OH601	
SD card	Kingston	SD4/4GBFE	
VGA cable	Lenovo	Shield	140cm
AC Power cable	Lenovo	Unshield	180cm

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES		
Subpart C - Intentional Radiators			
FCC Part 15 Subpart B	PART 15 - RADIO FREQUENCY DEVICES		
Subpart B - Unintentional Radiators			

Report Number: 68.850.0.010.01

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C						
Test Condition	Pages	Т	est Result	t		
		Pass	Fail	N/A		
15.107 15.207 Conducted Emission AC Power Port	8	\boxtimes				
15.247 (b) (1) Maximum transmit power*	12	\square				
15.247(d) Band edge compliance of RF emissions	14	\square				
15.247(d) Spurious RF conducted emissions*				\boxtimes		
15.247(d) 15.209 15.109 Spurious radiated emissions	20	\boxtimes				
15.247(a)(1) 20dB bandwidth	24	\square				
15.247(a)(1) Carrier frequency separation	30	\square				
15.247(a)(1)(iii) Number of hopping frequencies	36	\square				
15.247(a)(1)(iii) Dwell Time	40					

*Remark: The EUT does not have an antenna connector and the Spurious RFconducted emission test can't be performed, the result of radiated test method was shown in the report.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: RFD-LEICAMOJOMINI filing to comply with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed
- The Equipment Under Test
- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

3 February 2010

8 February 2010

Testing Start Date:

Testing End Date:

26 February 2010

- Jiangsu TÜV Product Service Ltd. – Shenzhen Branch -

Reviewed by:

and Im

Paul Yu EMC Project Manager Prepared by:

Ken Li EMC Project Engineer

Report Number: 68.850.0.010.01

Page 7 of 48

7 Technical Requirement

7.1 Conducted Emission

Test Method

1 The EUT was placed on a table, which is 0.8m above ground plane

2 The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).

3 Maximum procedure was performed to ensure EUT compliance

4 A EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50
Decreasing linearly wi	th logarithm of the	frequency

Conducted Emission

Conducted Disturbance

EUT: Op Cond: Test Spec: Comment MN:LECAmojoMINI Connectto PC L AC 120V/60Hz

Frequency	Cable Loss	Reading	QP Test result	QP Limit	Margin
 MHz	dB	dBµV	dBµV	dBµV	dB
 0.192	9.8	43.0	52.8	63.9	11.1
0.265	9.8	32.5	42.3	61.3	19.0
Frequency	Cable Loss	Reading	AV Test result	AV Limit	Margin
 MHz	dB	dBµV	dBµV	dBµV	dB
0.192	9.8	25.0	34.8	53.9	19.1

16.8

Remark: Test Result= Reading + Cable Loss

9.8

Report Number: 68.850.0.010.01

0.265

Page 9 of 48

24.7

51.3

26.6

Conducted Emission

Conducted Disturbance

EUT: Op Cond: TestSpec: Comment MN:LECAmojoMINI Connectto PC N AC 120V/60Hz

Frequency MHz	Cable Loss dB	Reading dBµV	QP Test result dBµV	QP Limit dBμV	Margin dB
0.198	9.8	44.3	54.1	63.7	9.6
0.261	9.8	34.2	44.0	61.4	17.4
Frequency MHz	Cable Loss dB	Reading dBµV	AV Test result dBµV	AV Limit dBμV	Margin dB
0.198	9.8	25.4	35.2	53.7	18.5
0.261	9.8	15.3	25.1	51.4	26.3

Remark: Test Result= Reading + Cable Loss

Report Number: 68.850.0.010.01

Page 10 of 48

Test Equipment List

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	2010-12-05
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100253	2010-12-05

7.2 Maximum transmit power

Test Method

1 The EUT is placed on a turntable, which is 0.8m above ground plane.

2 The turntable shall be rotated for 360 degrees to determine the position of maximum emission level

3 Measured maximum fundamental field strength in V/m, utilizing a RBW ≥ the 20 dB bandwidth of the emission, VBW > RBW, peak detector function.

4 Use the equation $P = (E^*d)^2/30^*G$ to calculate the peak power of the transmitter where: P= transmit power (W)

E = field strength (V/m)

d= distance from EUT to antenna (m)

G= transmitter's antenna gain (linear)

Limits for Maximum transmit power measurements

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483	≤1	≤30

Maximum transmit power

GFSK Modulation Test Result				
Frequency (MHz)	Maximum field strength(dBµV/m)	Maximum peak Power(dBm)	Result	
CH1 2402MHz	97.42	1.12	Pass	
CH2 2441MHz	97.33	1.10	Pass	
CH3 2480MHz	97.38	1.14	Pass	

81			
Frequency (MHz)	Maximum field strength(dBµV/m)	Maximum peak Power(dBm)	Result
CH1 2402MHz	98.04	1.51	Pass
CH2 2441MHz	97.40	1.14	Pass
CH3 2480MHz	96.28	0.42	Pass

Report Number: 68.850.0.010.01

Test Equipment

Maximum transmit power Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum Analyzer	Agilent	E4446A	US44300459	2010-05-10
Horn Antenna	EMCO	3115	9607-4877	2010-05-27
Amplifier	Agilent	8449B	3008A02495	2010-05-24
RF Cable	Hubersuhner	SUCOFLEX102	28620/2	2010-05-10
RF Cable	Hubersuhner	SUCOFLEX102	271471/4	2010-05-10
RF Cable	Hubersuhner	SUCOFLEX102	29086/2	2010-05-10

Report Number: 68.850.0.010.01

7.3 Band edge compliance of RF emissions

Test Method

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.4 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW and VBW to 1MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength.

The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW and VBW to 100kHz, to measure the conducted peak band edge.

Limits

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Frequency	Limit Average	Limit Peak
MHz	dBuV/m	dBuV/m
Below 2390 Above 2483.5	54	74

Band edge compliance of RF emissions

GFSK modulation Low edge peak Plot:

2. The emission levels that are 20dB below the official limit are not reported.

Report Number: 68.850.0.010.01

Page 15 of 48

-6dE

-6dE

2510

Mar Mark

Band edge compliance of RF emissions

Report Number: 68.850.0.010.01

Page 16 of 48

Band edge compliance of RF emissions

8DPSK modulation low edge peak Plot:

Remarks:

1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

Report Number: 68.850.0.010.01

Page 17 of 48

Band edge compliance of RF emissions

Report Number: 68.850.0.010.01

Page 18 of 48

Test Equipment List

Band edge compliance of RF emissions

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum	Agilent	E4446A	US44300459	2010-05-10
Amp	HP	8449B	3008A02495	2010-05-24
Antenna	EMCO	3115	9607-4877	2010-05-27
HF Cable	Hubersuhne	Sucoflex104	-	2010-05-10

Report Number: 68.850.0.010.01

7.4 Spurious radiated emissions

Test Method

1 The EUT is placed on a turntable, which is 0.8m above ground plane.

2 The turntable shall be rotated for 360 degrees to determine the position of maximum emission level

3 EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

4 Maximum procedure was performed on the six highest emissions to ensure EUT compliance. 5 each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

Limit

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions

GFSK Modulation

test result-2402MHz

Frequency MHz	Cable Loss dB	Antenna Factor dB/m	Reading dBuV	Emission Level dBuV/m	Polarization	Limit dBµV/m	Detector	Result
166.072	2.2	10.6	16.1	28.9	Horizontal	43.5	QP	Pass
263.266	2.8	13.7	14.7	31.2	Horizontal	46.0	QP	Pass
4804.000	3.8	33.3	18.1	55.2	Horizontal	74	PK	Pass
4804.000	3.8	33.3	8.6	45.7	Horizontal	54	AV	Pass
4804.000	3.8	33.3	18.8	55.9	Vertical	74	PK	Pass
4804.000	3.8	33.3	8.9	46.0	Vertical	54	AV	Pass

Test Result-2441MHz

Frequency MHz	Cable Loss dB	Antenna Factor dB/m	Reading dBuV	Emission Level dBuV/m	Polarization	Limit dBµV/m	Detector	Result
4882.000	3.9	33.3	20.5	57.7	Horizontal	74	PK	Pass
4882.000	3.9	33.3	9.6	46.8	Horizontal	54	AV	Pass
4882.000	3.9	33.3	21.7	58.9	Vertical	74	PK	Pass
4882.000	3.9	33.3	12.6	49.8	Vertical	54	AV	Pass

Test Result-2480MHz

Frequency MHz	Cable Loss dB	Antenna Factor dB/m	Reading dBuV	Emission Level dBuV/m	Polarization	Limit dBµV/m	Detector	Result
4960.000	3.9	33.3	19.5	56.7	Horizontal	74	PK	Pass
4960.000	3.9	33.3	11.1	48.3	Horizontal	54	AV	Pass
4960.000	3.9	33.3	19.4	56.6	Vertical	74	PK	Pass
4960.000	3.9	33.3	12.2	49.4	Vertical	54	AV	Pass

Remark: Emission Level= Cable Loss(include amplifier factor) + Antenna Factor + Reading

Spurious radiated emissions

8DPSK Modulation

test result-2402MHz

Frequency MHz	Cable Loss dB	Antenna Factor dB/m	Reading dBuV	Emission Level dBuV/m	Polarization	Limit dBµV/m	Detector	Result
41.663	1.2	12.8	17.2	31.2	Vertical	40.0	QP	Pass
88.316	1.6	10.7	17.8	30.1	Vertical	43.5	QP	Pass
4804.000	3.8	33.3	18.6	55.7	Horizontal	74	PK	Pass
4804.000	3.8	33.3	7.8	44.9	Horizontal	54	AV	Pass
4804.000	3.8	33.3	19.5	56.6	Vertical	74	PK	Pass
4804.000	3.8	33.3	10.1	47.2	Vertical	54	AV	Pass

Test Result-2441MHz

Frequency MHz	Cable Loss dB	Antenna Factor dB/m	Reading dBuV	Emission Level dBuV/m	Polarization	Limit dBµV/m	Detector	Result
4882.000	3.9	33.3	18.6	55.8	Horizontal	74	PK	Pass
4882.000	3.9	33.3	11.8	49.0	Horizontal	54	AV	Pass
4882.000	3.9	33.3	18.9	56.1	Vertical	74	PK	Pass
4882.000	3.9	33.3	12.5	49.7	Vertical	54	AV	Pass

Test Result-2480MHz

Frequency MHz	Cable Loss dB	Antenna Factor dB/m	Reading dBuV	Emission Level dBuV/m	Polarization	Limit dBµV/m	Detector	Result
4960.000	3.9	33.3	20.5	57.7	Horizontal	74	PK	Pass
4960.000	3.9	33.3	11.2	48.4	Horizontal	54	AV	Pass
4960.000	3.9	33.3	20.6	57.8	Vertical	74	PK	Pass
4960.000	3.9	33.3	13.0	50.2	Vertical	54	AV	Pass

Remark: Emission Level= Cable Loss(include amplifier factor) + Antenna Factor + Reading

Test Equipment List

Spurious radiated emissions Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum	Agilent	E4446A	US44300459	2010-05-10
SG	HP	83723B	US34490501	2010-05-10
Amp	HP	8449B	3008A02495	2010-05-24
Antenna	EMCO	3115	9607-4877	2010-05-27

Report Number: 68.850.0.010.01

7.5 20 dB bandwidth

Test Method

1 Place the EUT on the table and set it in the transmitting mode.

2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

3 Mark the peak frequency and –20dB (upper and lower) frequency.

Limit

Limit [kHz]

N/A

Frequency	Bandwidth	Result
MHz	kHz	
2402	1101	Pass
2441	1105	Pass
2480	1093	Pass

Report Number: 68.850.0.010.01

Report Number: 68.850.0.010.01

Frequency	Bandwidth	Result
MHz	kHz	
2402	1189	Pass
2441	1179	Pass
2480	1185	Pass

Agilent Trace <u> 266</u> н Trace Ch Freq 2.441 GHz Trig Free 2 1 3 Occupied Bandwidth Center 2.441000000 GHz **Clear Write** Ref 10 dBm #Atten 20 dB #Peak Max Hold Log 10 dB/ Min Hold View Center 2.441 000 GHz #Res BW 100 kHz Span 3 MHz #VBW 300 kHz Sweep 1 ms (601 pts) Blank Occupied Bandwidth Occ BW % Pwr 99.00 % -20.00 dB x dB 1.1794 MHz More Transmit Freq Error -49.633 kHz 1 of 2 x dB Bandwidth 1.325 MHz A:\SCREN673.GIF file saved Operatio Status.

Report Number: 68.850.0.010.01

Test Equipment

20 dB bandwidth Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum Analyzer	Agilent	E4446A	US44300459	2010-05-10

Test Method

1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer

RBW: 100KHz; VBW: 300KHz; SPAN:3MHz

2. By using the Max-Hold function record the separation of two adjacent channels.

3. Measure the frequency difference of these two adjacent channels by spectrum analyzer Marker function.

4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit kHz

 \geq 25 or 2/3 of the 20 dB bandwidth which is greater

GFSK Modulation limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2402	734
2441	737
2480	729

8DPSK Modulation limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2402	793
2441	786
2480	790

GFSK Modulation test result

Frequency	Carrier Frequency Separation	Result
MHz	kHz	
2402	1000	Pass
2441	1000	Pass
2480	1000	Pass

Report Number: 68.850.0.010.01

Report Number: 68.850.0.010.01

8DPSK Modulation test result

Frequency	Carrier Frequency Separation	Result
MHz	kHz	
2402	1000	Pass
2441	1000	Pass
2480	1000	Pass

Report Number: 68.850.0.010.01

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch 6 floor, H Hall, Century Craftwork Culture Square, No. 4001, Fuqiang Road, Futian District, Shenzhen 518048, P. R. China, Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 34 of 48

Test Equipment

Carrier Frequency Separation Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum Analyzer	Agilent	E4446A	US44300459	2010-05-10

7.7 Number of hopping frequencies

Test Method

1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer

RBW: 300KHz; VBW: 1MHz

2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded. 3. Repeat above procedures until all frequencies measured were complete.

Limit

Limit number ≥ 15

Number of hopping frequencies

GFSK Modulation test result:

Report Number: 68.850.0.010.01

Number of hopping frequencies

8DPSK Modulation test result:

Report Number: 68.850.0.010.01

Test Equipment

Number of hopping frequencies Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum Analyzer	Agilent	E4446A	US44300459	2010-05-10

7.8 Dwell Time

Test Method

1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer

RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span

- 2. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 3. Measure the Dwell Time by spectrum analyzer Marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell Time

Dwell time

The maximum dwell time shall be 0,4 s. **GFSK Modulation:**

		Test Result		
Modo	Reading	Test Result	Limit	Pocult
Mode	(µs)	(ms)	(ms)	Result
DH1	440	141.82	< 400	Pass
DH3	1733	273.81	< 400	Pass
DH5	2967	318.77	< 400	Pass

Report Number: 68.850.0.010.01

Page 41 of 48

DH3

Report Number: 68.850.0.010.01

Page 42 of 48

DH5

Note: A period time=79x0.4(s)=31.6(s)

DH1	time slot= 51(times)/5(s) *440 (µs) *31.6(s)= 141.82 (ms)
DH3	time slot= 25(times)/5(s) *1733 (µs) *31.6(s)= 273.81 (ms)
DH5	time slot= 17(times)/5(s) *2967 (µs) *31.6(s)= 318.77 (ms)

Report Number: 68.850.0.010.01

Page 43 of 48

8DPSK Modulation:

		Test Result		
Mode	Reading (µs)	Test Result (ms)	Limit (ms)	Result
DH1	460	145.36	< 400	Pass
DH3	1733	273.81	< 400	Pass
DH5	3000	303.36	< 400	Pass

DH1

Report Number: 68.850.0.010.01

Page 44 of 48

DH3

Report Number: 68.850.0.010.01

Page 45 of 48

DH5

Note:

A period time=79x0.4(s)=31.6(s)

DH1	time slot= 50(times)/5(s) *460 (µs) *31.6(s)= 145.36 (ms)
DH3	time slot= 25(times)/5(s) *1733 (µs) *31.6(s)= 273.81 (ms)
DH5	time slot= 16(times)/5(s) *3000 (µs) *31.6(s)= 303.36 (ms)

Report Number: 68.850.0.010.01

Page 46 of 48

Test Equipment

Dwell Time Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL.DUE.DATE
Spectrum Analyzer	Agilent	E4446A	US44300459	2010-05-10

8 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement U	Incertainty
----------------------	-------------

	Items	Extended Uncertainty
RE	Field strength (dBµV/m)	U=4.6dB; k=2(30MHz-1GHz)
CE	Disturbance Voltage (dBµV)	U=3.3dB; k=2

Report Number: 68.850.0.010.01