Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **Eurofins**

Certificate No: D1750V2-1126_Sep17

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:1	126	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	September 20, 2	017	
The measurements and the uncer	tainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages ar ry facility: environment temperature (22 ± 3)°	nd are part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-200
Approved by:	Katja Pokovic	Technical Manager	Relly
This calibration partificate chall pa	t be reproduced executive	full without written approval of the laboratory	Issued: September 20, 2017

Calibration Laboratory of Schmid & Partner Engineering AG AC-MRA

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

Glossary:TSLtissue simulating liquidConvFsensitivity in TSL / NORM x,y,zN/Anot applicable or not measured

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.79 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	*	

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω - 0.1 jΩ	
Return Loss	- 35.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 0.4 jΩ	
Return Loss	- 31.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.221 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

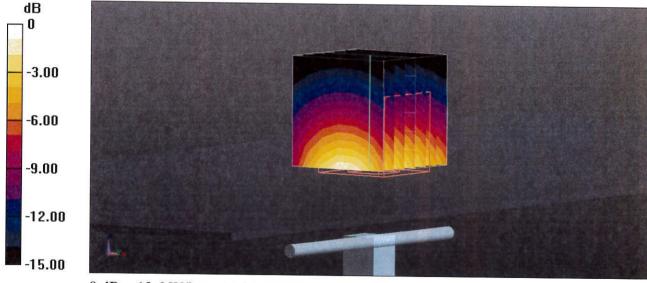
Manufactured by	SPEAG
Manufactured on	June 03, 2014

DASY5 Validation Report for Head TSL

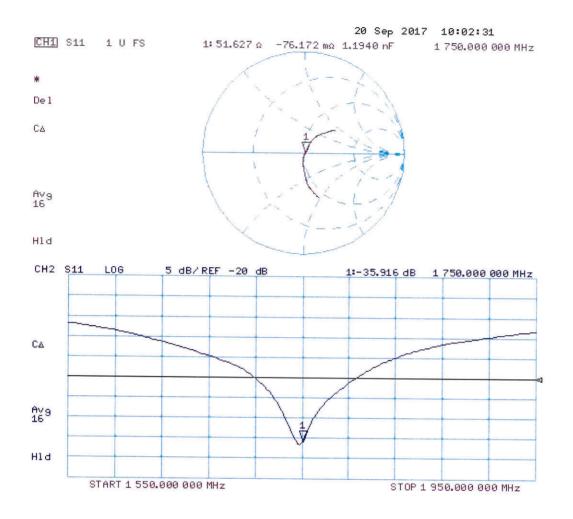
Date: 20.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.36 S/m; ϵ_r = 39.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.73, 8.73, 8.73); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (measured) = 13.6 W/kg

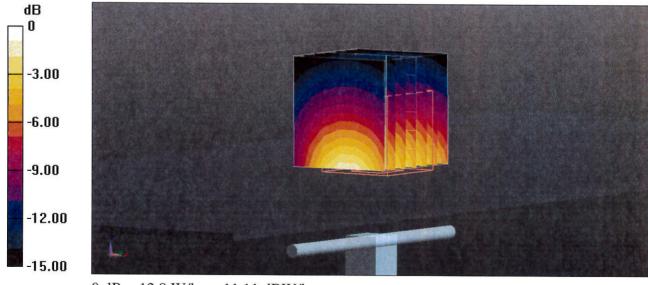
0 dB = 13.6 W/kg = 11.34 dBW/kg

DASY5 Validation Report for Body TSL

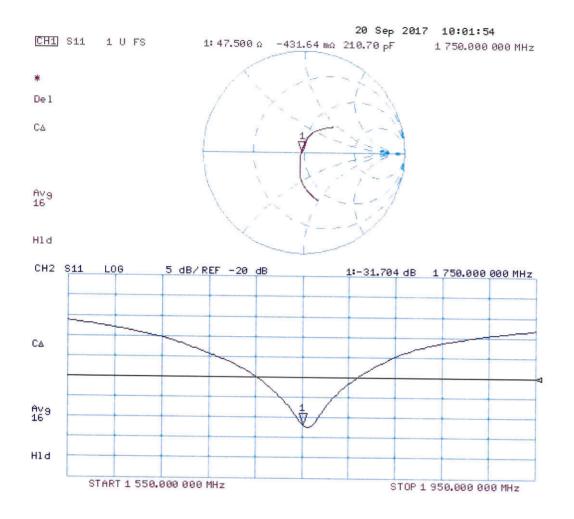
Date: 20.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 98.75 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.81 W/kg Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Validation Report No. VAL_0947_EF 2019-03

EUROFINS PRODUCT SERVICE GmbH Storkower Str. 38c, 15526 Reichenwalde, Germany

1 Customer

Eurofins Product Service GmbH

2 Object

Equipment Number	EF00947
Equipment Name:	System validation dipole
Equipment Type:	D1750V2
Serial Number:	1126
Manufacturer:	Schmid & Partner Engineering AG

3 State of Measurement

Validation:	\boxtimes
Performance Control:	\bowtie
Other:	

4 Performance of Measurement

4.1 Generals

(e.g. object of validation such as specific setup, non-standard method or SW, specification of the requirements, test set-up configuration, risk analysis etc.)

Dipol verification

4.2 Validation procedure / measurement

(e.g. comparison of results achieved with other methods, interlaboratory comparison, systematic assessment of factors influencing the result, assessment of the uncertainty of the results based on scientific understanding of the theoretical principles of the method and practical experience; criteria/requirements for approval/rejection etc.)

According KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 3.2.2 Dipole calibration

Limits for the verification: return loss <20% to the original measurement or >20 dB minimum return-loss Impedance <5 Ω to the original measurement.

4.3 Used reference equipment

Equipment name	Equipment type	Manufacturer	Equipment number	Cal. Date	Cal. Due Date	
RF Network analyzer	8752 C	Hewlett-Packard Company Santa Clara	EF00140	2018-07-25	2019-07-25	
- new acquired (incl. calibration)						
 new calibrated check reference standard 						
4.4 Environmental conditions						
Temperature:			_23_°C <u>+</u> 2°C			
Relative Air Humidity:			_50_ rH <u>+</u> 5%			
Air Pressure:		_1020_ h	Pa <u>+</u> 5%			

Page 136 of 177

Kind of doc .:

QM Template

Validation Report No. VAL_0947_EF 2019-03

Kind of doc.: QM Template

EUROFINS PRODUCT SERVICE GmbH Storkower Str. 38c, 15526 Reichenwalde, Germany

5 Results

5.1 General:

(e.g. measurement results, user instructions such as handling, transport, storage, preparation; checks to be made before the work started; information about how to install (operations)-, to maintain-, to train and to use; safety measures etc.)

	Original measurement	Verification measurement	Margin
Impedance, transformend to feed point	47.5 Ω + 0.4 jΩ	47.94 Ω + 1.32 jΩ	0.44 Ω + 0.38jΩ
Return Loss	-31.7 dB	-32.06 dB	0.36 dB
Tissue Validation εr	53.8	53.881	0.15 %
Tissue Validation σ [S/m]	1.46	1.51	3.42 %
System validation	36.08 W/kg (1g)	36.6W/kg (1g)	1.50 %
Date:	20.09.2017	13.03.2019	

5.2 Measurement uncertainty

The reported expanded uncertainty of measurement is stated as the standard uncertainty multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. +/-2.5 %

 \boxtimes

5.3 Results of Validation

Validated

Not validated

6 Operator

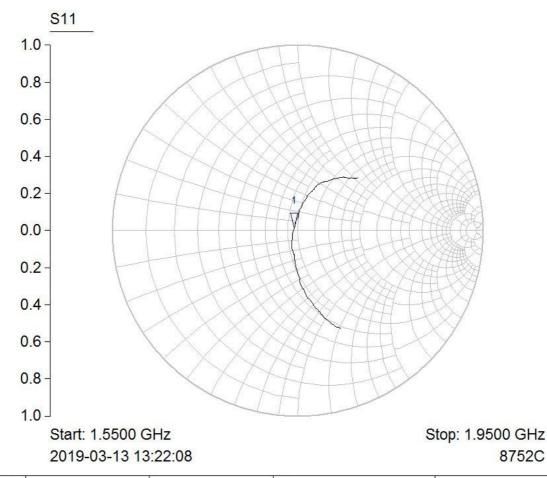
Pudell Name

B. Pudell Signature

Place and Date of Verification:

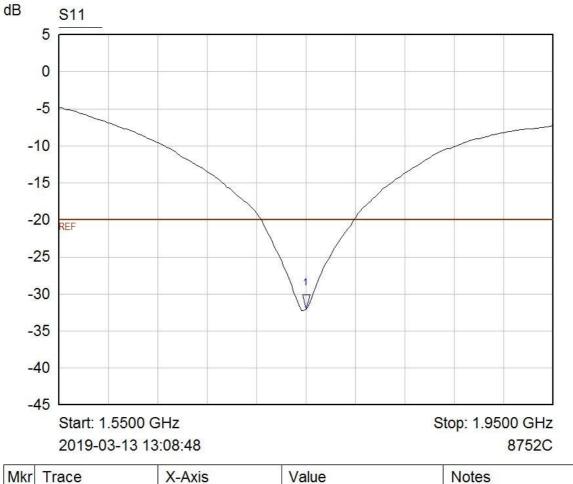
Reichenwalde, 13.03.2019

Attachment: Impedance, Return Loss, System validierung


Page 137 of 177

Kind of doc.: QM Template

EUROFINS PRODUCT SERVICE GmbH Storkower Str. 38c, 15526 Reichenwalde, Germany


Mkr	Trace	X-Axis	Value	Notes
1 7	S11	1.7500 GHz	47.94 + j1.32 ohms	

Validation Report No. VAL_0947_EF 2019-03

Kind of doc.: QM Template

EUROFINS PRODUCT SERVICE GmbH Storkower Str. 38c, 15526 Reichenwalde, Germany

Mkr	Trace	X-Axis	Value	Notes
1 7	S11	1.7500 GHz	-32.06 dB	