

EUROFINS PRODUCT SERVICE GMBH

SAR Test - Report

SAR Compliance Test Report

Test report no.:

G0M21007-3507-S-1

Field Controller

CS10

FCC-ID: RFD-CS-SG

Curofins Product Service GmbH Storkower Str. 38c, 15526 Reichenwalde, Germany

Phone +49-33631-888 0 Fax +49-33631-888 660

TABLE OF CONTENTS

1	General information	3
1.1	Notes	3
1.2	Testing laboratory	4
1.3	Details of approval holder	4
1.4	Manufacturer	5
1.5	Application details	5
1.6	Test item	5
1.7	Test results	6
1.8	Test standards	6
2	Technical test	7
2.1	Summary of test results	7
2.2	Test environment	7
2.3	Test equipment utilized	8
2.4	Definitions	9
2.5	Measurement system description	10
2.6	Test system specification	15
2.7	Measurement procedure	16
2.8	Reference points	17
2.9	Test positions	19
2.10	Measurement uncertainty	23
3	Tissue and system verification	24
3.1	Tissue verification	24
3.2	System verification	25
4	Test Results	26
5	Transmitter co-location performance evaluation	29
6	References	32
7	Annex	33

1 General Information

1.1 Notes

The results of this test report relate exclusively to the item tested as specified in chapter "Description of test item" and are not transferable to any other test items.

Eurofins Product Service GmbH is not responsible for any generalisations and conclusions drawn from this report. Any modification of the test item can lead to invalidity of test results and this test report may therefore be not applicable to the modified test item.

The test report may only be reproduced or published in full. Reproducing or publishing extracts of the report requires the prior written approval of the Eurofins Product Service GmbH.

This document is subject to the General Terms and Conditions and the Testing and Certification System of Eurofins Product Service GmbH, available on request or accessible at <u>www.pt.eurofins.com</u>

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualification of all persons taking them.

Operator:

04.05.2011

Date

B. Pudell

Name

Signature

Technical responsibility for area of testing:

Eurofins -Lab.

04.05.2011

J. Zimmermann

Signature

Date

Eurofins

Name

1.2 **Testing laboratory**

Location 1.2.1

EUROFINS PRODUCT SERVICE GMBH Storkower Straße 38c D-15526 Reichenwalde b. Berlin Germanv Telephone : +49 33631 888 00 : +49 33631 888 660 Fax

1.2.2 Details of accreditation status

DAR ACCREDITED TESTING LABORATORY

DAR-REGISTRATION NUMBER: DAT-P-268/08

RECOGNIZED NOTIFIED BODY EMC REGISTRATION NUMBER: BNetzA-bS EMV-07/61

RECOGNIZED NOTIFIED BODY R&TTE REGISTRATION NUMBER: BNetzA-bS-02/51-53

FCC FILED TEST LABORATORY

REG.-NO. 96970

A2LA ACCREDITED TESTING LABORATORY

CERTIFICATE NO. 1983.01

BLUETOOTH QUALIFICATION TEST FACILITY (BQTF)

ACCREDITED BY BLUETOOTH QUALIFICATION REVIEW BOARD

INDUSTRY CANADA FILED TEST LABORATORY

REG. NO. IC 3470

Statement: The tests documented within this report are carried out in accordance with the scope of accreditation of test laboratory Eurofins Product Service GmbH.

1.3 Details of approval holder

Name	: Leica Geosystems AG
Street	: Heinrich Wild Strasse 1
Town	: CH-9435 Heerbrugg
Country	: Switzerland
Telephone	: +41 71 727 3098
Fax	: +41 71 726 5098
Contact	: Herr Hannes Juen
E-Mail	: Hannes.Juen@Leica-Geosystems.com

1.4 Manufacturer: (if applicable)

Name	:
Street	:
Town	:
Country	:

1.5 Application details

Date of receipt of application	: 27.07.2010
Date of receipt of test item	: 27.07.2010
Date of test	: 17.08.2010 - 24.08.2010

1.6 Test item

FCC ID	: RFD-CS-SG
Description of test item	: Field Controller
Type identification	: CS10
Brand Name	: Leica Geosystems
Serial number	: without; Identical prototype
Device category	: PCT (Licensed Portable Transmitter Worn On Body)

Technical data

UMTS Frequency range	: Operation Band V	Operation Band II
TX Frequency range	: 824 - 849MHz	1850 - 1910 MHz
RX Frequency range	: 869 - 894MHz	1930 - 1990 MHz
Max. rad. RF output power	: 23.70 (0.23 W)	23.13 (0.21 W)

<u>GSM / PCS / EGPRS</u> Frequency range	: <u>GSM 850 / EGPRS</u>	<u>PCS 1900 / EGPRS</u>
TX Frequency range	: 824.2 - 848.8 MHz	1850.2 - 1909.9 MHz
RX Frequency range	: 869.2 - 893.8 MHz	1930.2 - 1989.8 MHz
Max. rad. RF output power	: 32.93 dBm (1.96 W)	29.41 dBm (0.87 W)
<u>WLAN</u> TX / RX Frequency range	: 2400,0 - 2483,5 MHz	

TX / RX Frequency range	: 2400,0	- 2483,5 MHz
Tested Frequency	: Ch.6	2437,0 MHz
Max.rad. RF output power	: 15.7 dE	3m (0.04 W)

Power supply	: 7.4VDC rechargeable battery
Antenna Tx	: integral
Antenna RX	: integral
Additional information : Tx and Rx. antenna are the same.	
	This test sample was tested according FCC OET Bulletin Supplement C, Edition 01-01 on the used Frequency band

1.7 Test Results

Max. SAR Measurement UMTS Band V (Body)	: 0,357mW/g (averaged over 1 gram)
Max. SAR Measurement UMTS Band II (Body)	: 0,416 mW/g (averaged over 1 gram)
Max. SAR Measurement GPRS/EGPRS 850 (Body)	: 0,883 mW/g (averaged over 1 gram)
Max. SAR Measurement GPRS/EGPRS 1900 (Body)	: 0,286 mW/g (averaged over 1 gram)
Max. SAR Measurement WLAN (Body)	: 0,045 mW/g (averaged over 1 gram)

This EUT has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001) and IEEE Std. 1528-2003, December 2003.

1.8 Test standards

Standards	: -	IEEE Std. 1528-2003, December 2003
FCC Rule Part(s)	: -	FCC OET Bulletin 65, Supplement C, Edition 01-01

Test Report No.: G0M21007-3507-S-1

65.

2 Technical test

2.1 Summary of test results

Applicable Configuration

Handset (Head)	
Handset (Body)	
Headset (Head)	
Body Worn Equipment	Х

EUT complies with the RF radiation exposure limits of the FCC as shown by the SAR measurement results. These measurements are taken to simulate the RF effects exposure under worst-case conditions. The EUT complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [1]

In case of multiple hotspots the secondary hotspots within 2 dB of the maximum SAR value will be recorded and displayed in the measurement plots. The secondary hotspots with a peak SAR value below 0.5 W/kg will not be measured by the system, due to the high margin to the limits.

2.2 Test environment

Room temperature	: 22.1	- 22	.6 ° C
Liquid temperature	: 22.0) - 22	.3 ° C
Relative humidity content	: 20		75 %
Air pressure	: 86		103 kPa
Details of power supply	: 7.4\	/DC	

2.3 Test equipment utilized

No.	Measurement device:	Туре:	Manufacturer:
ETS 0449	Stäubli Robot	RX90B L	Stäubli
ETS 0450	Stäubli Robot Controller	CS/MBs&p	Stäubli
ETS 0451	DASY 4 Measurement Server		Schmid & Partner
ETS 0452	Control Pendant		Stäubli
ETS 0453	Compaq Computer	Pentium IV, 2 GHz,	Schmid & Partner
ETS 0454	Dabu Acquisition Electronics	DAE3V1	Schmid & Partner
ETS 0455	Dummy Probe		Schmid & Partner
ETS 0456	Dosimetric E-Field Probe	ET3DV6	Schmid & Partner
ETS 0457	Dosimetric E-Field Probe	ET3DV6	Schmid & Partner
ETS 0458	Dosimetric H-Field Probe	H3DV6	Schmid & Partner
ETS 0479	System Validation Kit	D300V3	Schmid & Partner
ETS 0480	System Validation Kit	D450V3	Schmid & Partner
ETS 0459	System Validation Kit	D900V2	Schmid & Partner
ETS 0460	System Validation Kit	D1800V2	Schmid & Partner
ETS 0461	System Validation Kit	D1900V2	Schmid & Partner
ETS 0462	System Validation Kit	D2450V2	Schmid & Partner
ETS 0463	Probe Alignment Unit	LBV2	Schmid & Partner
ETS 0464	SAM Twin phantom	V 4.0	Schmid & Partner
ETS 0513	Flat phantom	V 4.4	Schmid & Partner
ETS 0467	Oval flat phantom	ELI 4	Schmid & Partner
ETS 0465	Mounting Device	V 3.1	Schmid & Partner
ETS 0224a	Millivoltmeter	URV 5	Rohde & Schwarz
ETS 0219	Power sensor	NRV-Z2	Rohde & Schwarz
ETS 0268	RF signal generator	SMP 02	Rohde & Schwarz
ETS 0322	Insertion unit	URV5-Z4	Rohde & Schwarz
ETS 0466	Directional Coupler	HP 87300B	HP
ETS 0231	Radio Communication Tester	CMD65	Rohde & Schwarz
ETS 0484	Universal Radio Communication Tester	CMU 200	Rohde & Schwarz
ETS 0468	Network Analyzer 300 kHz to 3 GHz	8753C	Agilent
ETS 0469	Dielectric Probe Kit	85070C	Agilent

2.4 Definitions

2.4.1 SAR

The specific absorption rate (SAR) is defined as the time derivative of the incremental energy (*dW*) absorbed by (dissipated in) an incremental mass (*dm*) contained in a volume element (*dV*) of a given density (ρ_i), expressed in watts per kilogram (W/kg).

SAR =
$$\frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho_t dV} \right) = \frac{\sigma}{\rho_1} |E_t|^2$$

where:

$$\frac{dW}{dt} = \int_{V} E \cdot J \, dV = \int_{V} \sigma E^2 dV$$

2.4.2 Uncontrolled Exposure

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices. [2].

2.4.3 Controlled Exposure

In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program. If appropriate, warning signs and labels can also be used to establish such awareness by providing prominent information on the risk of potential exposure and instructions on methods to minimize such exposure risks. [2].

2.5 Measurement System Description

2.5.1 System Setup

Measurements are performed using the DASY4 automated dosimetric assessment system (figure 1) made by Schmid & Partner Engineering AG (SPEAG)in Zurich, Switzerland.

Figure 1

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- An unit to operate the optical surface detector which is connected to the EOC.
- The Electro-optical converter (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the measurement server.
- The functions of the measurement server is to perform the time critical task such as signal filtering, surveillance of the robot operation, fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows NT.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes (see Application Notes).
- System validation dipoles allowing to validate the proper functioning of the system.

2.5.2 Phantom Description

(Figure 2.1)

The SAM twin phantom V4.0 (figure 2.1) is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

(Figure 2.2)

The Oval flat phantom (ELI 4) (figure 2.2) is a fiberglass shell phantom with 2 mm thickness.

The phantom is integrated in a wooden table.

The bottom plate of the table contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids).

A cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom positions with respect to the robot.

2.5.3 Tissue Simulating Liquids

The parameters of the tissue simulating liquid strongly influence the SAR. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 62311, IEEE P1528-2003.

Tissue dielectric properties

	He	ad	Body	
Frequency (MHz)	Relative Dielectric Constant (ε _r)	Conductivity (σ) (S/m)	Relative Dielectric Constant (ε _r)	Conductivity (σ) (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
1450	40.5	1.20	54.0	1.30
1800	40.0	1.40	53.3	1.52
1900	40.0	1.40	53.3	1.52
2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

2.5.4 Device Holder

The DASY device holder (figure 3.1 and 3.2) is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The rotation centers for both scales is the ear opening. Thus the device needs no repositioning when changing the angles.

Figure 3.1

Figure 3.2

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.5.5 Probes

The SAR measurements were conducted with the dosimetric probe ET3DV6 (figure 4), designed in the classical triangular configuration and optimized for dosimetric evaluation. [3] The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

Figure 4

Probe Specifications

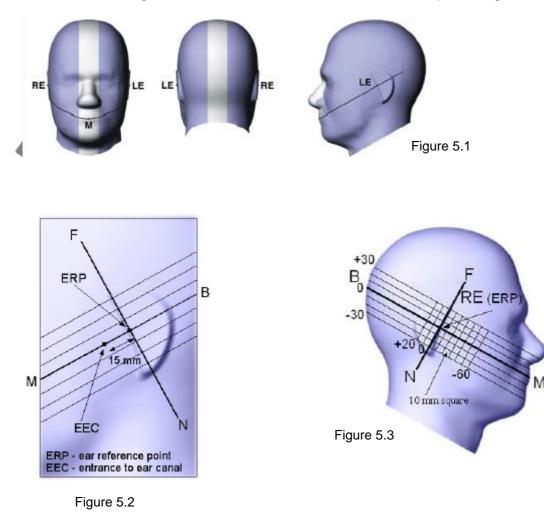
Calibration:	In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 835 MHz, 900 MHz, 1800 MHz, 1900 MHz and 2450 MHz Calibration certificates please find attached.
Frequency:	10 MHz to > 3 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in HSL (rotation around probe axis)
	\pm 0.4 dB in HSL (rotation normal probe axis)
Dynamic Range:	5 μW/g to > 100 mW/g;
Linearity:	± 0.2 dB
Dimensions:	Overall length: 330 m Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

2.6 Test System Specification

Positioner	
Robot:	Stäubli Animation Corp. Robot Model: RX90B L
Repeatability:	0.02 mm
No. of axis:	6
Data Acquisition Electronic (DAE)	System
Cell Controller	Pentium IV
Processor:	
Clock Speed:	2.0 GHz Windows 2000
Operating System: Data Card:	DASY4 PC-Board
Data Card. Data Converter	DAST4 FC-DUalu
Features:	Signal Amplifier, multiplexer, A/D converter, & control logic
Software:	DASY4 software
Connecting Lines:	Optical downlink for data and status info.
Conneoling Eines.	Optical uplink for commands and clock
PC Interface Card	
Function:	24 bit (64 MHz) DSP for real time processing
	Link to DAE3
	16 bit A/D converter for surface detection system
	serial link to robot
	direct emergency stop output for robot
E-Field Probes	
Model:	ET3DV6 SN1711
Construction:	Triangular core fiber optic detection system
Frequency:	10 MHz to 6 GHz
Linearity:	± 0.2 dB (30MHz to 3 GHz)
Phantom	
Phantom 1:	Oval flat phantom (ELI 4)
Shell Material: Thickness:	Fiberglass 2.0 + 0.2 mm
Thickness.	2.0 ± 0.2 [1][1]
Phantom 2:	SAM Twin Phantom (V4.0)
Shell Material:	Fiberglass
Thickness:	$2.0 \pm 0.2 \text{ mm}$

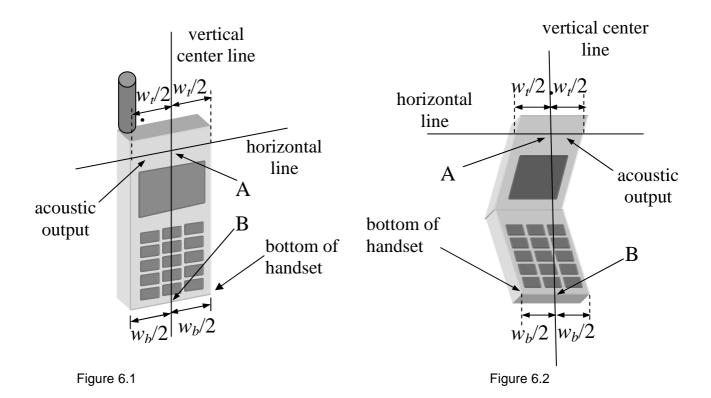
2.7 Measurement Procedure

The evaluation was performed using the following procedure:


- 1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 10 mm x 10 mm.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 30 mm x 30 mm x 30 mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 5 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface was extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions) [4] [5]. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as procedure # 1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

2.8 Reference Points

2.8.1 Ear Reference Points


Figure 5.1 shows the front, back and side vies of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.2. The plane passing through the two ear reference points and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.3). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the N-F line, the ear is truncated as illustrated in Figure 5.2. The ear truncation is introduced to avoid the handset from touching the ear lobe, which can cause unstable handset positioning at the cheek. [6]

2.8.2 Handset Reference Points

Two imaginary lines on the handset were defined: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width *wt* of the handset at the level of the acoustic output (point A on Figures 6.1 and 6.2), and the midpoint of the width *wb* of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 6.1). The two lines intersect at point A. For many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. The vertical centerline is not necessarily parallel to the front face of the handset (see Figure 6.2), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets. [6]

2.9 Test Positions

2.9.1 "Cheek" / "Touch" Position

The EUT was positioned close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.

The EUT was translated towards the phantom along the line passing through RE and LE until the handset touches the pinna.

While maintaining the handset in this plane, the EUT was rotated it around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (called the reference plane).

The EUT was rotated around the vertical centerline until the handset (horizontal line) was symmetrical with respect to the line NF.

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, the EUT was rotated about the line NF until any point on the handset was in contact with a phantom point below the pinna (cheek). [6] See Figure 7.

Figure 7

2.9.2 "Tilted" Position

The EUT was in "cheek position".

While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.

The EUT was rotated around the horizontal line by 15 degrees.

While maintaining the orientation of the handset, the EUT was moved towards the phantom on a line passing through RE and LE until any part of the handset touched the ear. The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset would be reduced. In this case, the tilted position is obtained if any part of the handset was in contact with the pinna as well as a second part of the handset was in contact with the back of the head). [6] See Figure 8.

Figure 8

2.9.3 Belt Clip/Holster Configuration

Test configurations for body-worn operated EUTs are carried out while the belt-clip and/or holster is attached to the EUT and placed against a flat phantom in a regular configuration (see Figure 9). An EUT with a headset output is tested with a headset connected to the device.

Body dielectric parameters are used.

There are two categories for accessories for body-worn operation configurations:

- 1. accessories not containing metallic components
- 2. accessories containing metallic components.

When the EUT is equipped with accessories not containing metallic components the tests are done with the accessory that dictates the closest spacing to the body. For accessories containing metallic parts a test with each one is implemented. If the multiple accessories share an identical metallic component (e.g. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that has the closest spacing to the body is tested.

In case that a EUT authorized to be body-worn is not supplied or has no options to be operated with any accessories, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters operating in front of a person's face (e.g. push-to-talk configurations) are tested for SAR compliance with the front of the device positioned to face the flat platform. SAR Compliance tests for shoulder, waist or chest-worn transmitters are carried out with the accessories including headsets and microphones attached to the device and placed against a flat phantom in a regular configuration.

The SAR measurements are performed to investigate the worst-case positioning. This is documented and used to perform Body SAR testing. [2].

Figure 9

2.9.4 Headset Configuration

Headsets which have their radiating structure in close proximity to the head are measured according to the following conditions.

- Head tissue liquid is used.
- The EUT is positioned on the surface of the head of phantom according the picture below. Right and left position is tested according to the normal use (see figure 10).
- Additional metallic parts like clips or others are subject of testing, too.

Figure 10

Headsets which have their radiating structure in close proximity to the body are tested as body worn equipment.

2.10 Measurement uncertainty

The uncertainty budget has been determined for the DASY4 system performance check according to IEEE Std. 1528-2003 December 2003.

	Tol.	Prob.	Div.	(^c i) ¹	Std. unc.	(^v i) ²
Error Description	(± %)	dist.		(1 g)	(1 g) (± %)	
Measurement System						
Probe Calibration	4.8	N	1	1	4.8	∞
Axial Isotropy	4.7	R	[√] 3	0.7	1.9	∞
Hemispherical Isotropy	9.6	R	[∨] 3	0.7	3.9	∞
Boundary Effects	1.0	R	^۷ З	1	0.6	∞
Linearity	4.7	R	^۷ З	1	2.7	∞
System Detection Limit	1.0	R	[√] 3	1	0.6	∞
Readout Electronics	1.0	N	1	1	1.0	∞
Response Time	0.8	R	^۷ З	1	0.5	∞
Integration Time	2.6	R	^۷ З	1	1.5	∞
RF Ambient Conditions	3.0	R	^۷ З	1	1.7	∞
Probe Positioner	0.4	R	^۷ З	1	0.2	∞
Probe Positioning	2.9	R	^۷ З	1	1.7	∞
Algorithms for Max. SAR Eval.	1.0	R	^۷ З	1	0.6	∞
Test Sample Related						
Device Positioning	2.9	N	1	1	2.9	145
Device Holder	3.6	Ν	1	1	3.6	5
Power Drift	5.0	R	[∨] 3	1	2.9	∞
Phantom and Setup						
Phantom Uncertainty	4.0	R	[√] 3	1	2.3	∞
Liquid Conductivity (target)	5.0	R.	[√] 3	0.64	1.8	∞
Liquid Conductivity (meas.)	2.6	N	1	0.64	1.7	ø
Liquid Permittivity (target)	5.0	R	[∨] 3	0.6	1.7	∞
Liquid Permittivity (meas.)	3.8	N	1	0.6	2.3	∞
Combined Standard Uncertainty					10.4	330
Expanded Uncertainty kp = 2						
Coverage Factor for 95 %					20.8	

The budget is valid for the frequency range 300 MHz - 3 GHz and represent a worst case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

3 Tissue and System Verification

3.1 Tissue Verification

Dielectric parameters of the simulating liquids were verified using a Dielectric Probe Kit Agilent 85070D to a tolerance of \pm 5 %.

Room Temperature: 22.1 - 22.6 ° C

	900 MHz	Muscle	1900 MHz	Muscle
	Target	Target Measured		Measured
Date:		17.08.2010 18.08.2010		20.08.2010
Liquid Temperature: °C		22,1		22,1
Dielectric Constant: ε	55,0	54,1	53,3	51,9
Conductivity: σ	1,05	1,01	1,52	1,56

	Measured Tissue Parameters				
	2450 MHz Muscle Target Measured				
Date:		24.08.2010			
Liquid Temperature: ° C		22,1			
Dielectric Constant: ε	52,7	52,9			
Conductivity: σ	1,95	2,03			

3.2 System Verification

Prior to the assessment, the system was verified by using a 850 / 1900 and 2450MHz validation dipole. Power level of 250 mW was supplied to the dipole antenna placed under the flat section of SAM Phantom.

The system was verified to a tolerance of \pm 10 %.

Liquid Temperature:	22.0 - 22.3 ° C
Room Temperature:	22.1 - 22.6 ° C
Liquid Depth:	>15.5 cm

	System Dipole Validation Target & Measurement							
Date	System Validation Kit:	Liquid	Targeted SAR 1 g (mW/g)	Measured SAR 1 g (mW/g)	Deviation (%)			
17.08.2010	D900V2 SN164	900 MHz Muscle	11.2	10.64	-5,00			
18.08.2010	D900V2 SN164	900 MHz Muscle	11.2	10.76	-3.929			
20.08.2010	D1900V2 SN5d025	1900 MHz Muscle	45.6	42.8	-6.14			
23.08.2010	D1900V2 SN5d025	1900 MHz Muscle	45.6	42.4	-7.02			
24.08.2010	D2450V2 SN722	2450 MHz Muscle	54.8	56.8	3.65			

Comment: Please find attached the measurement plots.

4 Test Results

Procedures Used To Establish Test Signal

The EUT was placed into simulated call mode (e.g. AMPS, Cellular CDMA & PCS CDMA modes) using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [2]. The actual transmission is activated through a base station simulator or similar when test modes are not available or inappropriate for testing the EUT.

The EUT is rechargeable battery operated. The battery used for the SAR measurements was completely charged. The device was tested at full power verified by implementing conducted output power measurements. For confirming of the output power it was tested before and after each SAR measurement. The test was repeated if a conducted power deviation of more than 5 % occurred.

Frequency band: Liquid Temperature:	GSM 850 22.0 - 22.3 ° C	Room Temperature: 22.1 - 22.6 ° C
Mixture Type:	900 MHz Muscle	
Date:	17.08.2010	

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(mW/g)
824,2	128	EGPRS	-0.115	Integral	Flat	Front	0.865
824,2	128	GPRS	-0.129	Integral	Flat	Back	0.646
824,2	128	GPRS	-0.119	Integral	Flat	Front	0.883
836,2	188	GPRS	-0.115	Integral	Flat	Back	0.600
836,2	188	GPRS	-0.108	Integral	Flat	Front	0.815
848,8	251	GPRS	-0.190	Integral	Flat	Back	0.500
848,8	251	GPRS	-0.102	Integral	Flat	Front	0.713

Note: Upper and lower frequencies were measured at the worst position.

Frequency band:	
Liquid Temperatur	e:
Mixture Type:	
Date:	

GSM 1900 22.0 - 22.3 °C 1900 MHz Muscle 23.08.2010

Room Temperature: 22.1 - 22.6 °C

Frequency		/	Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(mW/g)
1850,2	512	GPRS	-0.172	Integral	Flat	Back	0.286
1880,0	661	GPRS	-0.115	Integral	Flat	Back	0.264
1880,0	661	GPRS	-0.132	Integral	Flat	Front	0.200
1909,8	810	GPRS	-0.127	Integral	Flat	Back	0.207

Frequency band: Mixture Type: Date: Liquid Temperature: UMTS Operation Band V 900 MHz Muscle 18.08.2010 22.0 - 22.3 ° C

Room Temperature: 22.1 - 22.6 °C

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(mW/g)
826,6	4133	HSDPA	-0.103	Integral	Flat	Back	0.263
826,6	4133	HSDPA	0.105	Integral	Flat	Front	0.357
835,0	4175	HSDPA	0.037	Integral	Flat	Back	0.250
835,0	4175	HSDPA	0.100	Integral	Flat	Front	0.348
846,4	4232	HSDPA	0.180	Integral	Flat	Back	0.222
846,4	4232	HSDPA	0.129	Integral	Flat	Front	0.330

Frequency band: Mixture Type:	UMTS Operation Band II 1900 MHz Muscle	
Date: Liquid Temperature:	20.08.2010 22.0 - 22.3 ° C	Room Temperature: 22.1 - 22.6 ° C

	Frequency			Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(mW/g)
1852,6	9263	HSDPA	0.087	Integral	Flat	Back	0.304
1880,0	9400	HSDPA	-0.101	Integral	Flat	Back	0.416
1880,0	9400	HSDPA	0.156	Integral	Flat	Front	0.185
1907,4	9537	HSDPA	-0.101	Integral	Flat	Back	0.362

Mixture Type:	2450 MHz Muscle
Date:	24.08.2010
Liquid Temperature:	22.0 - 22.3 ° C

Room Temperature: 22.1 - 22.6 °C

Frequency				Antenna	Phantom	Test	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	Position 10mm	(W/kg)
2437	6	DSSS	-0.183	Integral	Flat	Back	0.045
2437	6	DSSS	0.169	Integral	Flat	Front	0.007

WLAN 802.11g OFDM transmission mode SAR values are lower than the values for the DSSS 802.11b transmission mode and have been omitted.

Limits:

	SAR (W/kg)					
Exposure Limits	Uncontrolled Exposure/General Population Environment			Expos	Controlled ure/Occupa nvironmen	
Region	Australia US EU		Australia	US	EU	
Spatial Average SAR (averaged over the whole body)	0.08	0.08	0.08	0.40	0.40	0.40
Spatial Peak SAR (averaged over any 1 g of tissue)	2.00	1.60	2.00	10.0	8.00	10.0
Spatial Peak SAR (Hands, Feet, Ankles, Wrist) (averaged over any 10 g of tissue)	4.00	4.00	4.00	20.0	20.0	20.0

Notes:

- 1. Test data represent the worst case SAR value and test procedure used are according to OET Bulletin 65, Supplement C (01-01).
- 2. All modes of operation were investigated.

5. Transmitter co-location performance evaluation

The following transmitters are implemented in the device:

- > Bluetooth
- WLAN 802.11b/g
- ➢ GSM/UMTS

For co-location calculation a transmitter has to fulfill multiple conditions before it has to be taken into account. The mutual distance of the antennas of two transmitters has to be lower than 200mm and the transmitter has to have a transmitter power above a certain threshold value before it is of any concern regarding transmitter co-transmission or co-location.

The Euclidean distances between the various transmitter antennas in the device are summarized in the table below. Again each technology that is closer than 200mm to another transmitter is relevant.

Distance Antenna to Antenna [mm]								
	Bluetooth	WLAN	GSM/UMTS					
Bluetooth		115	80					
WLAN	115		35					
GSM/UMTS	80	35						

The power threshold is given by the expression 60/f [GHz]. Any transmitter whose power level is larger than the value given by this threshold has to be taken into account.

Conducted Power Threshold										
Transmitter	Highest Frequency [MHz]	Conducted Power [dBm]	Conducted Power [mW]	60/f [GHz] Threshold [mW]	Over Threshold					
Bluetooth	2480	0.75	1.19	24.19	No					
WLAN 802.11b	2462	15.7	37.15	24.37	Yes					
GSM850	848.8	32.93	1963.36	70.69	Yes					
GSM1900	1909.8	29.41	872.97	31.42	Yes					
UMTS Band V	846.6	23.70	234.42	70.87	Yes					
UMTS Band II	1907.6	23.13	205.59	31.45	Yes					

Co-transmission capability							
	Bluetooth	WLAN	GSM/UMTS				
Bluetooth		Yes	Yes				
WLAN	Yes		Yes				
GSM/UMTS	Yes	Yes					

The following table list the co-transmission capability of the transmitters of the device.

Regarding the data given in the tables the following transmitter modes have to be taken into account:

- > WLAN 802.11b/g
- ➢ GSM/UMTS

For these transmitter modes the co-transmission SAR values are obtained:

	SAR co-location results								
Worst Case	GSM 850	GSM 850 GSM 1900 UMTS Band II		UMTS Band V	WLAN 802.11b	WLAN 802.11g	Σ SAR		
Position	848.8MHz	1909.8MHz	1907.6MHz	846.6MHz	2462MHz	2462MHz			
Flat Front	0.883				0.007		0.890		
Flat Back		0.286			0.045		0.331		
Flat Back			0.416		0.045		0.461		
Flat Front				0.357	0.007		0.364		

Limits:

	SAR (W/kg)					
Exposure Limits	Uncontrolled Exposure/General Population Environment			Controlled Exposure/Occupational Environment		
Region	Australia	US	EU	Australia	US	EU
Spatial Average SAR (averaged over the whole body)	0.08	0.08	0.08	0.40	0.40	0.40
Spatial Peak SAR (averaged over any 1 g of tissue)	2.00	1.60	2.00	10.0	8.00	10.0
Spatial Peak SAR (Hands, Feet, Ankles, Wrist) (averaged over any 10 g of tissue)	4.00	4.00	4.00	20.0	20.0	20.0

6 References

- [1] ANSI/IEEE C95.3 1991, *IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic fields, 300 kHz to 100 GHz,* New York: IEEE, Aug. 1992
- [2] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), *Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields*, July 2001.
- [3] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments,* IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [4] W. Gander, *Computer mathematics*, Birkhaeuser, Basel, 1992.
- [5] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recipes in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, December 2003 Recommended Practice for Determining the Peak Spatial-Average Absorption Rate (SAR in the Human Body Due to Wireless Communications Devices: Experimental Techniques.
- [7] DASY4 *Dosimetric Assessment System Manual*; Draft; September 6, 2002; Schmid & Partner Engineering AG

1. Annex A Calibration Certificate	D1900V2 SN5d025 D900V2 SN164 D2450V2 SN722 ET3DV6 SN1711 DAE3V1-522
------------------------------------	---

- 2. Annex B Measurement Plots
- 3. Annex C Pictures

Annex A

Calibration Certificate

Note:

The calibration cycle for SAR field probes and related equipment is determined to one year. According to Eurofins's internal quality management instruction based on EN 17025 the calibration cycle for other test equipment is determined to 2 years. Additionally, Eurofins has prolonged the calibration interval for SPEAG System Validation Dipoles by two additional years. These QM procedures are acknowledged by the accreditation bodies mentioned on page 3 of this report during several accreditation audits.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

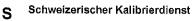
С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Eurofins

Certificate No: D900V2-164_Sep09


CALIBRATION CERTIFICATE Object D900V2 - SN: 164 QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: September 14, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 08-Oct-08 (No. 217-00898) Oct-09 Power sensor HP 8481A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205 Jun09) Jun-10 DAE4 SN: 601 07-Mar-09 (No. DAE4-601_Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Eunction Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 15, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.79 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	11.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	· <u></u>
SAR measured	250 mW input power	1.78 mW / g
SAR normalized	normalized to 1W	7.12 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	7.13 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.84 mW / g
SAR normalized	normalized to 1W	11.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	11.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	1.83 mW / g
SAR normalized	normalized to 1W	7.32 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	7.24 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 7.4 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 8.7 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.410 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

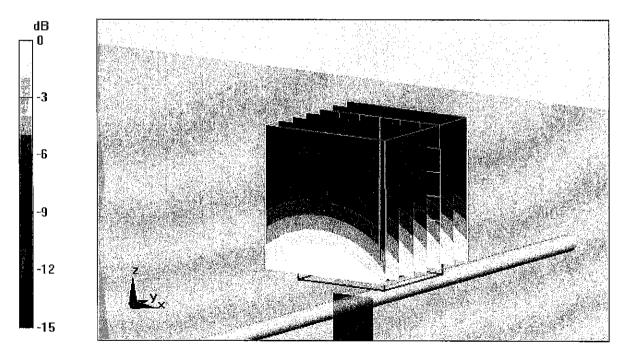
Manufactured by	SPEAG
Manufactured on	May 16, 2002

DASY5 Validation Report for Head TSL

Date/Time: 14.09.2009 09:39:14

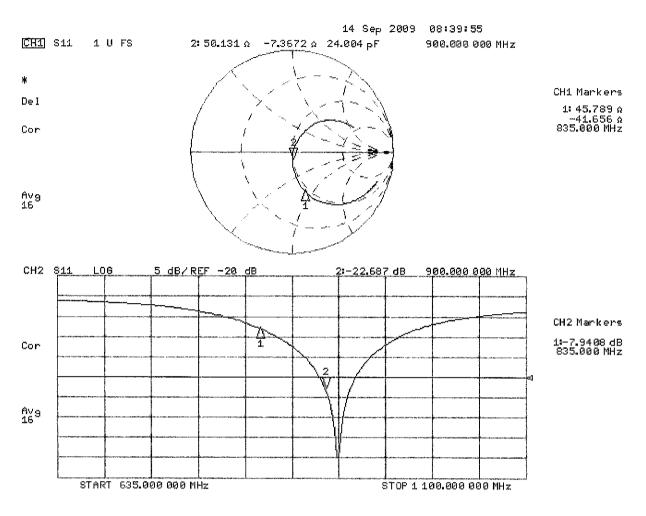
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:164


Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY 5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.9 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 4.23 W/kg SAR(1 g) = 2.79 mW/g; SAR(10 g) = 1.78 mW/g Maximum value of SAR (measured) = 3.28 mW/g

 $0 \, dB = 3.28 \, mW/g$

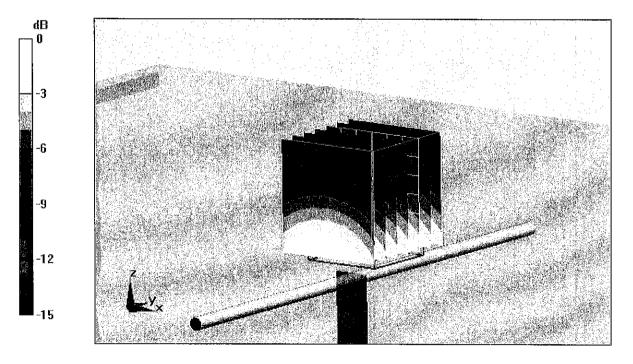
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 14.09.2009 10:47:13

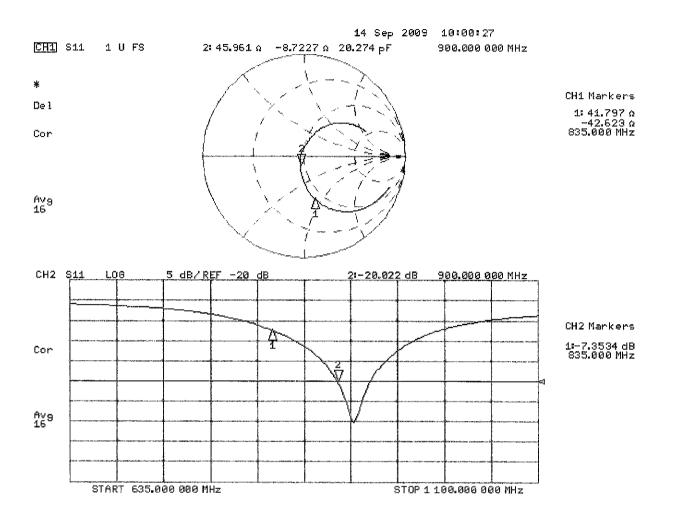
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:164


Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 900 MHz; $\sigma = 1.06$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY 5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.7 V/m; Power Drift = 0.00836 dBPeak SAR (extrapolated) = 4.23 W/kgSAR(1 g) = 2.84 mW/g; SAR(10 g) = 1.83 mW/gMaximum value of SAR (measured) = 3.31 mW/g

 $0 \, dB = 3.31 \, mW/g$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Eurofins Client

Certificate No: D1900V2-5d025-Sep09

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5d025				
Calibration procedure(s)	QA CAL-05.v7 Calibration procedure for dipole validation kits				
Calibration date:	September 15, 20	009			
Condition of the calibrated item	In Tolerance				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration)					
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09		
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09		
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-00395)			
Type-N mismatch combination	SN: 5047.2 / 06327		Mar-10		
Reference Probe ES3DV3	SN: 3205	31-Mar-09 (No. 217-01029)	Mar-10		
DAE4	SN: 601	26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	Jun-10 Mar-10		
		01 Mar 00 (No. DAE+001_Mar03)	Mai-10		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09		
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09		
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09		
	Name	Function	Signature		
Calibrated by:	Jeton Kastrati	Laboratory Technician	7 11		
Approved by:	Katja Pokovic	Technical Manager	Reilly		
This calibration certificate shall not	t be reproduced except in	full without written approval of the laboratory.	Issued: September 16, 2009		

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- 2 **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361. "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	40.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.39 mW / g
SAR normalized	normalized to 1W	21.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	21.4 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.94 mW / g
SAR normalized	normalized to 1W	39.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	39.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.23 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.8 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3 Ω + 5.9 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.2 Ω + 5.5 jΩ
Return Loss	- 22.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

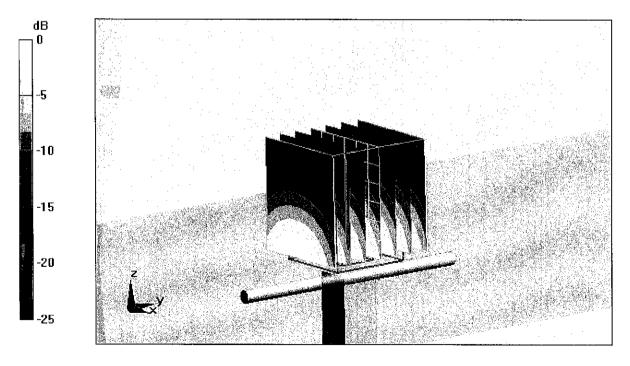
Manufactured by	SPEAG
Manufactured on	July 29, 2002

DASY5 Validation Report for Head TSL

Date/Time: 15.09.2009 14:19:40

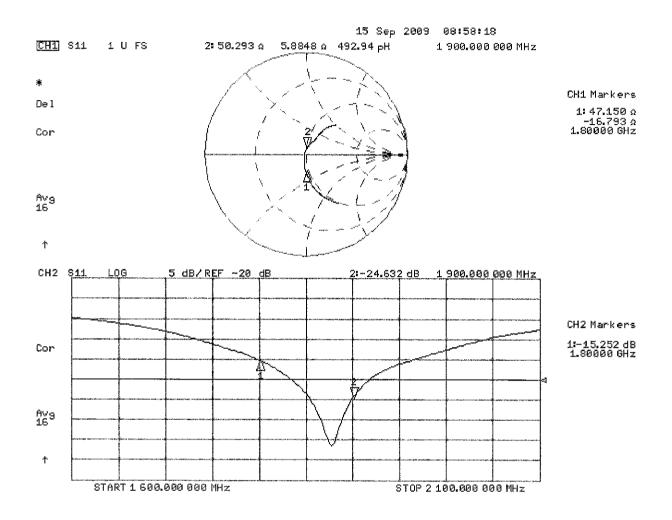
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d025


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY 5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 97 V/m; Power Drift = 0.025 dB Peak SAR (extrapolated) = 18.8 W/kg **SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.39 mW/g** Maximum value of SAR (measured) = 12.7 mW/g

0 dB = 12.7 mW/g

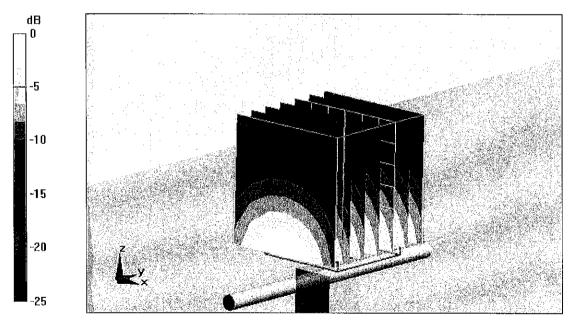
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

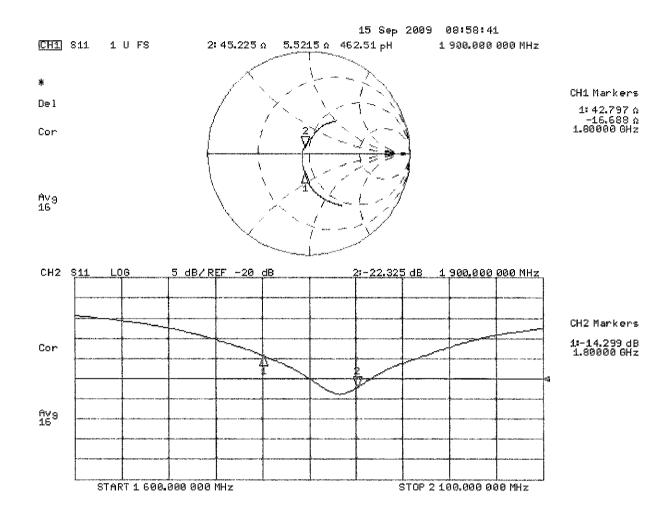
Date/Time: 15.09.2009 12:45:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d025


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ϵ_r = 53.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY 5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.1 V/m; Power Drift = 0.00862 dB Peak SAR (extrapolated) = 16.9 W/kg **SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.23 mW/g** Maximum value of SAR (measured) = 12.5 mW/g

 $0 \, dB = 12.5 \, mW/g$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Eurofins

Certificate No: D2450V2-722_Sep09

CALIBRATION CERTIFICATE Object D2450V2 - SN: 722 QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: September 15, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration GB37480704 08-Oct-08 (No. 217-00898) Power meter EPM-442A Oct-09 Power sensor HP 8481A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205 Jun09) Jun-10 DAE4 SN: 601 07-Mar-09 (No. DAE4-601 Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: September 16, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	· · · · · · · · · · · · · · · · · · ·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	20 - 11 - 1
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	54.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.37 mW / g
SAR normalized	normalized to 1W	25.5 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.6 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR normalized	normalized to 1W	52.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	52.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 mW / g
SAR normalized	normalized to 1W	24.3 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω + 6.9 jΩ
Return Loss	- 23.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω + 9.1 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

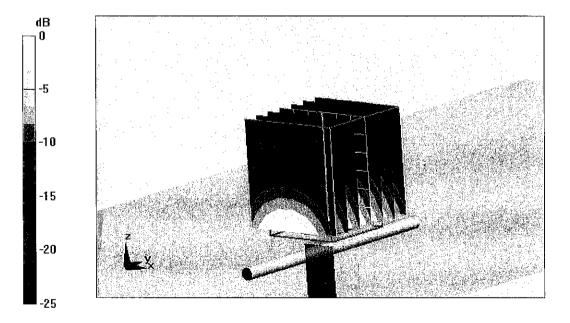
Manufactured by	SPEAG
Manufactured on	October 16, 2002

DASY5 Validation Report for Head TSL

Date/Time: 15.09.2009 15:14:17

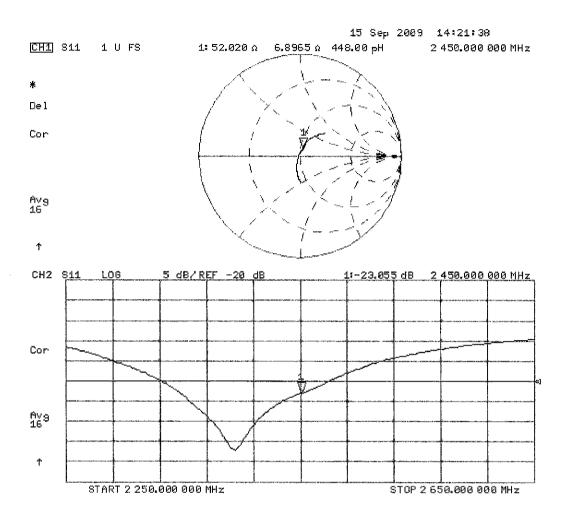
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN722


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.8 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.0 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.37 mW/g Maximum value of SAR (measured) = 17.5 mW/g

0 dB = 17.5 mW/g

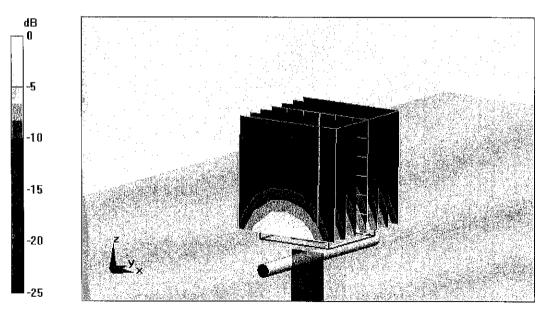
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 15.09.2009 16:00:06

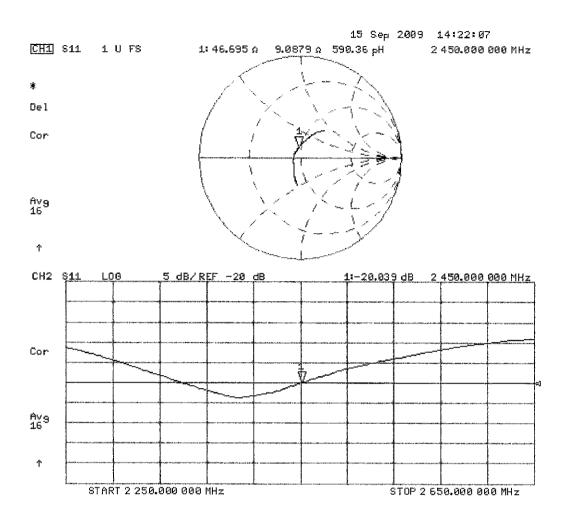
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:722


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.7 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.08 mW/g Maximum value of SAR (measured) = 17.3 mW/g

0 dB = 17.3 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

Client Eurofins		C C C C C C C C C C C C C C C C C C C	entificate No: DAE3-522_Sep10
	itait(6/.uit		
Object	DAES SD 0001D	03.AA-SN 522	
Calibration procedure(s)	QA CAL-06 v22 Calibration proces	dure for the data acquis	illion electronics (DAE)
Calibration date:	September 20, 20	010. Inc	
The measurements and the uncer	tainties with confidence pro	obability are given on the followi	physical units of measurements (SI). Ing pages and are part of the certificate. Ire (22 \pm 3)°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	1-Oct-09 (No: 9055)	Oct-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
¹ Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11
Calibrated by:	Name Dominique Steffen	Function	Signature
			le la companya de la companya
Approved by:	Fin Bomhölt	R&D Director	V Rymu
This calibration certificate shall no	t be reproduced except in	full without written approval of th	Issued: September 20, 2010 ne laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1μV ,	full range =	-100…+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring i	time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.261 \pm 0.1% (k=2)	$403.925 \pm 0.1\%$ (k=2)	$404.752 \pm 0.1\%$ (k=2)
Low Range	$3.96700 \pm 0.7\%$ (k=2)	$3.95919 \pm 0.7\%$ (k=2)	$3.97458 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	58.5 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200004.1	1.35	0.00
Channel X	+ Input	20000.26	0.86	0.00
Channel X	- Input	-19994.81	5.59	-0.03
Channel Y	+ Input	199992.1	-0.20	-0.00
Channel Y	+ Input	20002.06	1.96	0.01
Channel Y	- Input	-19998.16	1.94	-0.01
Channel Z	+ Input	200003.1	2.12	0.00
Channel Z	+ Input	19998.40	-1.50	-0.01
Channel Z	- Input	-19999.91	0.29	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.2	0.19	0.01
Channel X + Input	201.04	1.04	0.52
Channel X - Input	-201.29	-1.29	0.64
Channel Y + Input	2000.6	0.49	0.02
Channel Y + Input	199.39	-0.51	-0.26
Channel Y - Input	-201.40	-1.60	0.80
Channel Z + Input	2000.5	0.73	0.04
Channel Z + Input	198.64	-1.66	-0.83
Channel Z - Input	-201.22	-1.12	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.17	-5.74
	- 200	7.33	5.67
Channel Y	200	-0.78	-1.07
	- 200	-0.05	-0.27
Channel Z	200	16.53	16.33
	- 200	-17.70	-17.88

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	1.87	-0.02
Channel Y	200	1.47	-	2.49
Channel Z	200	0.96	-0.39	-

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15731	15714
Channel Y	15726	15841

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

5. Input Offset Measurement

Channel Z

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.59	-1.57	2.61	0.66
Channel Y	-1.07	-2.64	0.60	0.58
Channel Z	-0.07	-1.88	1.68	0.57

16061

16791

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	0.01	-8	-9	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client	Eurofins			Certificate No: EF	R3-2299_Sep10
CAL	IBRATION C	CERTIFICAT	E Walter	# (.). #	
Object		ER3DV6 - SN:2:	299		
Calibratio	on procedure(s)		ind QA CAL-25.v2/ edure for E-field probe r	es optimized for	close near field
Calibrati	on date:	September 20, 2	2010		
			tional standards, which realize probability are given on the fol		
All calibr	ations have been conduc	ted in the closed laborate	ory facility: environment tempe	rature (22 ± 3)°C and	humidity < 70%.
Calibrati	on Equipment used (M&T	E critical for calibration)			
Primary	Standards	ID #	Cal Date (Certificate No.)		Scheduled Calibration
	eter E4419B	GB41293874	1-Apr-10 (No. 217-01136)		Apr-11
Power se	ensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)		Apr-11
Power se	ensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)		Apr-11
Reference	ce 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-0115		Mar-11
Reference	ce 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-0116		Mar-11
Reference	ce 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-0116	D)	Mar-11
Referen	ce Probe ER3DV6	SN: 2328	3-Oct-09 (No. ER3-2328_	Oct09)	Oct-10
DAE4		SN: 789	31-Aug-10 (No. DAE4-789	9_Aug10)	Aug-11
Seconda	ary Standards	ID #	Check Date (in house)		Scheduled Check
RF gene	rator HP 8648C	US3642U01700	4-Aug-99 (in house check	Oct-09)	In house check: Oct-11
Network	Analyzer HP 8753E	US37390585	18-Oct-01 (in house chec		In house check: Oct10
Calibrate	əd by:	Name Katja Pokovis	Function Technical Ma	ahager.	Signature
Approve	d by:	Fin Bomholt	R&D Directo	F.	Saulidt
This cali	bration certificate shall no	ot be reproduced excent i	n full without written approval	of the laboratory	Issued: September 20, 2010

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura S
 - **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). ٠
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW • signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of • power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open . waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe ER3DV6

SN:2299

Manufactured: Last calibrated: Recalibrated: November 6, 2002 September 11, 2009 September 20, 2010

Calibrated for DASY/EASY Systems

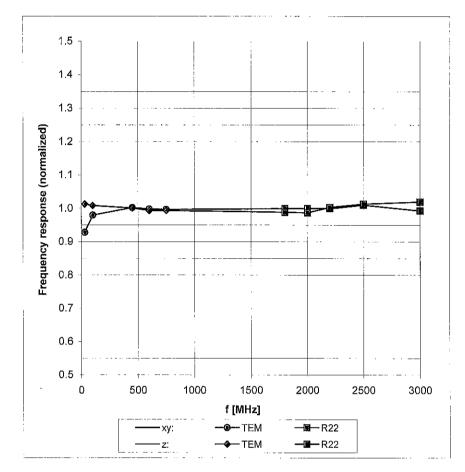
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ER3DV6 SN:2299

Basic Calibration Parameters

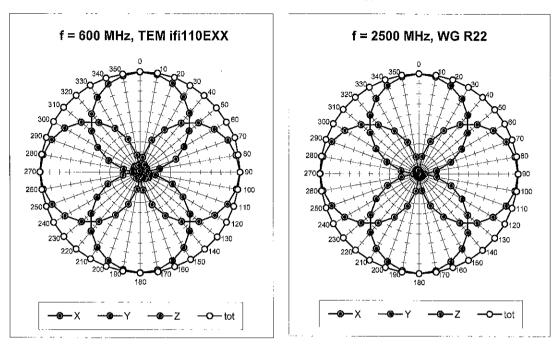
	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.06	1.21	1.46	± 10.1%
DCP (mV) ^A	93.3	93.6	98.4	

Modulation Calibration Parameters

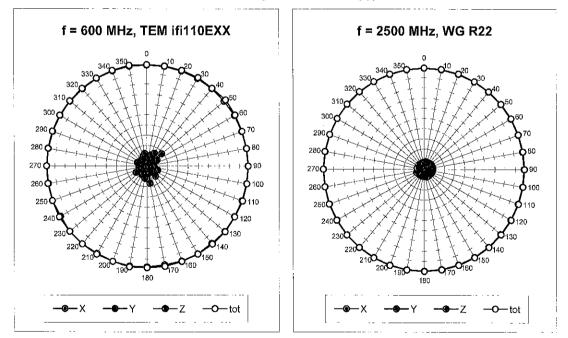

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300	± 1.5 %
1			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

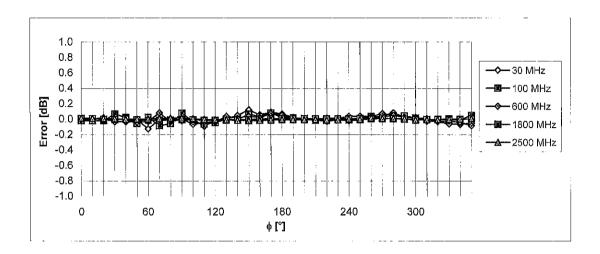
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A numerical linearization parameter: uncertainty not required

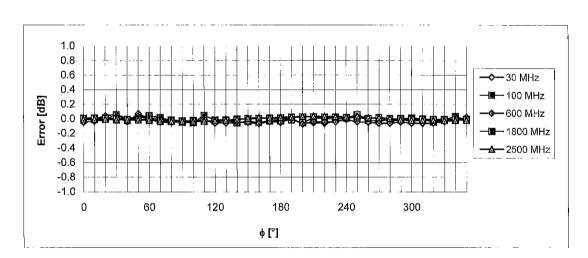

^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

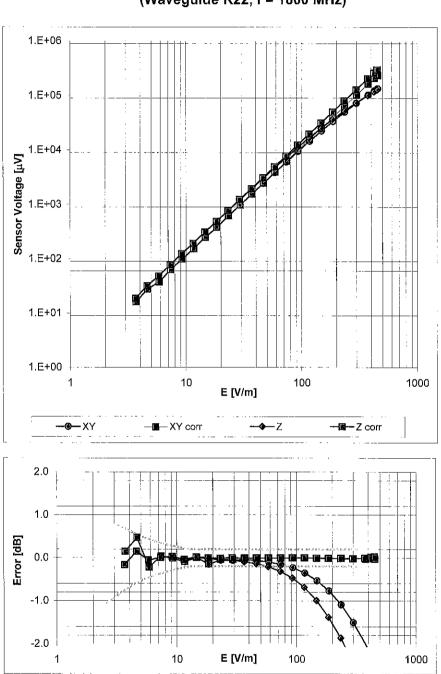
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide R22)

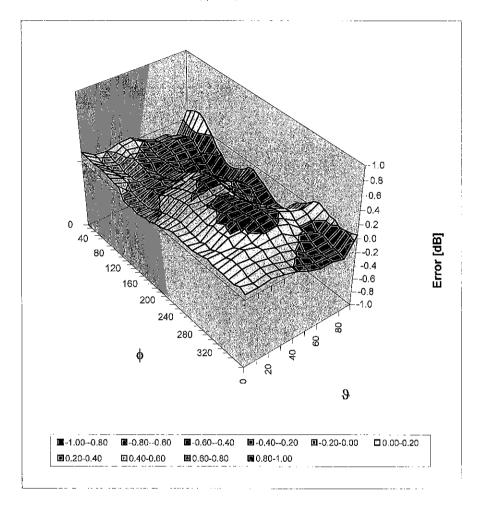

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), ϑ = 0°


Receiving Pattern (ϕ), ϑ = 90°


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ **),** ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-50.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Eurofins Product Service

Annex B

Measurement Plots

Test Report No.: G0M21007-3507-S-1

Dipol Valid.900 (m) 250mW ELI4 17.08.2010

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz;Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Dipol 900 (250mW)/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.95 mW/g

Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.9 V/m; Power Drift = -0.011 dBPeak SAR (extrapolated) = 3.82 W/kgSAR(1 g) = 2.66 mW/g; SAR(10 g) = 1.73 mW/gMaximum value of SAR (measured) = 2.90 mW/g

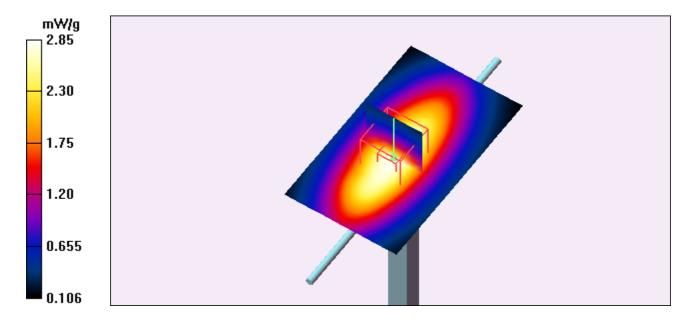
Dipol Valid.900 (m) 250mW ELI4 18.08.2010

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz;Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Dipol 900 (250mW)/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.85 mW/g

Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.0 V/m; Power Drift = -0.025 dBPeak SAR (extrapolated) = 3.93 W/kgSAR(1 g) = 2.69 mW/g; SAR(10 g) = 1.74 mW/gMaximum value of SAR (measured) = 2.90 mW/g

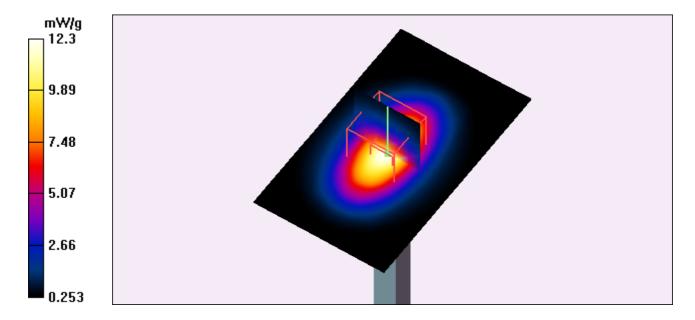
Dipol Valid.1900 (m)_250mW_ELI4_20.08.2010

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Dipol 1900 (250mW)/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.3 mW/g

Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.7 V/m; Power Drift = -0.057 dBPeak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.78 mW/g Maximum value of SAR (measured) = 12.3 mW/g

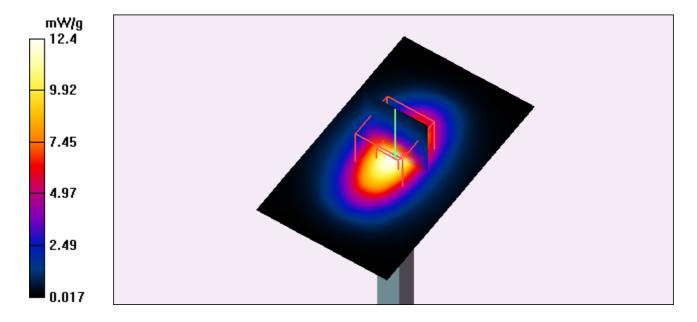
Dipol Valid.1900 (m)_250mW_ELI4_23.08.2010

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 51.9$; ρ

= 1000 kg/m^3 Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Dipol 1900 (250mW)/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.4 mW/g

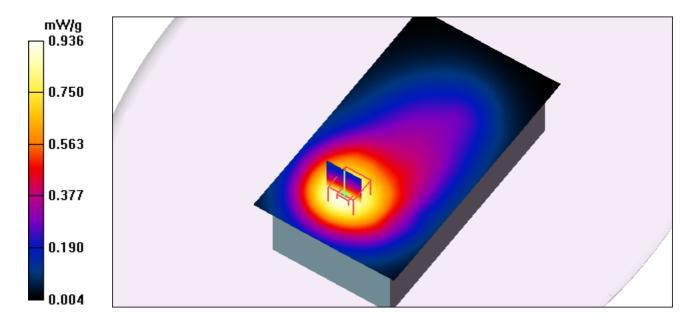
Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.2 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.72 mW/g Maximum value of SAR (measured) = 12.3 mW/g

GSM-850_CH_128_EGPRS_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used: f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.9$; ρ


= 1000 kg/m^3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

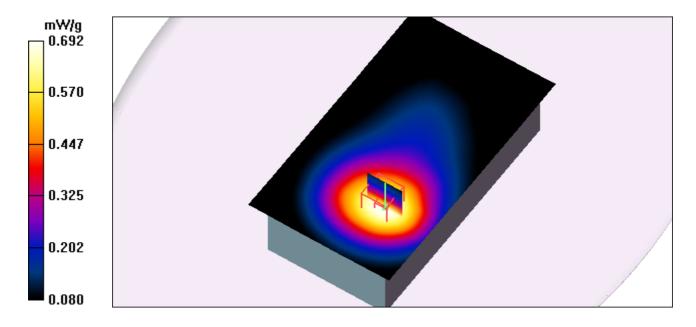
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.936 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.7 V/m; Power Drift = -0.115 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.865 mW/g; SAR(10 g) = 0.626 mW/g Maximum value of SAR (measured) = 0.922 mW/g

GSM-850_CH_128_GPRS_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used: f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.9$; ρ


= 1000 kg/m^3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

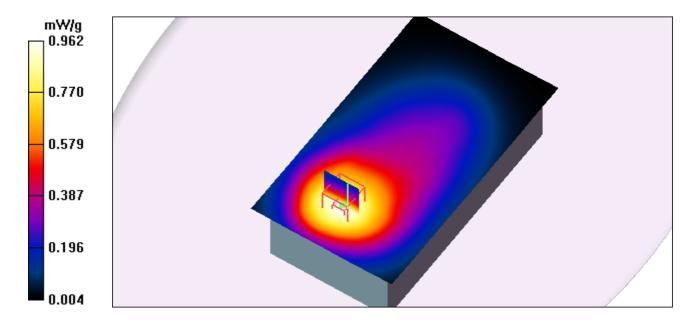
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.701 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.7 V/m; Power Drift = -0.129 dB Peak SAR (extrapolated) = 0.849 W/kg SAR(1 g) = 0.646 mW/g; SAR(10 g) = 0.463 mW/g Maximum value of SAR (measured) = 0.692 mW/g

GSM-850_CH_128_GPRS_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used : f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m^3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

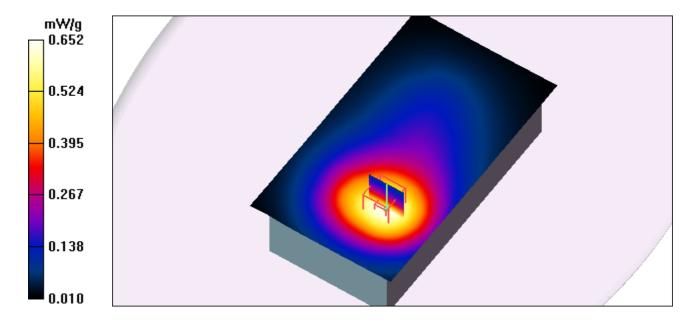
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.962 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.8 V/m; Power Drift = -0.119 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.883 mW/g; SAR(10 g) = 0.637 mW/gMaximum value of SAR (measured) = 0.948 mW/g

GSM-850_CH_188_GPRS_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 836.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used: f = 836.2 MHz; $\sigma = 0.936$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

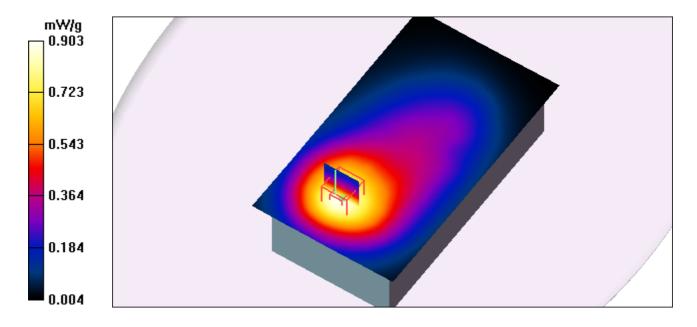
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.652 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.3 V/m; Power Drift = -0.115 dB Peak SAR (extrapolated) = 0.806 W/kg SAR(1 g) = 0.600 mW/g; SAR(10 g) = 0.429 mW/g Maximum value of SAR (measured) = 0.636 mW/g

GSM-850_CH_188_GPRS_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 836.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used: f = 836.2 MHz; $\sigma = 0.936$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

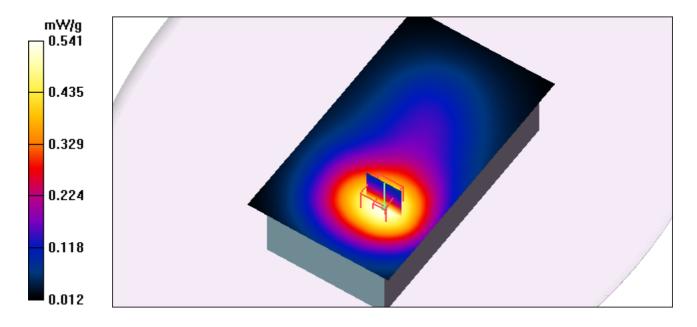
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.903 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.4 V/m; Power Drift = -0.108 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.815 mW/g; SAR(10 g) = 0.591 mW/gMaximum value of SAR (measured) = 0.862 mW/g

GSM-850_CH_251_GPRS_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.944$ mho/m; $\epsilon_r = 54.7$; ρ


= 1000 kg/m^3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

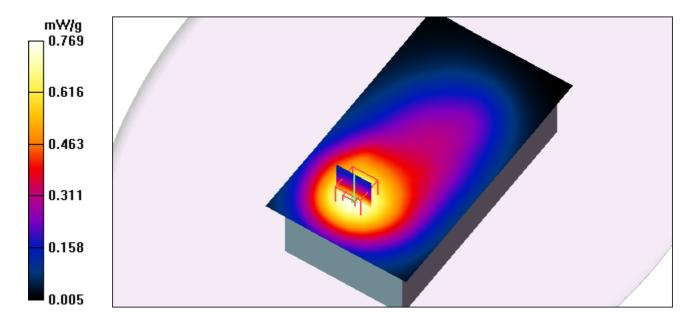
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.541 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.0 V/m; Power Drift = -0.190 dB Peak SAR (extrapolated) = 0.670 W/kgSAR(1 g) = 0.500 mW/g; SAR(10 g) = 0.357 mW/gMaximum value of SAR (measured) = 0.533 mW/g

GSM-850_CH_251_GPRS_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.944$ mho/m; $\epsilon_r = 54.7$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

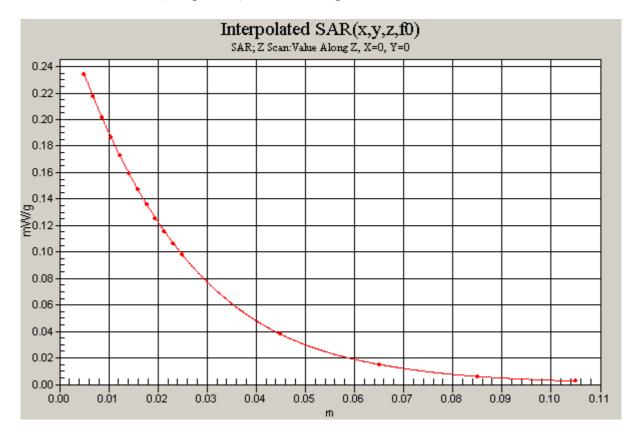
- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.769 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.2 V/m; Power Drift = -0.102 dB Peak SAR (extrapolated) = 0.945 W/kg SAR(1 g) = 0.713 mW/g; SAR(10 g) = 0.514 mW/g Maximum value of SAR (measured) = 0.760 mW/g

Z - axis scan

DUT: Field controller Tornado; Type: CS 10; Serial: 008


Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 900 MHz Medium parameters used : f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.8$; ρ

= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

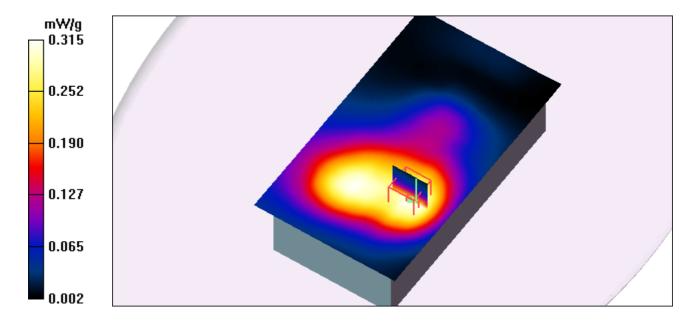
- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Z Scan (1x1x16): Measurement grid: dx=20mm, dy=20mm, dz=20mm Maximum value of SAR (interpolated) = 0.234 mW/g

GSM-1900_CH_512_GPRS_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

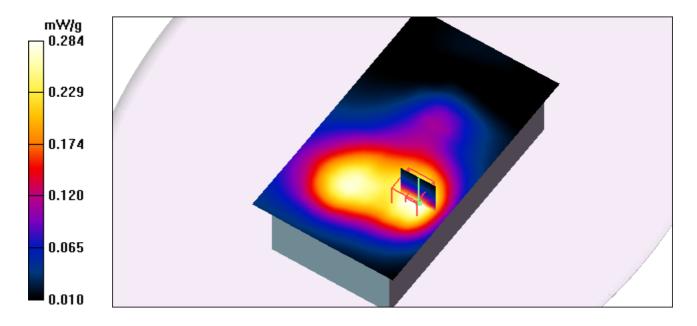
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.315 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.0 V/m; Power Drift = -0.172 dB Peak SAR (extrapolated) = 0.417 W/kg SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.185 mW/gMaximum value of SAR (measured) = 0.311 mW/g

GSM-1900_CH_661_GPRS_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

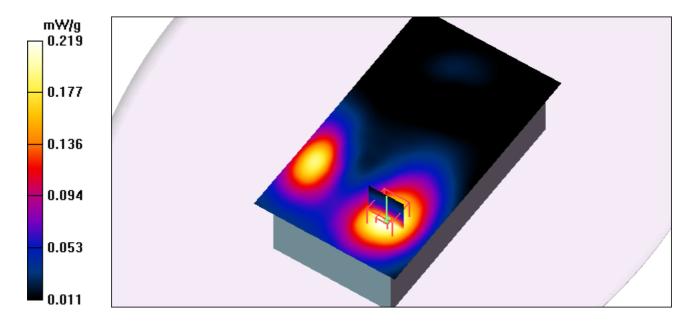
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.294 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.52 V/m; Power Drift = -0.115 dB Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.284 mW/g

GSM-1900_CH_661_GPRS_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

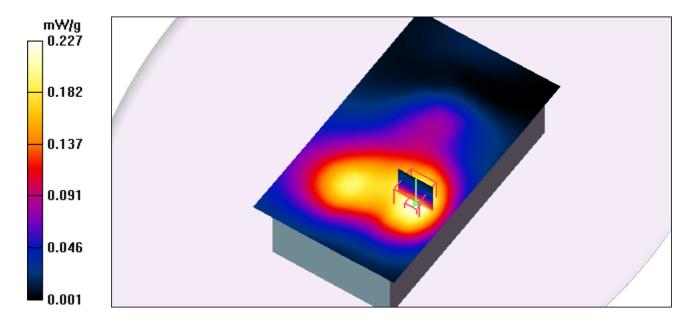
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.225 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.10 V/m; Power Drift = -0.132 dB Peak SAR (extrapolated) = 0.274 W/kg SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.130 mW/g Maximum value of SAR (measured) = 0.219 mW/g

GSM-1900_CH_810_GPRS_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: Muscle 1900 MHz Medium parameters used: f = 1909.8 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 51.9$;


 $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

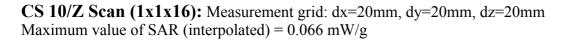
DASY4 Configuration:

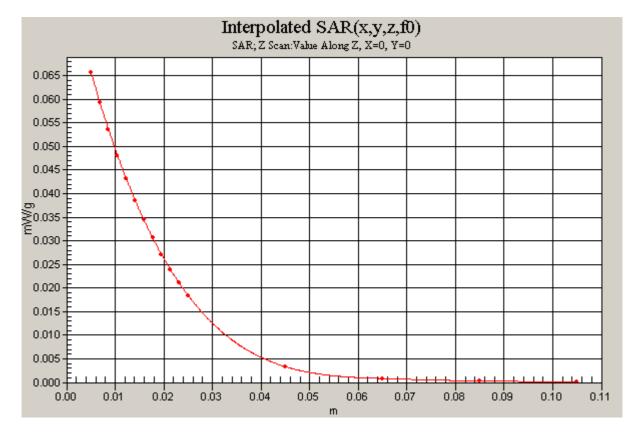
- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.227 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.45 V/m; Power Drift = -0.127 dB Peak SAR (extrapolated) = 0.308 W/kg SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.132 mW/g Maximum value of SAR (measured) = 0.226 mW/g

Z - axis scan


DUT: Field controller Tornado; Type: CS 10; Serial: 008


Communication System: GSM 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: Muscle 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52$; ρ

= 1000 kg/m³ Phantom section: Flat Section

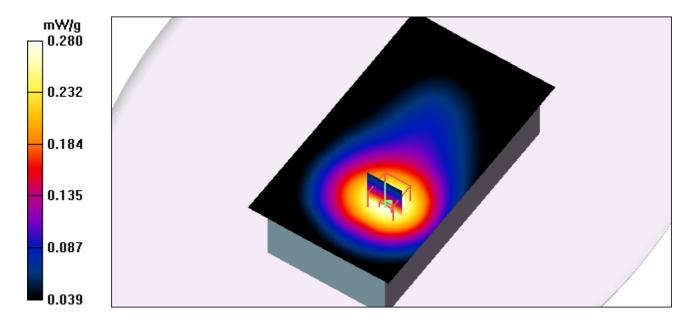
DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

FDD-V_CH_4133_HSDPA_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band V; Frequency: 826.6 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 826.6 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

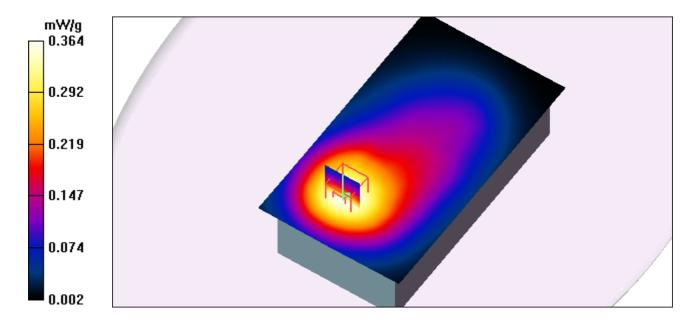
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.283 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.103 dB Peak SAR (extrapolated) = 0.332 W/kg SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.193 mW/g Maximum value of SAR (measured) = 0.280 mW/g

FDD-V_CH_4133_HSDPA_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band V; Frequency: 826.6 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 826.6 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

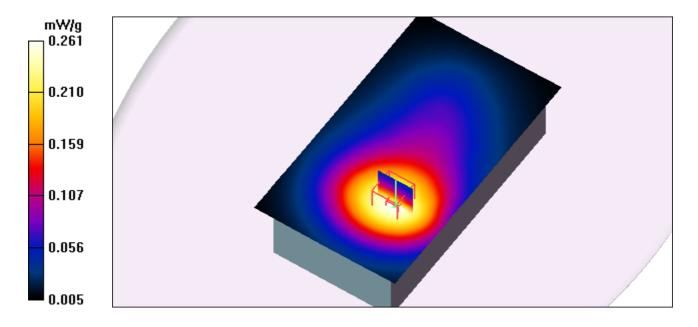
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.364 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.2 V/m; Power Drift = 0.105 dB Peak SAR (extrapolated) = 0.450 W/kg SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.265 mW/gMaximum value of SAR (measured) = 0.376 mW/g

FDD-V_CH_4175_HSDPA_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band V; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.931$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1.00$


1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

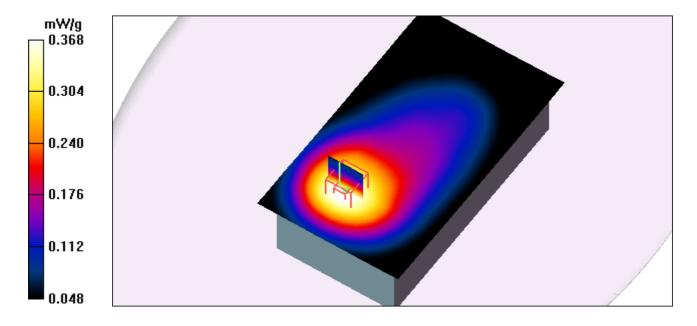
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.261 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.5 V/m; Power Drift = 0.037 dB Peak SAR (extrapolated) = 0.321 W/kg SAR(1 g) = 0.250 mW/g; SAR(10 g) = 0.184 mW/g Maximum value of SAR (measured) = 0.268 mW/g

FDD-V_CH_4175_HSDPA_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band V; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.931$ mho/m; $\varepsilon_r = 54.8$; $\rho = 2$


1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

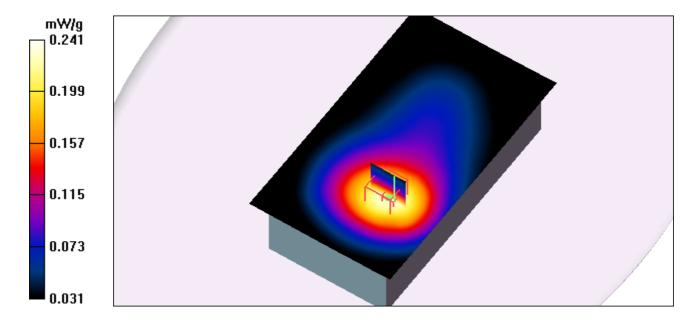
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.380 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.4 V/m; Power Drift = 0.100 dB Peak SAR (extrapolated) = 0.444 W/kg SAR(1 g) = 0.348 mW/g; SAR(10 g) = 0.258 mW/g Maximum value of SAR (measured) = 0.368 mW/g

FDD-V_CH_4232_HSDPA_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band V; Frequency: 846.4 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 846.4 MHz; $\sigma = 0.942$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

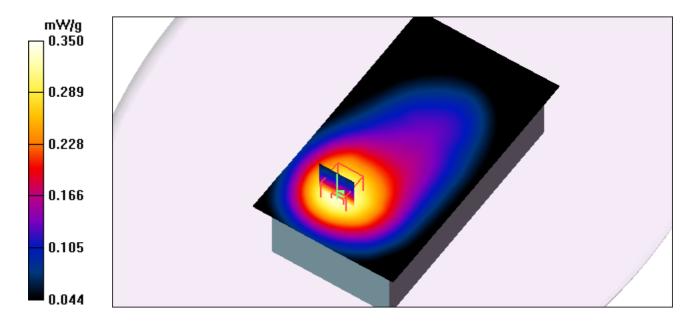
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.233 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.76 V/m; Power Drift = 0.180 dB Peak SAR (extrapolated) = 0.291 W/kg SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.161 mW/gMaximum value of SAR (measured) = 0.241 mW/g

FDD-V_CH_4232_HSDPA_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band V; Frequency: 846.4 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 846.4 MHz; $\sigma = 0.942$ mho/m; $\epsilon_r = 54.8$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

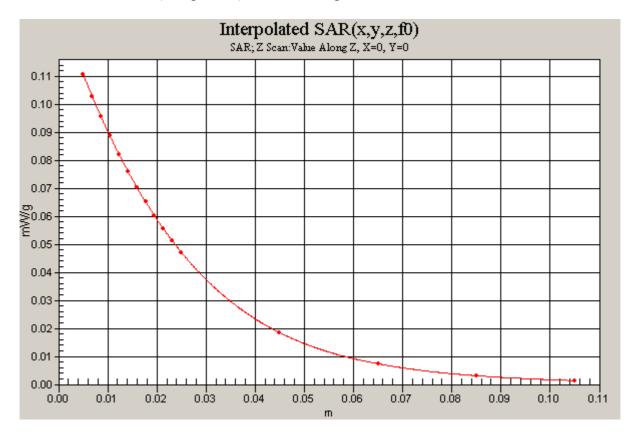
- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.333 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = 0.129 dB Peak SAR (extrapolated) = 0.422 W/kg SAR(1 g) = 0.330 mW/g; SAR(10 g) = 0.244 mW/g Maximum value of SAR (measured) = 0.350 mW/g

Z - axis scan

DUT: Field controller Tornado; Type: CS 10; Serial: 008


Communication System: UMTS Up Band V; Frequency: 826.6 MHz;Duty Cycle: 1:1 Medium: Muscle 900 MHz Medium parameters used: f = 826.6 MHz; $\sigma = 0.929$ mho/m; $\varepsilon_r = 54.8$; ρ

= 1000 kg/m³ Phantom section: Flat Section

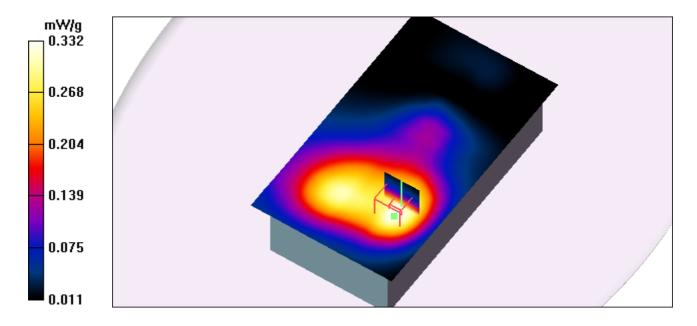
DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.85, 5.85, 5.85); Calibrated: 9/15/2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Z Scan (1x1x16): Measurement grid: dx=20mm, dy=20mm, dz=20mm Maximum value of SAR (interpolated) = 0.111 mW/g

FDD-II_CH_9263_HSDPA_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008


Communication System: UMTS Up Band II; Frequency: 1852.6 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used (interpolated): f = 1852.6 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

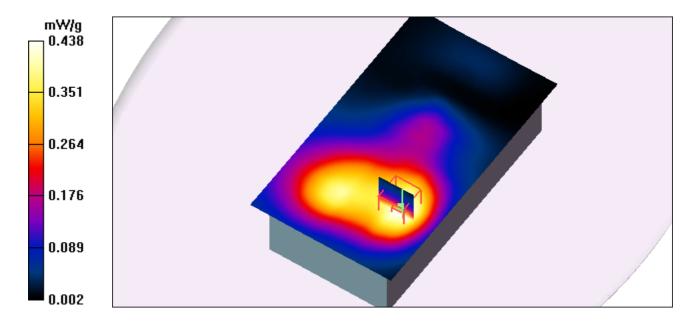
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.338 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.44 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 0.436 W/kg SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.194 mW/gMaximum value of SAR (measured) = 0.332 mW/g

FDD-II_CH_9400_HSDPA_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 51.9$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

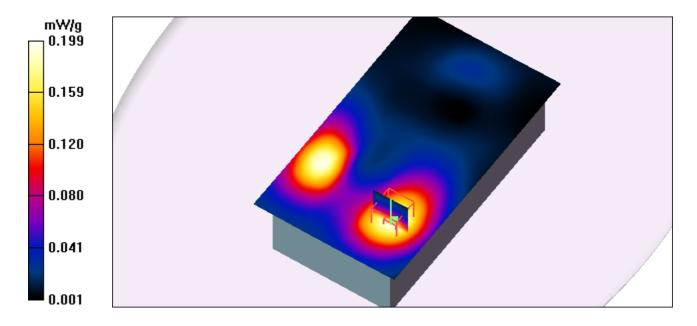
CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.438 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 0.607 W/kgSAR(1 g) = 0.416 mW/g; SAR(10 g) = 0.266 mW/gMaximum value of SAR (measured) = 0.451 mW/g

FDD-II_CH_9400_HSDPA_flat_front_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 51.9$; ρ


= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

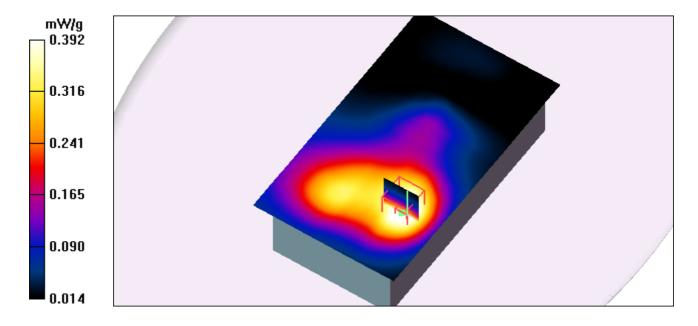
- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.199 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.94 V/m; Power Drift = 0.156 dB Peak SAR (extrapolated) = 0.245 W/kg SAR(1 g) = 0.185 mW/g; SAR(10 g) = 0.121 mW/g Maximum value of SAR (measured) = 0.202 mW/g

FDD-II_CH_9537_HSDPA_flat_back_10mm

DUT: Field controller Tornado; Type: CS 10; Serial: 008


Communication System: UMTS Up Band II; Frequency: 1907.4 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used (interpolated): f = 1907.4 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Area Scan (141x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.426 mW/g

CS 10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.4 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 0.539 W/kg SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.229 mW/g Maximum value of SAR (measured) = 0.392 mW/g

Z - axis scan

DUT: Field controller Tornado; Type: CS 10; Serial: 008

Communication System: UMTS Up Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\varepsilon_r = 51.9$; ρ

= 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.6, 4.6, 4.6); Calibrated: 9/15/2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS 10/Z Scan (1x1x16): Measurement grid: dx=20mm, dy=20mm, dz=20mm Maximum value of SAR (interpolated) = 0.077 mW/g

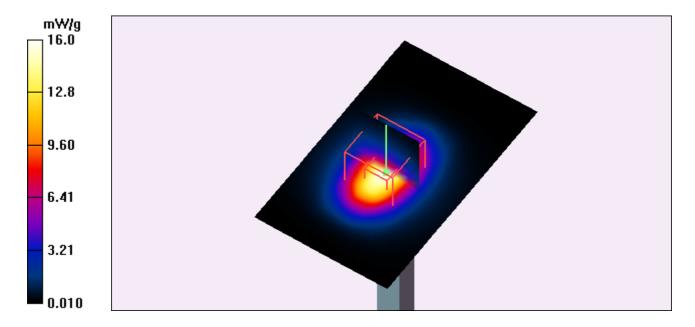
Dipol Valid.2450 (m)_250mW_ELI 4 24.08.2010

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 722

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1

Medium: Muscle 2450 MHz Medium parameters used : f = 2450 MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.07, 4.07, 4.07); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Dipol 2450 (250mW)/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.0 mW/g

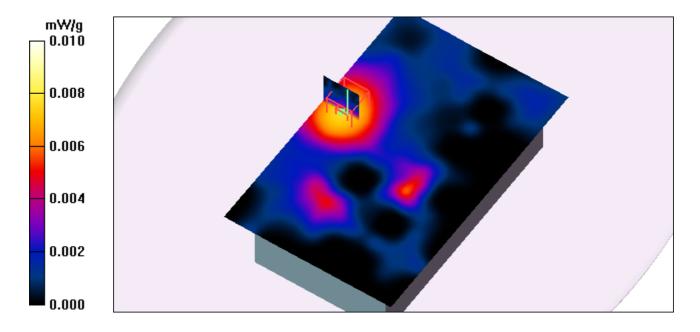
Dipol 2450 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.7 V/m; Power Drift = -0.037 dBPeak SAR (extrapolated) = 35.3 W/kgSAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.44 mW/gMaximum value of SAR (measured) = 15.6 mW/g

Wlan_Ch 6_DSSS_1Mbs_Flat_Front_10mm

DUT: Field controller; Type: CS10; Serial: 008

Communication System: WLAN 2450 FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: Muscle 2450 MHz Medium parameters used: f = 2437 MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 52.9$; ρ


= 1000 kg/m^3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.07, 4.07, 4.07); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

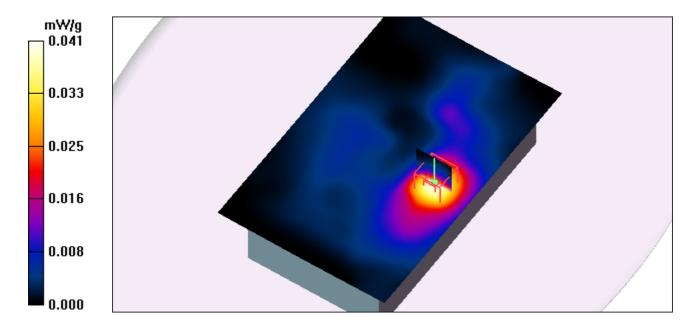
CS10/Area Scan (111x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.008 mW/g

CS10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.922 V/m; Power Drift = 0.169 dB Peak SAR (extrapolated) = 0.015 W/kg SAR(1 g) = 0.007 mW/g; SAR(10 g) = 0.00384 mW/g Maximum value of SAR (measured) = 0.008 mW/g

Wlan_Ch 6_DSSS_1Mbs_Flat_Back_10mm

DUT: Field controller; Type: CS10; Serial: 008

Communication System: WLAN 2450 FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: Muscle 2450 MHz Medium parameters used: f = 2437 MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 52.9$; ρ


= 1000 kg/m^3 Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.07, 4.07, 4.07); Calibrated: 9/15/2009
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/11/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

CS10/Area Scan (111x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.041 mW/g

CS10/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.35 V/m; Power Drift = -0.183 dB Peak SAR (extrapolated) = 0.101 W/kg SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.023 mW/g Maximum value of SAR (measured) = 0.047 mW/g

