

TEST REPORT

Test report no.: 1-5168/17-02-14-B

Dakks
Deutsche
Akkreditierungsstelle
D-PL-12076-01-03

BNetzA-CAB-02/21-102

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

Testing laboratory

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Leica Geosystems AG

Heinrich-Wild Strasse

9435 Heerbrugg / SWITZERLAND

Phone: Fax:

Contact: Poul Brandt

e-mail: poul.brandt@leica-geosystems.com

Phone: +45 66 17 07 84

Manufacturer

Leica Geosystems Technology A/S

Telehøjen 8

5220 Odense SØ / Denmark

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Personal Protection System (PPS)

Model name: CRS101 FCC ID: RFD-CRS101

Frequency: 5.925 GHz to 7.250 GHZ
Antenna: Integrated antenna

Power supply: 9 V to 36 V DC, by external power supply

Temperature range: -20°C to +50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

lest report authorized:	lest performed:
Karsten Geraldy	Benedikt Gerber
Lab Manager	Lab Manager
Radio Communications & EMC	Radio Communications & EMC

Table of contents

1	Table	of contents2
2	Gene	ral information3
	2.1 2.2 2.3	Notes and disclaimer
3	Test s	standard/s and references4
4	Test e	environment5
5	Test i	tem5
	5.1 5.2	General description
6	Descr	iption of the test setup7
	6.1 6.2 6.3	Shielded semi anechoic chamber
7	Seque	ence of testing11
	7.1 7.2 7.3 7.4	Sequence of testing radiated spurious 9 kHz to 30 MHz
8	Meas	urement uncertainty15
9	Sumn	nary of measurement results16
10	Mea	asurement results17
	10.1 10.2 10.3	10 dB - Bandwidth
11	Glo	ssary34
12	Doo	cument history35
13	Acc	reditation Certificate35

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5168/17-02-14-A and dated 2019-03-29.

2.2 Application details

Date of receipt of order: 2017-12-07
Date of receipt of test item: 2018-01-09
Start of test: 2018-01-09
End of test: 2019-02-18
Person(s) present during the test: Mr. Beat Signist

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 35

3 Test standard/s and references

Test standard	Date	Description				
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 35

4 Test environment

Temperature		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +50 °C during high temperature tests -20 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply		V _{nom} V _{max} V _{min}	12 V DC, by external power supply 36 V 9 V

5 Test item

5.1 General description

Kind of test item :	Personal Protection System (PPS)
Type identification :	CRS101
S/N serial number :	172
HW hardware status :	Rev-0.4 Rev-0.5 (used for retest of §15.250 (d) (2))
SW software status :	SW 0.1.7, Build 486M_bqt
Frequency band :	5.925 GHz to 7.250 GHZ
Type of radio transmission: Use of frequency spectrum:	Pulse
Type of modulation :	BPSK / BPM
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	9 V to 36 V DC, by external power supply
Temperature range :	-20°C to +50°C

© CTC advanced GmbH Page 5 of 35

5.2 Additional information

A special test mode is used with a cycle time of 1ms:

To set up the EUT in transmitter test mode, the following commands where send via serial interface

Channel 7
1. \$radio,init,1,7,70
2. \$radio.cf.w.1000.200

Transmitter test mode parameters:

Channel	7
Center frequency	6489.6 MHz
Power Setting	70 (program setting)
Cycle time	1000 ms
Pulse length	200 ms

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-5168/17-02-14_AnnexA

1-5168/17-02-14_AnnexB 1-5168/17-02-14_AnnexC

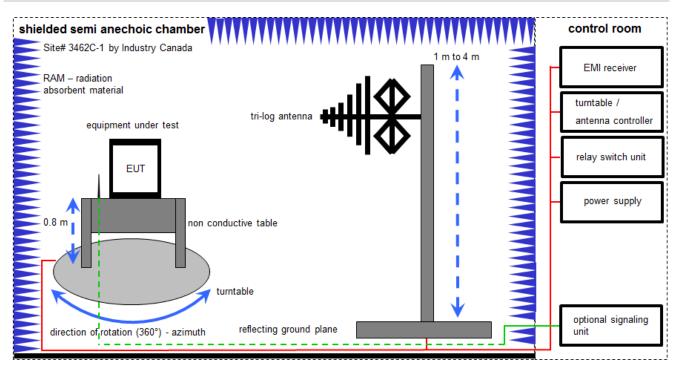
A declaration of the manufacturer is included in test report: 1-5168/17-02-14_AnnexD

© CTC advanced GmbH Page 6 of 35

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve vlkl!	long-term stability recognized Attention: extended calibration interval	g	blocked for accredited testing
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 35

6.1 Shielded semi anechoic chamber

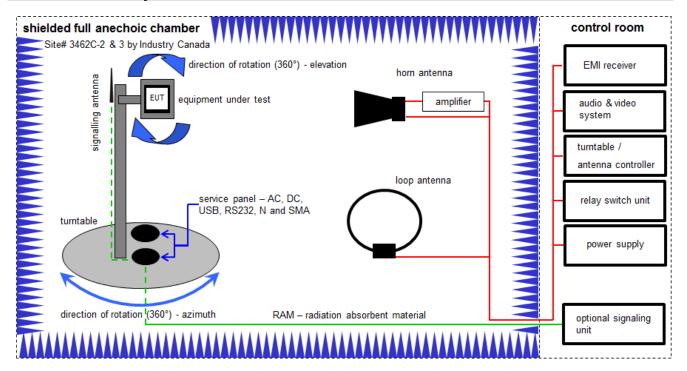
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	93	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
4	11. a.	LIVII TEST IVECEIVE	L3013	Nas	100003	300003312	N.	12.12.2018	11.12.2019
5	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
6	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
7	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
8	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
9	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 8 of 35

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

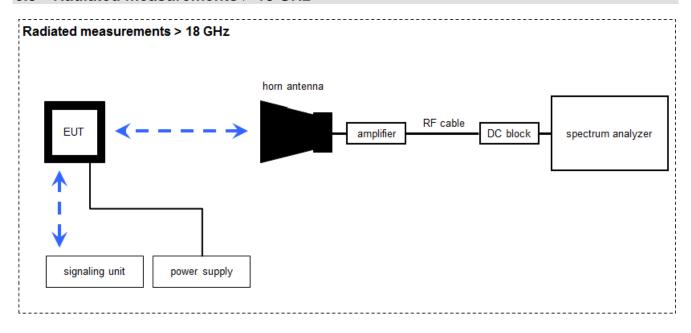
 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP \text{ [dBm]}} = -39.0 \text{ [dBm]} + 57.0 \text{ [dB]} - 12.0 \text{ [dBi]} + (-36.0) \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$


Equipment table:

No.		Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	12.12.2017	11.12.2020
2	2	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	3	19	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
4		135	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	07.07.2017	06.07.2019
5	4	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	5	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555			
7		n. a.	Signal- and Spectrum Analyzer	FSW26	R&S	101455	300004528	k	20.12.2017	19.12.2018

© CTC advanced GmbH Page 9 of 35

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP \text{ [dBm]}} = -59.0 \text{ [dBm]} + 44.0 \text{ [dB]} - 20.0 \text{ [dBi]} + 5.0 \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$

Equipment table:

No.		Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	1	CR 79	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne	-/-	-/-
2	2	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	k	13.12.2017	12.12.2019
3	3	n. a.	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	k	28.10.2016	27.10.2018
4	4	n. a.	PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	05.03.2018	04.03.2019
5	5	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
6		n. a.	Signal- and Spectrum Analyzer	FSW26	R&S	101455	300004528	k	20.12.2017	19.12.2018

© CTC advanced GmbH Page 10 of 35

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 11 of 35

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 35

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 35

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 35

8 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHZ)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHZ)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	± 3 %

© CTC advanced GmbH Page 15 of 35

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR 47 Part 15	see table	2019-05-29	-/-

Test specification clause	Test case	Temperature conditions	Power source	Pass	Fail	NA	NP	Remark
§15.250 (a)	10 dB Bandwidth	Nominal	Nominal	\boxtimes				complies
§15.250 (d) (1)-(5) §15.209	TX Radiated Emissions	Nominal	Nominal	\boxtimes				complies

Note: NA = Not Applicable; NP = Not Performed

© CTC advanced GmbH Page 16 of 35

10 Measurement results

10.1 10 dB - Bandwidth

Description:

(a) *UWB bandwidth.* For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M .

Measurement:

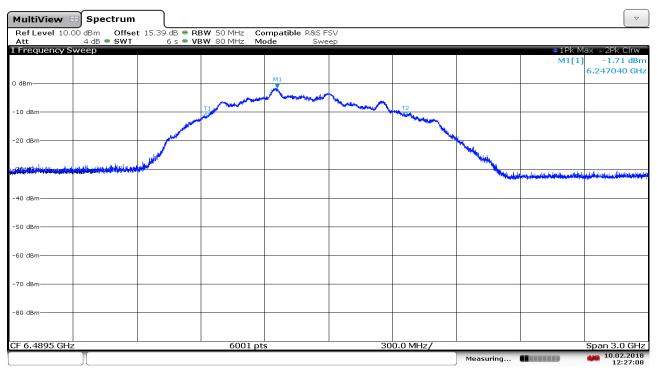
Measurement parameter		
Detector:	Peak	
Video bandwidth:	50 MHz	
Resolution bandwidth:	80 MHz	
Trace-Mode:	Max Hold	

Test Setup: 7.3

Limits:

>500 MHz

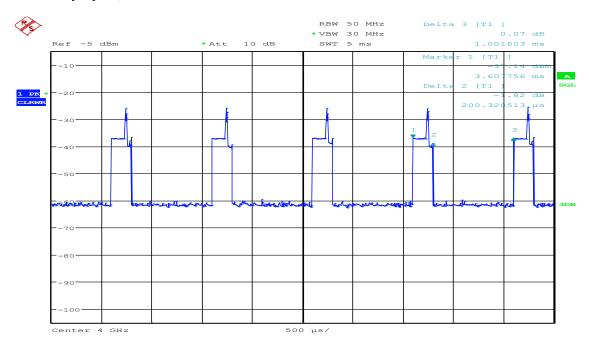
Results:


Temperature	Channel	Lower -10 dB point [GHz]	Higher -10 dB point [GHz]	UWB bandwidth [MHz]
22 °C	7	5.82661	6.9589	1130

Verdict: Compliant

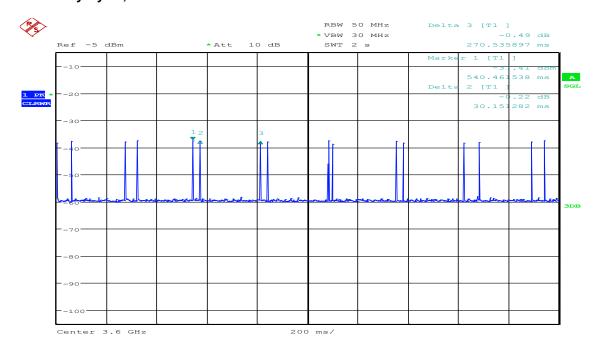
© CTC advanced GmbH Page 17 of 35

Plot 1: Channel 7, 10 dB down



12:27:08 10.02.2018

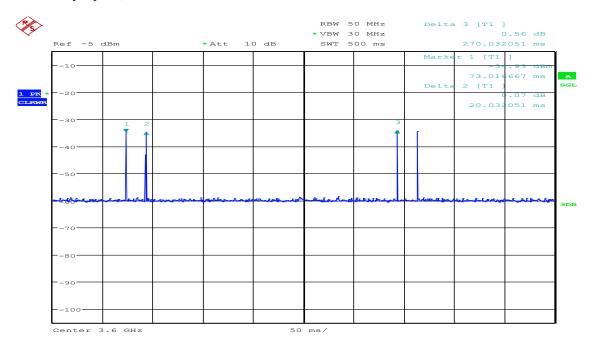
© CTC advanced GmbH Page 18 of 35



Plot 2: Duty Cycle, test mode

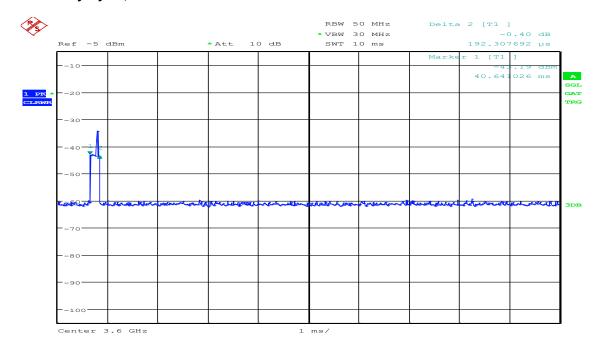
Date: 13.MAR.2018 14:03:03

Plot 3: Duty Cycle, normal mode



Date: 13.MAR.2018 13:42:08

© CTC advanced GmbH Page 19 of 35



Plot 4: Duty Cycle, normal mode

Date: 13.MAR.2018 13:42:52

Plot 5: Duty Cycle, normal mode

Date: 13.MAR.2018 13:50:55

© CTC advanced GmbH Page 20 of 35

10.2 TX Radiated Emissions

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

§15.209 / §15.250 (d) (4):

Average Measurement parameter			
Detector:	Peak/QPeak		
Sweep time:	1 s		
Number of points	8001		
Resolution bandwidth:	120kHz		
Video bandwidth:	≥RBW		
Trace-Mode:	Max Hold		

§15.250 (d) (1):

Average Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Number of points	1001/10001	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

§15.250 (d) (2):

Average Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Number of points	10001	
Resolution bandwidth:	1 kHz	
Video bandwidth:	3 kHz	
Trace-Mode:	Max Hold	

§15.250 (d) (3):

3:0:200 (4) (5).		
Peak Measurement parameter		
Detector:	Max Peak	
Sweep time:	1 s	
Resolution bandwidth:	50 MHz	
Video bandwidth:	80 MHz	
Span:	Zero span	
Trace-Mode:	Max Hold	

© CTC advanced GmbH Page 21 of 35

Emission limits below 960 MHz (§15.209):

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dBμV/m)	30
30 – 88	100 (40 dBμv/m)	3
88 – 216	150 (43.5 dBμV/m)	3
216 – 960	200 (46 dBμV/m)	3
> 960	500 (54 dBµV/m)	3

UWB-emission-Limits:

FCC CFR 47:

§15.519 (c)

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth:

Frequency in MHz	EIRP in dBm
960 to 1610	-75.3
1610 to 1990	-63.3
1990 to 3100	-61.3
3100 to 10600	-41.3
Above 10600	-61.3

§15.519 (d)

In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

(e) There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, $f_{\text{\tiny M}}$. That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

© CTC advanced GmbH Page 22 of 35

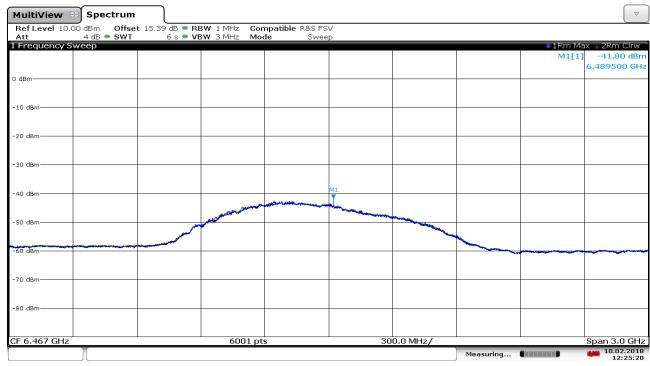
Result:

	Channel	Frequency in MHz	Max e.i.r	Plot	
	Chamile	Frequency in Minz	average value	peak value	FIOL
Max E.I.R.P	7	6489.5	-41.80	-3.29	9,10

Emissions outside the band:

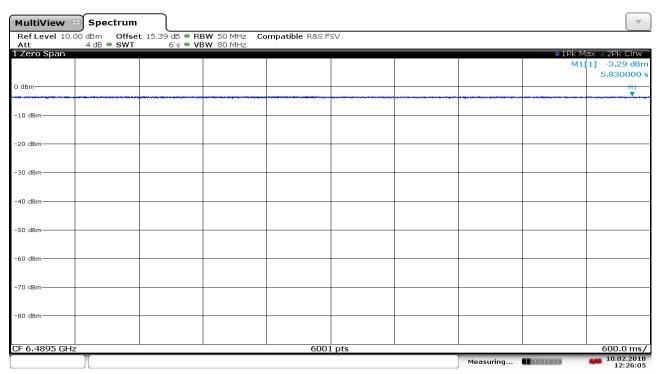
Channel	Frequency in GHZ	Detector	Filter type	Bandwidth	Level in dBm	Limit in dBm	Margin in dB
7	1.84285	RMS	6 dB	1 MHz	-75.3	-63.3	12
7	2.07337	RMS	6 dB	1 MHz	-74.8	-61.3	13.5
7	3.99359	RMS	6 dB	1 MHz	-70.2	-41.3	28.9
7	4.11842	RMS	6 dB	1 MHz	-70.6	-41.3	29.3
7	12.97900	RMS	6 dB	1 MHz	-64.1	-61.3	2.8
7	1.5744	RMS	6 dB	1 kHz	-83.0	-85.3	-2.3*

^{*}please refer to chapter 10.4 of this test report for further documentation


For emissions below 1 GHz, please refer to plots 10 to 11.

Verdict: complies

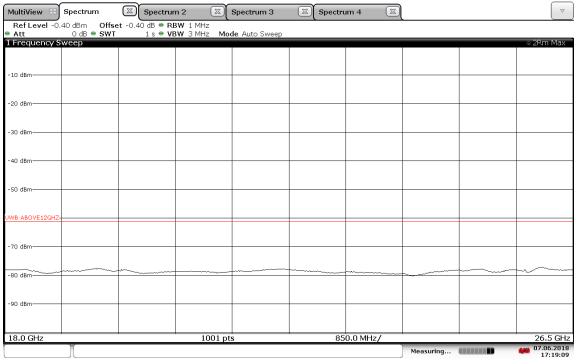
© CTC advanced GmbH Page 23 of 35



Plot 6: Channel 7, RMS power

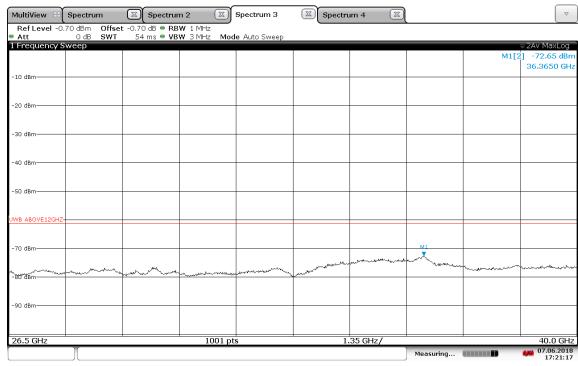
12:25:21 10.02.2018

Plot 7: Channel 7, Peak power



12:26:05 10.02.2018

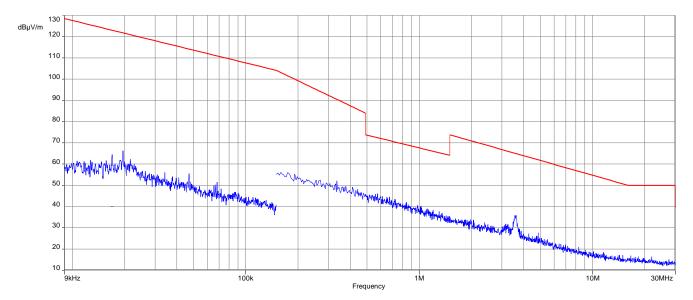
© CTC advanced GmbH Page 24 of 35



Plot 8: Channel 7, 18 GHz - 26.5 GHz

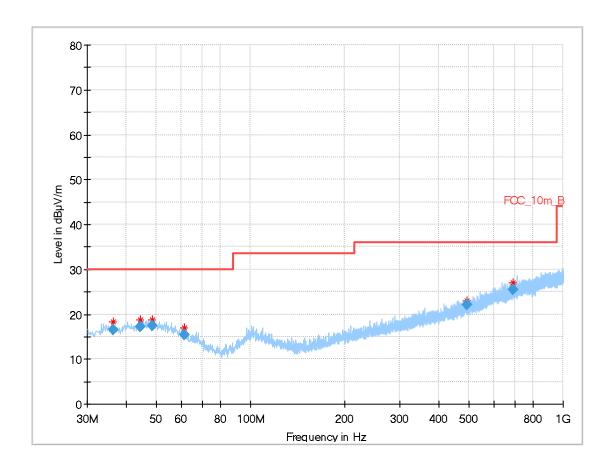
17:19:09 07.06.2018

Plot 9: Channel 7, 26.5 GHz -40 GHz



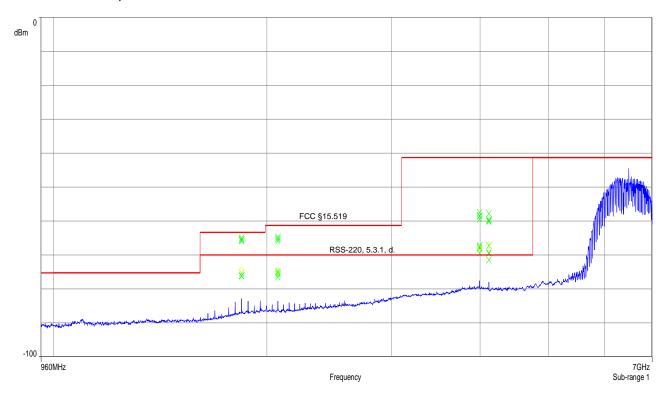
17:21:18 07.06.2018

© CTC advanced GmbH Page 25 of 35

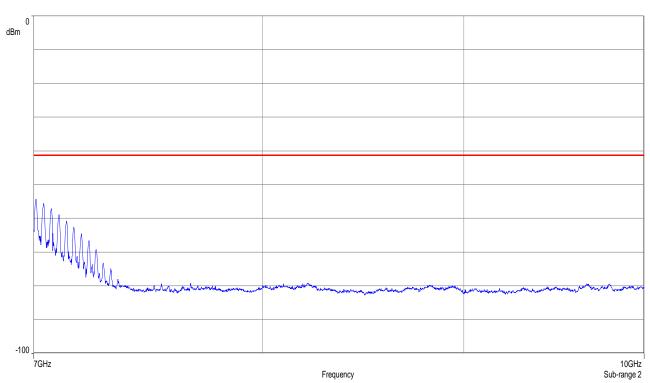

Plot 10: Channel 7, 15.209, TX Magnetic

© CTC advanced GmbH Page 26 of 35

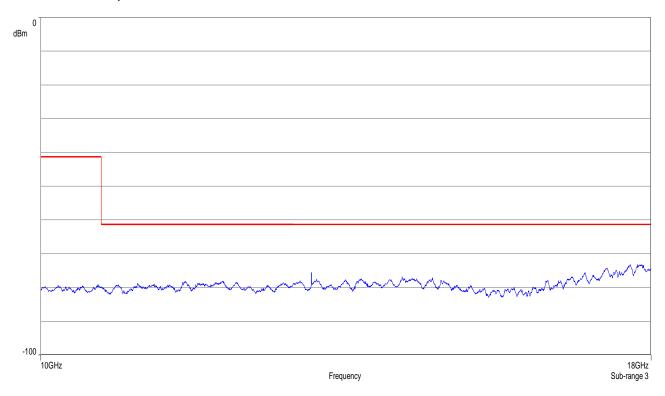
Plot 11: Channel 7, 15.209, 30 MHz - 1 GHz

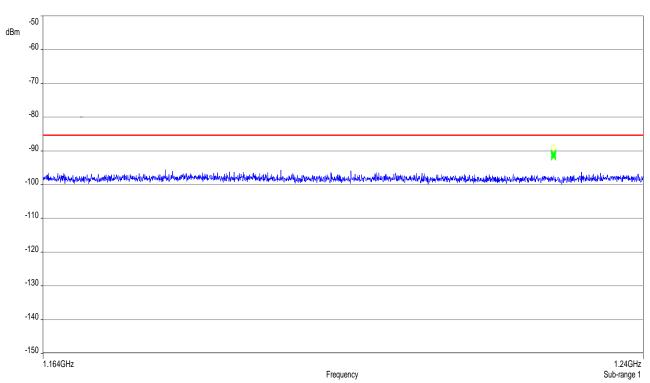

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.336	16.54	30.0	13.46	1000	120	170.0	H	143.0	12.8
44.256	17.11	30.0	12.89	1000	120	170.0	Ι	180.0	13.6
48.486	17.44	30.0	12.56	1000	120	170.0	٧	249.0	13.7
61.323	15.46	30.0	14.54	1000	120	98.0	٧	59.0	11.6
492.963	22.03	36.0	13.97	1000	120	170.0	Н	198.0	18.6
689.800	25.41	36.0	10.59	1000	120	98.0	٧	-6.0	21.5

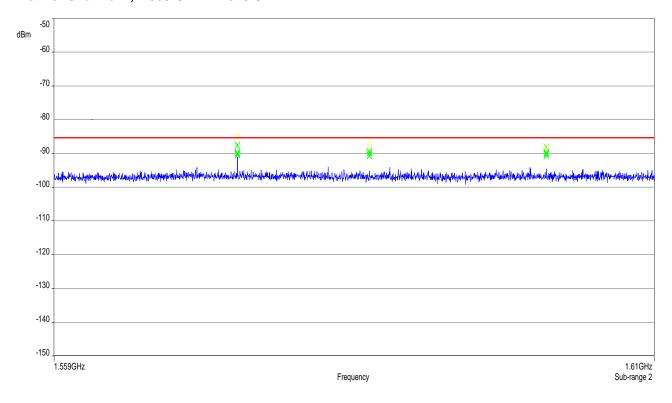

© CTC advanced GmbH Page 27 of 35

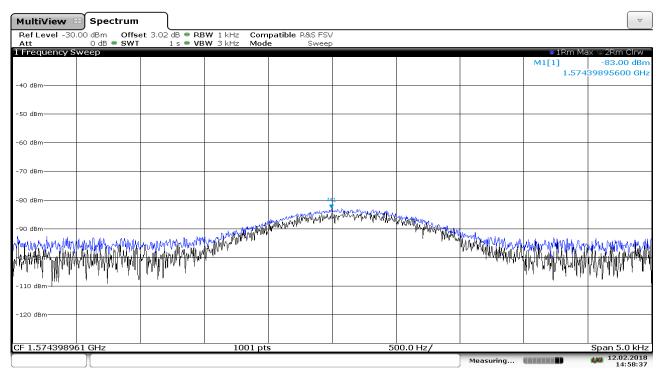
Plot 12: Channel 7, 960 MHz - 7 GHz


Plot 13: Channel 7, 7 GHz - 10 GHz


© CTC advanced GmbH Page 28 of 35

Plot 14: Channel 7, 10 GHz - 18 GHz


Plot 15: Channel 7, 1.164 GHz - 1.240 GHz


© CTC advanced GmbH Page 29 of 35

Plot 16: Channel 7, 1.559 GHz - 1.610 GHz

Plot 17: Channel 7, 1.5744 GHz, ABOVE LIMIT

14:58:38 12.02.2018

© CTC advanced GmbH Page 30 of 35

10.3 Modification of the EUT

Description:

In order to reduce the emissions of the tests according to §15-250 (d)(2) modifications on the PCB-Layout have been performed. Said test is repeated with a modified production sample.

Fotos of the both EUT variants are included in the corresponding annexes (see chapter 5.2).

Measurement

§15.519 (d):

Average Measurement parameter					
Detector:	RMS				
Sweep time:	1 ms/pt				
Number of points	10001				
Resolution bandwidth:	1 kHz				
Video bandwidth:	3 kHz				
Trace-Mode:	Max Hold				

UWB-emission-Limits:

§15.250 (d) (2)

In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

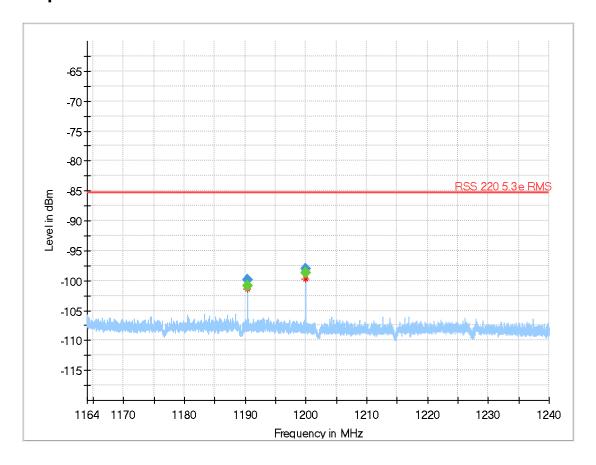
Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

Declaration of manufacturer:

Annex D of this test report shows the statement of the manufacturer to assure that the modification is applied to all future products.

Result:

The measurement is passed. For the detailed measurement results, please refer to the plots below.


Verdict: complies

© CTC advanced GmbH Page 31 of 35

Plot 18: Channel 7, 1.164 GHz - 1.240 GHz

Full Spectrum

Final_Result

Frequency (MHz)	MaxPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	distance (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1190.3997	-99.85				1.000	100.0	Н	0.0	0.0	-143.9
1190.3997		-100.85	-85.30	15.55	1.000	100.0	Н	0.0	0.0	-143.9
1199.9999	-98.10	-		-	1.000	100.0	٧	119.0	0.0	-144.0
1199.9999		-98.67	-85.30	13.37	1.000	100.0	٧	119.0	0.0	-144.0

© CTC advanced GmbH Page 32 of 35

Plot 19: Channel 7, 1.559 GHz - 1.610 GHz

Full Spectrum

Final_Result

Frequency	MaxPeak	RMS	Limit	Margin	Bandwidth	distance	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)	(deg)	(dB)
1574.3997	-96.26				1.000	100.0	٧	111.0	60.0	-142.6
1574.3997		-96.61	-85.30	11.31	1.000	100.0	٧	111.0	60.0	-142.6
1593.5996	-100.53			-	1.000	100.0	٧	339.0	90.0	-142.3
1593.5996		-101.39	-85.30	16,09	1.000	100.0	٧	339.0	90.0	-142.3

© CTC advanced GmbH Page 33 of 35

11 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
ocw	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 34 of 35

12 Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-02-22
-A	minor editorial changes	2019-03-29
-B	Applicant, Manufacturer and Product information changed	2019-05-29

13 Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGSV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkhelmer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 38116 Braunschweig Bundesallee 200 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DakkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DakkS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following anner with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 3.1 July 2009 (Federal Law Gazette Jr. 26.25) and the Regulation (EQ No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Identity on 1.2 80 of 9 July 2008, p. 30). DAMAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EQ, International Laboratory Accreditation Cooperation (IJAL). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.org
Frankfurt, 02,06.2017 Digit yds, (PH) find differer Held of Division Sea nets certisel.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 35 of 35