

Validation Report No. VAL 0284 EF 2019-11

Kind of doc.: QM Template

EUROFINS PRODUCT SERVICE GmbH

Storkower Str. 38c, 15526 Reichenwalde, Germany

1 Customer

Eurofins Product Service GmbH

2 0	bject
-----	-------

Equipment Number EF00284

Equipment Name: System validation dipole

Equipment Type: D2450V2 Serial Number: 722

Manufacturer: Schmid & Partner Engineering AG

3 State of Measurement

 Validation:
 ⊠

 Performance Control:
 ⊠

 Other:
 □

4 Performance of Measurement

4.1 Generals

(e.g. object of validation such as specific setup, non-standard method or SW, specification of the requirements, test set-up configuration, risk analysis etc.)

Dipol verification

4.2 Validation procedure / measurement

(e.g. comparison of results achieved with other methods, interlaboratory comparison, systematic assessment of factors influencing the result, assessment of the uncertainty of the results based on scientific understanding of the theoretical principles of the method and practical experience; criteria/requirements for approval/rejection etc.)

According KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 3.2.2 Dipole calibration

Limits for the verification: return loss <20% to the original measurement or >20 dB minimum return-loss

Impedance <5 Ω to the original measurement.

4.3 Used reference equipment

Equipment name	Equipment type	Manufacturer	Equipment number	Cal. Date	Cal. Due Date
RF Network analyzer	8752 C	Hewlett-Packard Company Santa Clara	EF00140	2019-07-26	2020-07-26

-	new acquired (incl. calibration)	
-	new calibrated	
-	check reference standard	\boxtimes

4.4 Environmental conditions

Temperature:	_23_°C <u>+</u> 2°C
Relative Air Humidity:	_50_ rH <u>+</u> 5%
Air Pressure:	_1020_ hPa <u>+</u> 5%

Page 95 of 160

Page 1 / 4

Validation Report No. VAL 0284 EF 2019-11

Kind of doc .: QM Template

EUROFINS PRODUCT SERVICE GmbH

Storkower Str. 38c, 15526 Reichenwalde, Germany

Results 5

5.1 General:

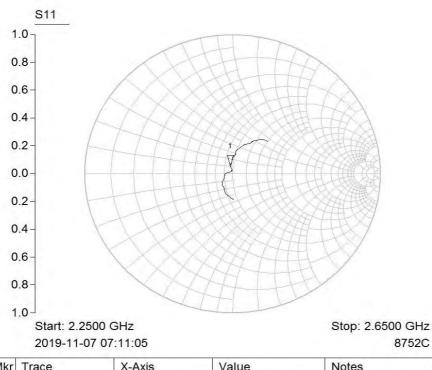
(e.g. measurement results, user instructions such as handling, transport, storage, preparation; checks to be made before the work started; information about how to install (operations)-, to maintain-, to train and to use; safety measures etc.)

	Original measurement	Verification measurement	Margin
Impedance, transformend to feed point	46.3 Ω + 8.6 jΩ	48.28 Ω + 4.9 jΩ	2.02 Ω – 4.3jΩ
Return Loss	-20.2 dB	-25.58 dB	-5.56 dB
Tissue Validation εr	52.7	52.492	-0.39 %
Tissue Validation σ [S/m]	1.95	2.01	3.08 %
System validation	13.0 W/kg (1g)	12.8 W/kg (1g)	5.82 %
Date:	04.09.2018	07.11.2019	

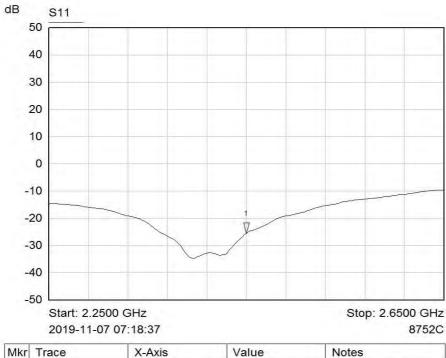
5.2 Measurement uncertainty

The reported expanded uncertainty of measurement is stated as the standard uncertainty multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. +/- 2.5 %

5.3	Results of Validation		
Valid	ated		
Not v	alidated		
6	Operator		
Pude	II		
Name	Э	Signature	Pudell
Place	and Date of Verification:	Reichenwalde, 07.1	1.2019
Attac	hment:		
		55-117	
mpe	dance, Return Loss, System v	alidierung	



Validation Report No. VAL 0284 EF 2019-11


Kind of doc.: QM Template

EUROFINS PRODUCT SERVICE GmbH

Storkower Str. 38c, 15526 Reichenwalde, Germany

Mkr	Trace	X-Axis	Value	Notes
1 🎖	S11	2.4500 GHz	48.28 + j4.89 ohms	D2450V2-SN:722

141141	11466	747000	value	110100
1 🏻	S11	2.4500 GHz	-25.58 dB	D2450V2-SN:722

Validation Report

No. VAL 0284 EF 2019-11

Kind of doc.: QM Template

EUROFINS PRODUCT SERVICE GmbH

Storkower Str. 38c, 15526 Reichenwalde, Germany

Date/Time: 07.11.2019 08:20:45

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.2450 (m) 250mW ELI4 07.11.2019

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN: 722

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 2.011 \text{ S/m}$; $\epsilon_r = 52.492$; $\rho = 1000 \text{ kg/m}^2$

Phantom section: Flat Section

DASY5 Configuration:

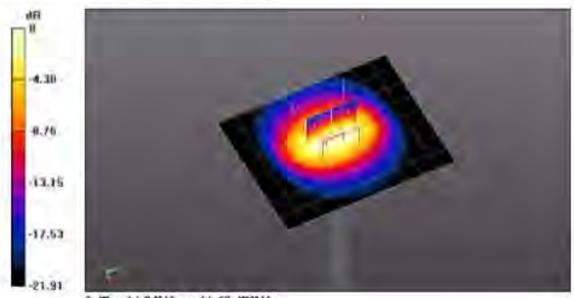
Probe: EX3DV4 - SN3893; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated; 20.09.2019

 Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn522; Calibrated: 11.09.2019

Phantom: ELI v4.0; Type: QDOVA001BB; Senal: TP: 1013

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (9x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.2 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 78.85 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Page 98 of 160

Page 4 / 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1140_Sep18

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN:1140

Calibration procedure(s) QA CAL-22.v3

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: September 10, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	DEM
			190
Approved by:	Katja Pokovic	Technical Manager	PML.

Issued: September 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.0 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.39 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1111	****

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.79 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	81.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.3 Ω - 8.2 jΩ	
Return Loss	- 21.8 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	53.6 Ω - 2.1 jΩ	
Return Loss	- 28.0 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.9 Ω - 1.7 jΩ	
Return Loss	- 22.5 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.3 Ω - 5.2 jΩ	
Return Loss	- 25.8 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	$54.0 \Omega + 0.2 j\Omega$	
Return Loss	- 28.3 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$59.4 \Omega + 0.1 j\Omega$
Return Loss	- 21.3 dB

General Antenna Parameters and Design

Flectrical Delay (one direction)	1.203 ns
Electrical Delay (one direction)	1.203 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2012	

DASY5 Validation Report for Head TSL

Date: 10.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1140

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.77$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75) @ 5200 MHz,
 ConvF(5.2, 5.2, 5.2) @ 5500 MHz, ConvF(4.96, 4.96, 4.96) @ 5800 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.96 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

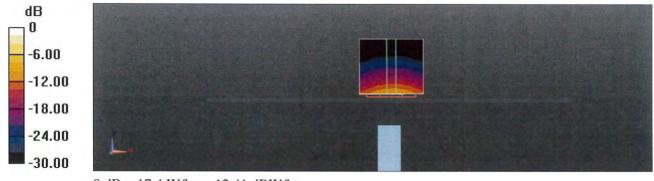
Reference Value = 76.84 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.44 W/kg

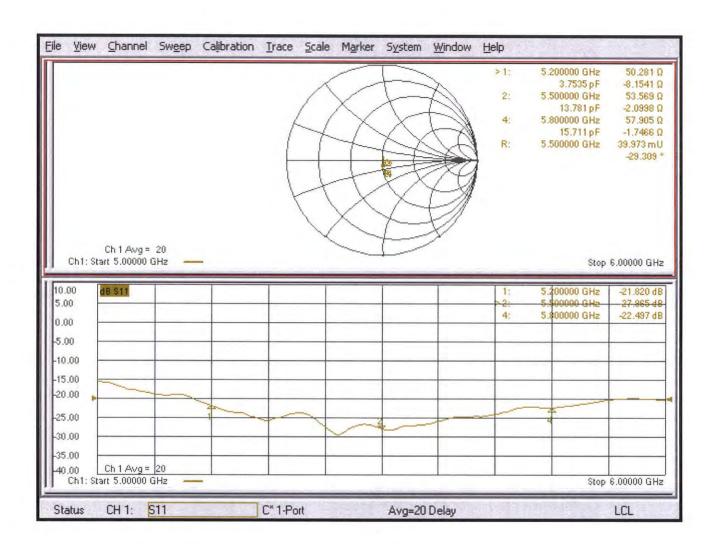
Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.58 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.8 W/kg


SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1140

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 5.39 S/m; ϵ_r = 46.9; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.79 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.21 S/m; ϵ_r = 45.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35) @ 5200 MHz,
 ConvF(4.7, 4.7, 4.7) @ 5500 MHz, ConvF(4.53, 4.53, 4.53) @ 5800 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.46 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.26 V/m; Power Drift = -0.05 dB

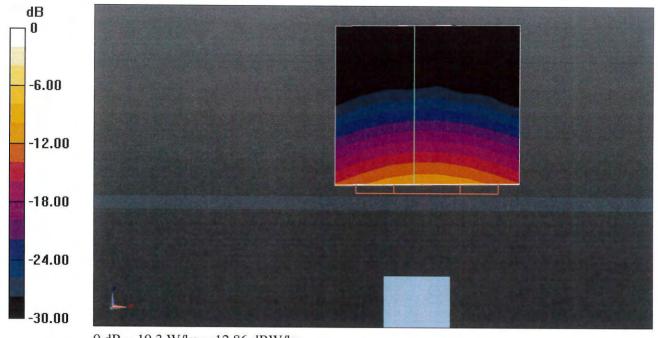
Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

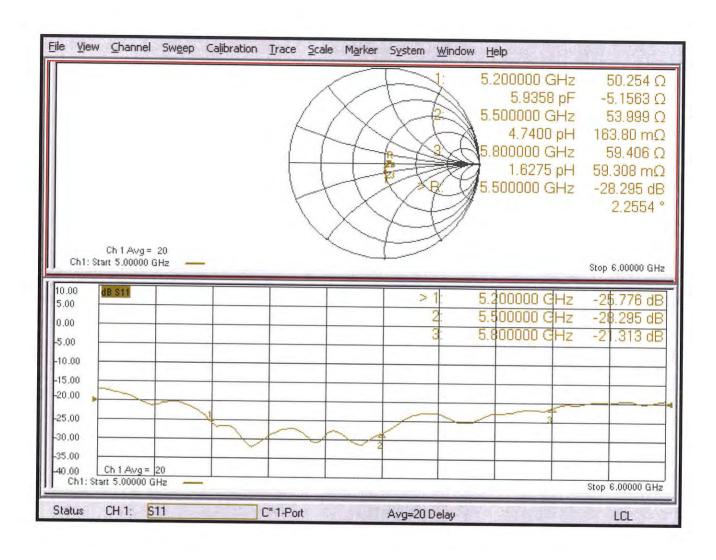
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 67.12 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.17 W/kg


Maximum value of SAR (measured) = 19.3 W/kg

Certificate No: D5GHzV2-1140_Sep18

0 dB = 19.3 W/kg = 12.86 dBW/kg

Impedance Measurement Plot for Body TSL

