

RADIO TEST REPORT

Test Report No.: 15128810H-B

Customer	Keyence Corporation
Description of EUT	Level sensor
Model Number of EUT	FR-LM20
FCC ID	RF41754F
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	February 13, 2024
Remarks	Conducted Emission and Radiated Spurious Emission tests only

Representative test engineer Approved by Juichiro Yamazaki Ryota Yamanaka Engineer Ryota Yamanaka Engineer CERTIFICATE 5107.02 The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15128810H-B

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15128810H-B	February 13, 2024	-

Reference: Abbreviations (Including words undescribed in this report)

AC Alternating Current IEC International Electrotechnical Commission AFH Adaptive Frequency Hopping IEEE Institute of Electrical and Electronics Engineers AM Amplitude Modulation IF Intermediate Frequency Amp, AMP Amplifer ILAC International Laboratory Accerditation ANSI American National Standards Institute ISD International Organization for Standardization AN Antenna ISO International Organization for Standardization AR Antenna ISO International Organization for Standardization AK Amplitude Shift Keying LAN Local Area Network Atten., ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying NRA Mutual Recognition Arrangement BR Buleototh Basic Rate N/A Not Applicable BTLE Bluetoth Basic Rate N/A Not Applicable BTL Bluetoth Interval NVLAP Program	A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AFH Adaptive Frequency Hopping IEEE Instruction of Electronics Engineers AM Ampitude Modulation IF Intermediate Frequency Amp. AMP Amplifter ILC Intermediate Frequency ANSI American National Standards Institute ISED Canada ANSI American National Standards Institute ISED Canada AR Access Point JAB Japan Accreditation Board ASK Ampitude Shift Keying LAN Local Area Network Atten, ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BT Bluetooth NST National Institute of Standards and Technology BT Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Call Int Calibration Interval VVLAP Power metar CW Complementary Code Keying	AC	Alternating Current	IEC	International Electrotechnical Commission
Amp Amplitude Modulation IF Intermediate Frequency Amp, AMP Amplifier ILAC International Laboratory Accreditation Conference ANSI American National Standards Institute ISD Innovation, Science and Economic Development Canada Ant, ANT Antenna ISO International Organization for Standardization AP Access Point JAB Japan Accreditation Board ASK Amplitude Shift Keying LAN Local Area Network Atten.,ATT Attenuator ILIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BT Bluetooth Basic Rate N/A Not Applicable BT Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Standards and Technology CAL Camplementary Code Keying OBW Occupied Band Width CAL Camplementary Code Keying OBW Occupied Band Width	AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
Amp, AMP Amplifier ILAC International Laboratory Accreditation Conference ANSI American National Standards Institute ISD Innovation, Science and Economic Development Canada ANI, ANT Antenna ISO International Organization for Standardization AP Access Point JAB Japan Accreditation Board ASK Amplifued Shift Keying LAN Local Area Network Atten., ATT Attenuator LIMS Laboratory Information Management System BVX Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Biluetooth Basic Rate N/A Not Applicable BT Biluetooth Low Energy NS No signal detect. BW BandWidth NSA Noralized Site Attenuation Cal Int Calibration Interval NVLAP Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing	AM	Amplitude Modulation	IF	Intermediate Frequency
ANSI American National Standards Institute ISED Innovation, Science and Economic Development Canada AN, ANT Antenna ISO International Organization for Standardization AP Access Point JAB Japan Accreditation Board ASK Amplitude Shift Keying LAN Local Area Network Atten, ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BT Bluetooth Basic Rate N/A Not Applicable BT Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Calibration Interval WVLAP Program Occupied Band Width Ch, CH Channel OFDM Orthogonal Frequency Division Multiplexing CKK Comme International Special des Perturbations P/M Power meter CW Continuous Wave PCB Printed Cirouit Board DBBPSK	Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
Ant, ANT Anterna ISO International Organization for Standardization AP Access Point JAB Japan Accreditation Board ASK Amplitude Shift Keying LAN Local Area Network Atten, ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Bluetooth Basic Rate N/A Not Applicable BT Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Calibration Interval NVLAP Program National Voluntary Laboratory Accreditation CCK Complementary Code Keying OBW Occupied Band Width OFDM Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CW Continuous Wave PCB Printed Circuit Board DBPSK DBPSK Differential BPSK PER Packet Error Rate DC DC Direct Current PHY Physical Layer	ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
AP Access Point JAB Japan Accreditation Board ASK Amplitude Shift Keying LAN Local Area Network Attem, ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Bluetooth Basic Rate N/A Not Applicable BT Bluetooth Basic Rate N/A Not signal detect. BW BandWidth NSA Norgram Calibration Interval NVLAP Notal Voluntary Laboratory Accreditation Program CK Complementary Code Keying OBW Occupied Band Width Ch, CH Channel OFDM Orthogonal Frequency Division Multiplexing CiSPR Continuous Wave PCB Printed Circuit Board DB Differential BPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D_factor Distance factor PK <td< td=""><td>Ant, ANT</td><td>Antenna</td><td>ISO</td><td>International Organization for Standardization</td></td<>	Ant, ANT	Antenna	ISO	International Organization for Standardization
ASK Amplitude Shift Keying LAN Local Area Network Atten., ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Bluetooth Rate N/A Not Applicable BT Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normaized Site Attenuation Calibration Interval NVLAP National Voluntary Laboratory Accreditation Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CK Comble International Special des Perturbations P/M Power meter CW Continuous Wave PCB Printed Circuit Board DBPSK DFs Differential BPSK PER Packet Eror Rate DC Differential BPSK PER Packet Eror Rate DFS Dynamic Frequency Selection <td>AP</td> <td>Access Point</td> <td>JAB</td> <td>Japan Accreditation Board</td>	AP	Access Point	JAB	Japan Accreditation Board
Atten, ATT Attenuator LIMS Laboratory Information Management System AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Bluetooth Basic Rate NA Not Applicable BT Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Atternuation Call Int Calibration Interval NVLAP National Voluntary Laboratory Accreditation Program CCK Complementary Code Keying OBW Occupied Band Width CL, CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Radioelectriques P/M Power meter CW Continuous Wave PCB Printed Circuit Board DFactor Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Differential QPSK PRBS Pseudo-Random Nise DQPSK Differential QPSK PRBS	ASK	Amplitude Shift Keying	LAN	Local Area Network
AV Average MCS Modulation and Coding Scheme BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Bluetooth Basic Rate N/A Not Applicable BT Bluetooth Basic Rate N/A Not Applicable BT LE Bluetooth Cow Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Calibration Interval NVLAP Program CCK Complementary Code Keying OBW Occupied Band Width Ch. CH Channel OFDM Orthogonal Frequency Division Multiplexing CGW Continuous Wave PCB Printed Circuit Board DBPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Distance factor PK Peak DFS Dynamic Frequency Selection PN Pseudo-Random Bit Sequence DSS Direct Seguence Spread Spectrum PSD Power Spectral Density DDRSK </td <td>Atten., ATT</td> <td>Attenuator</td> <td>LIMS</td> <td>Laboratory Information Management System</td>	Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
BPSK Binary Phase-Shift Keying MRA Mutual Recognition Arrangement BR Bluetooth Basic Rate N/A Not Applicable BT Bluetooth Cow Energy NS No signal detect. BW BandWidth NSA Normalized Stack Attenuation Cal Int Calibration Interval NVLAP National Voluntary Laboratory Accreditation Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Comite International Special des Perturbations Radioelectriques P/M Power meter CW Continuous Wave PCB Printed Circuit Board DFS Direct Current PHY Physical Layer D-factor Distance factor PK Peak DFS Dynamic Frequency Selection PN Pseudo-Random Noise DQSK Differential QPSK PRBS Pseudo-Random Noise DSS Dynamic Frequency Selection PN Pseudo-Random Noise DSS Direct Current	AV	Average	MCS	Modulation and Coding Scheme
BR Bluetooth Basic Rate NA NA Applicable BT Bluetooth NIST National Institute of Standards and Technology BT LE Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Cal Int Calibration Interval NVLAP Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Radioelectriques PCB Printed Circuit Board CW Continuous Wave PCB Printed Circuit Board DC Diferential BPSK PER Packet Error Rate DC Diferential QPSK PHY Physical Layer Drfactor Distance factor PK Peak DSS Direct Sequence Spread Spectrum PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadri-Phase Shift Keying EIRF, e.r.p. Equivalent Isotropically Radiated Power QP Quasi-Peak <td>BPSK</td> <td>Binary Phase-Shift Keying</td> <td>MRA</td> <td>Mutual Recognition Arrangement</td>	BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
Bluetooth NIST National Institute of Standards and Technology BT LE Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Cal Int Calibration Interval NVLAP Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CM Continuous Wave PCB Printed Circuit Board DBPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Distance factor PK Peaket DSS Dynamic Frequency Selection PN Pseudo-Random Noise DQPSK Differential QPSK PRBS Pseudo-Random Bit Sequence DSS Direct Sequence Spread Spectrum PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadri-Phase Shift Keying EMC ElectroMagnetic Interference RBW Radio Dragument <td>BR</td> <td>Bluetooth Basic Rate</td> <td>N/A</td> <td>Not Applicable</td>	BR	Bluetooth Basic Rate	N/A	Not Applicable
BTLE Bluetooth Low Energy NS No signal detect. BW BandWidth NSA Normalized Site Attenuation Cal Int Calibration Interval NVLAP National Voluntary Laboratory Accreditation Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Comite International Special des Perturbations Radioelectriques P/M Power meter CW Continuous Wave PCB Printed Circuit Board Debest DF Differential BPSK PER Packet Error Rate Debest DC Direct Current PK Peak Deside	BT	Bluetooth	NIST	National Institute of Standards and Technology
BW BandWidth NSA Normalized Site Attenuation Cal Int Calibration Interval NVLAP National Voluntary Laboratory Accreditation Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CSPR Comile International Special des Perturbations P/M Power meter CW Continuous Wave PCB Printed Circuit Board DBPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Distance factor PK Peak DFS Dynamic Frequency Selection PN Pseudo random Noise DQPSK Differential QPSK PRBS Pseudo random Noise DSS Direct Sequence Spread Spectrum PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadrature Amplitude Modulation EIRP, e.r.p. Effect/oMagnetic Interference RBW Resolution Band Width EN European No	BT LE	Bluetooth Low Energy	NS	No signal detect.
Cal Int Calibration Interval NVLAP National Voluntary Laboratory Accreditation Program CCK Complementary Code Keying OBW Occupied Band Width Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Comite International Special des Perturbations P/M Power meter CW Continuous Wave PCB Printed Circuit Board DBPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Distance factor PK Peak DSS Dynamic Frequency Selection PN Pseudo-Random Noise DQPSK Differential QPSK PRBS Pseudo-Random Noise DSS Dynamic Frequency Selectrum PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadrature Amplitude Modulation EIRP, e.i.r.p. Equivalent Isotropically Radiated Power QP Quasi-Peak EMC ElectroMagnetic Compatibility QPSK Quadri-Phase Shift Keying EN	BW	BandWidth	NSA	Normalized Site Attenuation
CCK Complementary Code Keying OBW Occupied Band Width Ch, CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Radioelectriques P/M Power meter CW Continuous Wave PCB Printed Circuit Board DBPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Distance factor PK Peak DGS Dynamic Frequency Selection PN Pseudo-Random Noise DQPSK Differential QPSK PRBS Pseudo-Random Noise DSS Dynamic Frequency Selectrom PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadrature Amplitude Modulation EIRP, e.i.r.p. Equivalent Isotropically Radiated Power QP Quasi-Peak EMC ElectroMagnetic Compatibility QPSK Quadri-Phase Shift Keying EM ElectroMagnetic Compatibility QPSK Quadri-Phase Shift Keying EM ElectroMagnetic Interference RB	Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
Ch., CH Channel OFDM Orthogonal Frequency Division Multiplexing CISPR Comite International Special des Perturbations Radioelectriques P/M Power meter CW Continuous Wave PCB Printed Circuit Board DBPSK Differential BPSK PER Packet Error Rate DC Direct Current PHY Physical Layer D-factor Distance factor PK Peak DPS Dynamic Frequency Selection PN Pseudo-Random Noise DAPSK Differential QPSK PRBS Pseudo-Random Noise DQPSK Differential QPSK PRBS Pseudo-Random Noise DAPSK Differential QPSK PRBS Pseudo-Random Noise DSS Direct Sequence Spread Spectrum PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadrature Amplitude Modulation EIRP, e.tr.p. Equivalent Isotropically Radiated Power QP Quasi-Peak EMC ElectroMagnetic Interference RBW Resolution Band Width EN European Norm	ССК	Complementary Code Keying	OBW	Occupied Band Width
CISPRComite International Special des Perturbations RadioelectriquesP/MPower meterCWContinuous WavePCBPrinted Circuit BoardDBPSKDifferential BPSKPERPacket Error RateDCDirect CurrentPHYPhysical LayerD-factorDistance factorPKPeakDFSDynamic Frequency SelectionPNPseudo random NoiseDQPSKDifferential QPSKPRBSPseudo-Random Bit SequenceDSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemEUEuropean UnionRFRadio Data SystemEUEuropean UnionRFRadio Data SystemFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequencySVSWRSite-Voltage Standing Wave RatioFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Navigation Satellite System <td>Ch., CH</td> <td>Channel</td> <td>OFDM</td> <td>Orthogonal Frequency Division Multiplexing</td>	Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CWContinuous WavePCBPrinted Circuit BoardDBPSKDifferential BPSKPERPacket Error RateDCDirect CurrentPHYPhysical LayerD-factorDistance factorPKPeakDFSDynamic Frequency SelectionPNPseudo random NoiseDQPSKDifferential QPSKPRBSPseudo-Random Bit SequenceDSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio EquipmentEUEuropean UnionRFRadio EquipmentEUEuropean UnionRFRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFAac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Navigation Satellite SystemVert.Vert.alHorizortalWitANWirelees I AN	CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
DBPSKDifferential BPSKPERPacket Error RateDCDirect CurrentPHYPhysical LayerD-factorDistance factorPKPeakDFSDynamic Frequency SelectionPNPseudo random NoiseDQPSKDifferential QPSKPRBSPseudo-Random Bit SequenceDSSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio Standards SpecificationsFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFMFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless LAN </td <td>CW</td> <td>Continuous Wave</td> <td>PCB</td> <td>Printed Circuit Board</td>	CW	Continuous Wave	PCB	Printed Circuit Board
DC Direct Current PHY Physical Layer D-factor Distance factor PK Peak DFS Dynamic Frequency Selection PN Pseudo random Noise DQPSK Differential QPSK PRBS Pseudo-Random Bit Sequence DSSS Direct Sequence Spread Spectrum PSD Power Spectral Density EDR Enhanced Data Rate QAM Quadrature Amplitude Modulation EIRP, e.ir.p. Equivalent Isotropically Radiated Power QP Quasi-Peak EMC ElectroMagnetic Interference RBW Resolution Band Width EN European Norm RDS Radio Data System ERP, e.r.p. Effective Radiated Power RE Radio Data System EU European Union RF Radio Standards Specifications FCC Federal Communications Commission RX Receiving FHSS Frequency Modulation SG Signal Generator FKeq. Frequency Modulation SG Signal Generator FKS Frequency Shift Keying TR	DBPSK	Differential BPSK	PER	Packet Error Rate
D-factorDistance factorPKPeakDFSDynamic Frequency SelectionPNPseudo random NoiseDQPSKDifferential QPSKPRBSPseudo-Random Bit SequenceDSSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemEVEffective Radiated PowerRFRadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFMSFrequency ModulationSGSignal GeneratorFReq.Frequency Shift KeyingTRTest ReceiverGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Navigation Satellite SystemVBWVideo BandWidth	DC	Direct Current	PHY	Physical Layer
DFSDynamic Frequency SelectionPNPseudo random NoiseDQPSKDifferential QPSKPRBSPseudo-Random Bit SequenceDSSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemEVEuropean NormRDSRadio Data SystemEUEuropean UnionRFRadio ErequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFMFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTRTest ReceiverGRSKGaussian Frequency-Shift KeyingTxTrasmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWit ANWireless LAN	D-factor	Distance factor	PK	Peak
DQPSKDifferential QPSKPRBSPseudo-Random Bit SequenceDSSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVert.VerticalHorizontalWi ANWireless I AN	DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DSSSDirect Sequence Spread SpectrumPSDPower Spectral DensityEDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTXTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.Vert.alHorizontalWi ANWireless LAN	DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
EDREnhanced Data RateQAMQuadrature Amplitude ModulationEIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTXTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthHoriHorizontalWI ANWireless I AN	DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EIRP, e.i.r.p.Equivalent Isotropically Radiated PowerQPQuasi-PeakEMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio FrequencyEUTEuropean UnionRFRadio TrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthHoriHorizontalWI ANWireless I AN	EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EMCElectroMagnetic CompatibilityQPSKQuadri-Phase Shift KeyingEMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFskFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless LAN	EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMIElectroMagnetic InterferenceRBWResolution Band WidthENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.FrequencySVSWRSite-Voltage Standing Wave RatioFSKGaussian Frequency-Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
ENEuropean NormRDSRadio Data SystemERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless LAN	EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
ERP, e.r.p.Effective Radiated PowerRERadio EquipmentEUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.Frequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	EN	European Norm	RDS	Radio Data System
EUEuropean UnionRFRadio FrequencyEUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.FrequencySVSWRSite-Voltage Standing Wave RatioFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EUTEquipment Under TestRMSRoot Mean SquareFac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.FrequencySVSWRSite-Voltage Standing Wave RatioFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	EU	European Union	RF	Radio Frequency
Fac.FactorRSSRadio Standards SpecificationsFCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.FrequencySVSWRSite-Voltage Standing Wave RatioFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	EUT	Equipment Under Test	RMS	Root Mean Square
FCCFederal Communications CommissionRxReceivingFHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.FrequencySVSWRSite-Voltage Standing Wave RatioFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	Fac.	Factor	RSS	Radio Standards Specifications
FHSSFrequency Hopping Spread SpectrumSA, S/ASpectrum AnalyzerFMFrequency ModulationSGSignal GeneratorFreq.FrequencySVSWRSite-Voltage Standing Wave RatioFSKFrequency Shift KeyingTRTest ReceiverGFSKGaussian Frequency-Shift KeyingTxTransmittingGNSSGlobal Navigation Satellite SystemVBWVideo BandWidthGPSGlobal Positioning SystemVert.VerticalHoriHorizontalWI ANWireless I AN	FCC	Federal Communications Commission	Rx	Receiving
FM Frequency Modulation SG Signal Generator Freq. Frequency SVSWR Site-Voltage Standing Wave Ratio FSK Frequency Shift Keying TR Test Receiver GFSK Gaussian Frequency-Shift Keying Tx Transmitting GNSS Global Navigation Satellite System VBW Video BandWidth GPS Global Positioning System Vert. Vertical Hori Horizontal WI AN Wireless I AN	FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
Freq. Frequency SVSWR Site-Voltage Standing Wave Ratio FSK Frequency Shift Keying TR Test Receiver GFSK Gaussian Frequency-Shift Keying Tx Transmitting GNSS Global Navigation Satellite System VBW Video BandWidth GPS Global Positioning System Vert. Vertical Hori Horizontal WI AN Wireless I AN	FM	Frequency Modulation	SG	Signal Generator
FSK Frequency Shift Keying TR Test Receiver GFSK Gaussian Frequency-Shift Keying Tx Transmitting GNSS Global Navigation Satellite System VBW Video BandWidth GPS Global Positioning System Vert. Vertical Hori Horizontal WLAN Wireless LAN	Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
GFSK Gaussian Frequency-Shift Keying Tx Transmitting GNSS Global Navigation Satellite System VBW Video BandWidth GPS Global Positioning System Vert. Vertical Hori Horizontal WI AN Wireless I AN	FSK	Frequency Shift Keying	TR	Test Receiver
GNSS Global Navigation Satellite System VBW Video BandWidth GPS Global Positioning System Vert. Vertical Hori Horizontal WI AN Wireless I AN	GFSK	Gaussian Frequency-Shift Keying	Тх	Transmitting
GPS Global Positioning System Vert. Vertical Hori Horizontal WI AN Wireless I AN	GNSS	Global Navigation Satellite System	VBW	Video BandWidth
Hori Horizontal WI AN Wireless I AN	GPS	Global Positioning System	Vert.	Vertical
	Hori	Horizontal	WLAN	Wireless I AN

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 1. Customer Information	5
SECTION 2. Equipment onder rest (EOT)	
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	9
SECTION 5: Conducted Emission	11
SECTION 6: Radiated Emissions	12
APPENDIX 1: Test data	16
Conducted Emission	16
Spurious Emissions	17
APPENDIX 2: Test instruments	19
APPENDIX 3: Photographs of test setup	21
Conducted Emission	21
Spurious Emissions	22
Worst Case Position	25

SECTION 1: Customer Information

Company Name	Keyence Corporation
Address	1-3-14, Higashinakajima Higashiyodogwa-ku, Osaka, 533-8555 Japan
Telephone Number	+81-6-6379-1111
Contact Person	Takashi Suzuki

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Level sensor	
Model Number	FR-LM20	
Serial Number	Refer to SECTION 4.2	
Condition	Production prototype	
	(Not for Sale: This sample is equivalent to mass-produced items.)	
Modification	No Modification by the test lab	
Receipt Date	December 28, 2023	
Test Date	January 11 to 15, 2024	

2.2 Product Description

General Specification

Rating	DC 24 V
Operating temperature	-20 deg. C to 60 deg. C

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	60.5 GHz (Center) (58 GHz to 63 GHz)
Bandwidth	5 GHz
Type of Modulation	Frequency modulation (FMCW)
Usage location	Fixed Field disturbance sensor

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test	FCC Part 15 Subpart C
Specification	The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits.
	Section 15.255 Operation within the band 57-71 GHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10 2020,	FCC: Section 15.207	31.24 dB,	Complied	-
	6. Standard test methods		0.68615 MHz, AV	-	
			Phase N		
Spurious Emissions	FCC: ANSI C63.10 2020,	FCC: Section 15.255(d)	5.6 dB	Complied	Radiated
-	6. Standard test methods	Section 15.209	346.7 MHz, Horizontal,	-	
	9. Procedures for testing		QP		
	millimeter-wave systems				
Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.					

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Using Item	Frequency range	Uncertainty (+/-)	
AMN (LISN)	0.009 MHz to 0.15 MHz	3.7 dB	
	0.15 MHz to 30 MHz	3.3 dB	

Measurement distance	Frequency range		Uncertainty (+/-)
3 m	9 kHz to 30 MHz	9 kHz to 30 MHz	
10 m			3.1 dB
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz	Horizontal	5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	4.9 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz	Test Receiver	5.0 dB
		Spectrum analyzer	4.9 dB
	6 GHz to 18 GHz	Test Receiver	5.3 dB
		Spectrum analyzer	5.2 dB
1 m	10 GHz to 26.5 GHz	Spectrum analyzer	5.5 dB
	26.5 GHz to 40 GHz	Spectrum analyzer	5.4 dB
0.5 m	26.5 GHz to 40 GHz	Spectrum analyzer	5.4 dB
10 m	1 GHz to 18 GHz	1 GHz to 18 GHz Test Receiver	
>= 0.5 m	40 GHz to 50 GHz		4.2 dB
>= 0.5 m	50 GHz to 75 GHz		5.9 dB
>= 0.5 m	75 GHz to 110 GHz		5.5 dB
>= 3.8 cm	110 GHz to 170 GHz	110 GHz to 170 GHz	
>= 2.5 cm	170 GHz to 260 GHz		5.0 dB

Radiated emission

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x	Size of reference ground	Other rooms	Maximum
	Height (m)	conducting plane		distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 m × 3.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, RF Exposure, Test instruments, and Test set up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode		Test Item	
Test mode (Tx)		Conducted Emission	
- Symbol Patter	ו A ^{*1)}	Spurious Emissions	
*Power of the El	JT was set by the software a	as follows;	
Power Setting: 31			
Software:	Software: Ver226		
(Date: 2024.01.11, Storage location: EUT memory)			
*This setting of software is the worst case.			
Any conditions under the normal use do not exceed the condition of setting.			

In addition, end users cannot change the settings of the output power of the product. *1) The test was performed with reference to the report (15128810H-A) for model name: FR-LMH20, with symbol pattern A as a representative.

4.2 Configuration and peripherals

Conducted Emission

AC 120 V / 60 Hz

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Desc	Description of EUT and Support equipment					
No.	Item	Model number	Serial number	Manufacturer	Remarks	
А	Level sensor	FR-LM20	LHM39	Keyence Corporation	EUT	
В	DC power supply	RPE-4323	824B168G2	RS COMPONENTS LTD	-	

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC & Signal Cable	10.0	Unshielded	Unshielded	-
2	AC Cable	1.0	Unshielded	Unshielded	-

Radiated Emission test

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Level sensor	FR-LM20	LHR35	Keyence Corporation	EUT

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC & Signal Cable	30.0	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

SECTION 6: Radiated Emissions

Test Procedure

[For below 30 MHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The loop antenna was fixed height at 1.0 m.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

[For above 30 MHz, up to 1 GHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

[For above 1 GHz, up to 40 GHz]

The EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer.

The test was made with the detector (RBW/VBW) in the following table.

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Test Antennas are used as below;

Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	From 1 GHz to	40 GHz
Instrument used	Test Receiver					Spectrum Analy	/zer
Detector	PK / AV	QP	PK / AV	QP	QP	PK *a)	AV
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz	RBW: 1 MHz VBW: 3 MHz	RBW: 1 MHz VBW: 1 / T

*a) The Spectrum Analyzer was used in 3 dB resolution bandwidth.

[Test setup] Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 40 GHz

× : Center of turn table

Test Distance: 3 m

Distance Factor: 20 x log (4.0 m / 3.0 m) = 2.50 dB * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

*The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

Distance Factor: 20 x log (1.0 m* / 3.0 m) = -9.5 dB *Test Distance: 1 m

Figure 1: Direction of the Loop Antenna

[Above 40 GHz]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2020.

The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.

Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, filter loss, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

Frequency	40 GHz to 50 GHz	50 GHz to 75 GHz	75 GHz to 110 GHz	110 GHz to 200 GHz
Final measurement	1.00 m	0.75 m	0.50 m	0.01 m
distance with 1 MHz				
Peak detector				

[Test setup]

40 GHz to 200 GHz

*Test Distance: Refer to the above table.

× : Center of turn table

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range	: 9 kHz to 200 GHz
Test data	: APPENDIX
Test result	: Pass

APPENDIX 1: Test data

Limit : FCC_Part 15 Subpart C(15.207)

Conducted	<u>Emission</u>
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No. 3
Date	January 15, 2024
Temperature / Humidity	23 deg. C / 30 % RH

Temperature / Humidity	23 deg. C / 30 % RH
Engineer	Yuichiro Yamazaki
Mode	Tx Symbol Pattern A

100 Limit1(QP) Limit2(AV) 90 N (PK) φ¥ Ν (QP/AV) 80 L (PK) QY L (QP/AV) 70 RFI Voltage [dBuV] 60 50 40 30 white and the second 20 **Q** 10 0 .2M .3M .5M 2M ЗM 5M 10M 20M .7M 1M 7M

		.15M			Frequency [Hz]									30M
	Т		Rea	idina			Res	ults	Lir	nit	Ma	rain		
No).	Freq.	(QP)	(AV)	LISN	LOSS	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
		[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
	1	0.43801	4.70	0.80	0.06	13.16	17.92	14.02	57.10	47.10	39.18	33.08	Ν	
	2	0.57484	4.50	0.50	0.06	13.18	17.74	13.74	56.00	46.00	38.26	32.26	Ν	
	3	0.68615	5.50	1.50	0.07	13.19	18.76	14.76	56.00	46.00	37.24	31.24	N	
	4	0.81957	4.40	0.00	0.07	13.20	17.67	13.27	56.00	46.00	38.33	32.73	N	
	5	0.95754	4.70	-0.10	0.08	13.22	18.00	13.20	56.00	46.00	38.00	32.80	N	
	6	23.99931	3.30	-0.20	0.52	13.90	17.72	14.22	60.00	50.00	42.28	35.78	N	
	7	0.44066	4.90	0.80	0.04	13.16	18.10	14.00	57.05	47.05	38.95	33.05	L	
	8	0.57266	4.70	0.60	0.04	13.18	17.92	13.82	56.00	46.00	38.08	32.18	L	
	9	0.68776	5.80	1.50	0.04	13.19	19.03	14.73	56.00	46.00	36.97	31.27	L	
1	0	0.81983	4.30	-0.10	0.05	13.20	17.55	13.15	56.00	46.00	38.45	32.85	L	
1	1	0.95845	4.80	-0.20	0.05	13.22	18.07	13.07	56.00	46.00	37.93	32.93	L	
1	2	24.00000	3.00	0.00-	0.49	13.90	17.39	13.79	60.00	50.00	42.61	36.21	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

Spurious Emissions (Below 40 GHz)

Test place	lse EMC Lab.			
Semi Anechoic	No. 3	No. 3	No. 3	No. 3
Chamber				
Date	January 12, 2024	January 14, 2024	January 14, 2024	January 15, 2024
Temperature /	22 deg. C / 34 % RH	21 deg. C / 38 % RH	21 deg. C / 33 % RH	23 deg. C / 30 % RH
Humidity			-	
Engineer	Nachi Konegawa	Junki Nagatomi	Yuichiro Yamazaki	Yuichiro Yamazaki
	(18 GHz to 40 GHz)	(1 GHz to 18 GHz)	(30 MHz to 1 GHz)	(Below 30 MHz)
Mode	Tx Symbol Pattern A			

Delerity		Deeding	Deeding	Amt	1.000	Cain	Decult	Deput	Linait	l ina it	Manain	Manain	Dement
Polanty	Frequency	Reading	Reading	Ant.	LOSS	Gain	Result	Result	Limit	Limit	wargin	wargin	Remark
		(QP / PK)	(AV)	Factor			(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	328.8	40.2	-	14.4	9.9	32.0	32.5	-	46.0	-	13.5	-	
Hori.	346.7	47.4	-	15.0	10.0	32.0	40.4	-	46.0	-	5.6	-	
Hori.	355.5	40.6	-	15.1	10.1	32.0	33.8	-	46.0	-	12.3	-	
Hori.	408.9	39.8	-	16.0	10.4	32.0	34.2	-	46.0	-	11.8	-	
Hori.	773.3	34.4	-	20.7	12.3	31.5	35.9	-	46.0	-	10.2	-	
Hori.	791.8	34.6	-	20.9	12.4	31.4	36.5	-	46.0	-	9.6	-	
Vert.	346.7	42.0	-	15.0	10.0	32.0	35.0	-	46.0	-	11.0	-	
Vert.	355.5	44.8	-	15.1	10.1	32.0	38.0	-	46.0	-	8.1	-	
Vert.	408.9	39.7	-	16.0	10.4	32.0	34.1	-	46.0	-	11.9	-	
Vert.	453.6	43.9	-	16.6	10.7	32.0	39.2	-	46.0	-	6.8	-	
Vert.	648.9	34.4	-	19.3	11.7	31.9	33.5	-	46.0	-	12.6	-	
Vert.	773.3	32.7	-	20.7	12.3	31.5	34.2	-	46.0	-	11.9	-	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:	1 GHz - 10 GHz	20log (4.0 m / 3.0 m) = 2.5 dB
	10 GHz - 40 GHz	20log (1.0 m / 3.0 m) = -9.5 dB

[Plot data, Worst case]

Spurious Emissions

(Above 40 GHz)

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No. 3	No. 3	No. 3
Date	January 11, 2024	January 12, 2024	January 12, 2024
Temperature / Humidity	21 deg. C / 38 % RH	21 deg. C / 36 % RH	22 deg. C / 34 % RH
Engineer	Nachi Konegawa	Junki Nagatomi	Nachi Konegawa
	(50 GHz to 75 GHz)	(75 GHz to 170 GHz)	(170 GHz to 200 GHz,
			40 GHz to 50 GHz)
Mode	Tx Symbol Pattern A		

Freq.	Reading	Rx	Filter	LNA	Mixer	IF	IF	Test	FSL	EI	RP	Power density	Limit	Margin	Remarks
	(Peak)	Ant.	Loss	Gain	Conv.	Amp.	Cable	Distance				Result at 3 m	Average	Average	
		Gain			Loss	Gain	Loss	D				(Peak)			
[GHz]	[dBm]	[dBi]	[dB]	[dB]	[dB]	[dB]	[dB]	[m]	[dB]	[dBm]	[mW]	[pW/cm ²]	[pW/cm ²]	[dB]	
44.765	-51.30	21.72	0.00	32.07	0.00	0.00	7.99	1.00	65.46	-31.64	0.000685	0.61	90	21.72	NS
49.479	-49.86	22.40	0.00	32.02	0.00	0.00	8.43	1.00	66.33	-29.52	0.001117	0.99	90	19.59	NS
52.762	-67.44	23.06	0.00	27.09	45.58	32.09	0.07	0.75	64.39	-39.64	0.000109	0.10	90	29.71	NS
74.148	-68.07	24.47	0.00	21.08	51.72	32.09	0.07	0.75	67.34	-26.58	0.002199	1.94	90	16.65	NS
81.986	-58.10	23.50	0.37	34.55	41.32	31.97	0.10	0.50	64.70	-41.64	0.000069	0.06	90	31.71	NS
88.418	-57.46	23.88	0.43	33.16	41.91	31.97	0.10	0.50	65.35	-38.68	0.000136	0.12	90	28.75	NS
95.801	-57.23	24.22	0.40	34.82	42.92	31.97	0.10	0.50	66.05	-38.77	0.000133	0.12	90	28.85	NS
96.907	-56.24	24.34	0.32	35.56	43.07	31.97	0.10	0.50	66.15	-38.47	0.000142	0.13	90	28.55	NS
109.414	-56.78	24.85	1.58	21.04	45.50	31.97	0.10	0.50	67.20	-20.26	0.009416	8.33	90	10.34	NS
113.057	-85.53	22.40	0.00	17.99	63.96	0.00	0.00	0.01	33.51	-28.45	0.001428	1.26	90	18.53	NS
120.865	-85.70	22.67	0.00	19.23	50.13	0.00	0.00	0.01	34.09	-43.38	0.000046	0.04	90	33.46	NS
122.022	-86.66	22.71	0.00	21.04	47.93	0.00	0.00	0.01	34.17	-48.31	0.000015	0.01	90	38.39	NS
129.178	-87.06	22.92	0.00	20.05	52.10	0.00	0.00	0.01	34.67	-43.27	0.000047	0.04	90	33.34	NS
132.071	-87.20	23.00	0.00	19.01	50.92	0.00	0.00	0.01	34.86	-43.43	0.000045	0.04	90	33.51	NS
141.822	-87.94	23.22	0.00	18.74	52.96	0.00	0.00	0.01	35.48	-41.46	0.000071	0.06	90	31.54	NS
154.739	-87.92	23.37	0.00	17.32	56.19	0.00	0.00	0.01	36.23	-36.18	0.000241	0.21	90	26.26	NS
160.294	-88.33	23.40	0.00	16.30	58.58	0.00	0.00	0.01	36.54	-32.91	0.000512	0.45	90	22.98	NS
163.209	-89.46	23.40	0.00	15.32	59.26	0.00	0.00	0.01	36.70	-32.22	0.000600	0.53	90	22.30	NS
175.256	-86.16	22.52	0.00	0.00	57.85	0.00	0.00	0.01	37.32	-13.52	0.044486	39.33	90	3.59	NS
181.831	-86.99	22.67	0.00	0.00	56.67	0.00	0.00	0.01	37.64	-15.35	0.029148	25.77	90	5.43	NS
193.096	-86.48	22.90	0.00	0.00	56.62	0.00	0.00	0.01	38.16	-14.60	0.034684	30.67	90	4.68	NS
197.052	-87.54	22.97	0.00	0.00	57.61	0.00	0.00	0.01	38.33	-14.56	0.034973	30.92	90	4.64	NS

Calculation:

FSL (Free Space path Loss) = 10 * log ((4 * Pi * D / λ)²)

EIRP = Reading - Rx Ant. gain + Filter loss - LNA gain + Mixer conversion loss - IF Amp. gain + IF Cable loss + FSL Power density Result at 3 m = EIRP / (4 * Pi * 300²)

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2020.

The equipment were not used for factor 0 dB of the data sheets.

The IF Cable loss is included in Mixer loss, so the factor of data sheet were 0 dB.

NS: No signal detected.

[Plot data, Worst case]

*The peak result is less than the average limit.

APPENDIX 2: Test instruments

Test equipment (1/2)

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration	Cal Int
CE	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/ RFM-E321(SW)	-/00640	07/25/2023	12
CE	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/08/2023	12
CE	141358	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-730	07/13/2023	12
CE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
CE	141563	Thermo-Hygrometer	CUSTOM. Inc	CTH-180	1005	01/10/2024	12
CE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12
CE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
CE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
CE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/ RFM-E321(SW)	-/00640	07/25/2023	12
RE	141226	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S304	03/03/2023	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
RE	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/01/2023	12
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2023	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	07/19/2023	12
RE	141517	Horn Antenna 26.5-40GHz	ETS-Lindgren	3160-10	152399	11/20/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
RE	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	-	-
RE	141563	Thermo-Hygrometer	CUSTOM. Inc	CTH-180	1005	01/10/2024	12
RE	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/14/2023	12
RE	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2023	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	141588	Pre Amplifier	L3 Narda-MITEQ	AMF-6F-2600400-33- 8P / AMF-4F- 2600400-33-8P	1871355 /1871328	01/24/2023	12
RE	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/13/2023	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/18/2023	12
RE	142026	Diplexer	OML INC.	DPL26	-	-	-
RE	142032	Microwave Cable	Huber+Suhner	SUCOFLEX102	37511/2	-	-
RE	142033	Microwave Cable	Huber+Suhner	SUCOFLEX102	37512/2	-	-
RE	142036	Horn Antenna	Custom Microwave Inc.	HO6R	-	09/05/2023	12
RE	142039	Horn Antenna	Custom Microwave Inc.	HO4R	-	09/05/2023	12
RE	142041	Horn Antenna	Oshima Prototype Engineering Co.	A16-187	1	09/05/2023	12
RE	142047	Preselected Millimeter Mixer	Keysight Technologies	11974V-E01	3001A00412	11/14/2023	12

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	142048	Harmonic Mixer	Keysight Technologies Inc	11970W	2521 A01909	09/22/2023	12
RE	142049	Harmonic Mixer	OML INC.	M06HWD	D100709-1	12/04/2023	12
RE	142053	Harmonic Mixer	OML INC.	M04HWD	Y100709-1	05/16/2023	12
RE	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	03/22/2023	12
RE	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/17/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12
RE	151897	Microwave Cable	Huber+Suhner	SF101EA/11PC24/ 11PC24/2.5M	SN MY1726/ 1EA	04/11/2023	12
RE	159670	Coaxial Cable	UL Japan	-	-	11/21/2023	12
RE	159919	Power Amplifier	SAGE Millimeter, Inc.	SBP-4035033018- 2F2F-S1	12559-01	06/19/2023	12
RE	160324	Coaxial Cable	Huber+Suhner	SUCOFLEX 102A	MY009/2A	10/05/2023	12
RE	176027	D-Band Low Noise Amplifier	SAGE Millimeter, Inc.	SBL-1141741860- 0606-EI	15235-01	07/11/2023	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/21/2023	12
RE	180607	Power Amplifier	SAGE Millimeter, Inc.	SBP-7531142515- 1010-E1	17343-01	09/22/2023	12
RE	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/20/2023	12
RE	197990	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	01365	11/29/2023	12
RE	199856	WR-10 HighPass Filter	Oshima Prototype Engineering Co.	A20-110-A01	001	04/13/2023	12
RE	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/ 1000M,5000M	537063/126E / 537074/126E	03/16/2023	12

Test equipment (2/2)

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

- **CE: Conducted Emission**
- **RE: Radiated Emission**