

Statement for RF Exposure

Statement No.	14862950H
Customer	Keyence Corporation
Description of EUT	Level sensor
Model Number of EUT	FR-S01
FCC ID	RF41754A
Test standard	FCC Part 15 Subpart C
Test result	Complied

[FCC rule]

§1.1310 Radiofrequency radiation exposure limits.

The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Table 1—Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Limits for Occ	upational/Controlled Ex	posures		_
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f²)	6
30–300	61.4	0.163	1.0	6
300–1500			f/300	6
1500–100,000			5	6
(B) Limits for Gen	eral Population/Uncont	olled Exposure		
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f²)	30
30–300	27.5	0.073	0.2	30
300–1500			f/1500	30
1500–100,000			1.0	30

f = frequency in MHz

Note 1 to Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2 to Table 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

[About fundamental measurement (Average)]

Test Procedure

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013. The peak power were measured with an RF detector that has a detection bandwidth that encompasses the 57-71 GHz band and has a video bandwidth of at least 10 MHz.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

Frequency	Wavelength	Maximum Dimention			Far Field	Tested
		EUT Test Maximum			Boundary	Distance
	Lambda		Antenna	D	r	
[GHz]	[mm]	[m]	[m]	[m]	[m]	[m]
63	4.8	0.01940	0.03759	0.03759	0.594	0.65

The test was performed based on stages 1-4 following;

Stage 1:

Connect the measurement antenna for the fundamental frequency band to the mm-wave RF detector. Place the measurement antenna at a test distance that is in the far-field of the measurement antenna. Place the measurement antenna in the main beam of the EUT then maximize the fundamental emission. The maximum direction was searched under carefully since beam-widths are extremely narrow. Record the peak voltage from DSO as DSO Reading.

Stage 2:

Disconnect the measurement antenna from the RF input port of the instrumentation system. Connect a mm-wave source to the RF input port of the instrumentation system via a waveguide variable attenuator.

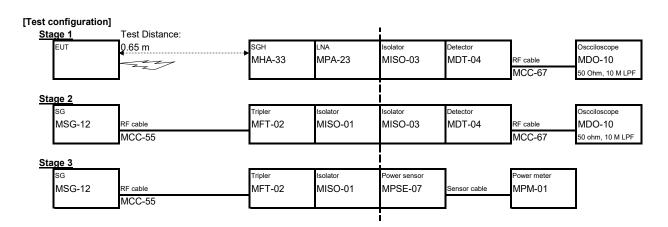
The mm-wave source shall be unmodulated.

Adjust the frequency of the mm-wave source to the center of the frequency range occupied by the transmitter.

Adjust the amplitude of the mm-wave source and/or the variable attenuator such that the DSO indicates a voltage equal to the peak voltage recorded in Stage 1.

The output level of mm-wave source at this time is recorded as SG Reading.

Stage 3:


Disconnect the waveguide variable attenuator from the RF input port of the instrumentation system. Without changing any settings, connect the waveguide variable attenuator to a wideband mm-wave power meter with a thermocouple detector or equivalent.

Measure the power and record it as PM reading.

Stage 4:

Correct the peak substitution power at the input to the measurement instrument, as recorded in Stage 3, for any external gain and/or attenuation between the measurement antenna and the measurement instrument that was not included in the substitution power measurement.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Test data : APPENDIX Test result : Pass

EIRP (Test data)

Test place Semi Anechoic Chamber

Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No. 4

July 11, 2023 21 deg. C / 55 % RH Junki Nagatomi

Tx

No. 4

July 13, 2023 21 deg. C / 49 % RH

Sayaka Hara

Stage 1 Stage 2 Stage 3 Stage 4

Symbol	Center	DSO	S/G	P/M	LNA	Rx	Tested	FSL	Elf	₹₽	Duty	EIF	RP
Pattern	Frequency	Reading	Setting	Reading	Gain	Ant.	Distance		(Burst A	verage)	Factor	(Timed A	verage)
		(RMS)	Pow er			Gain			Re	sult	*1)	Res	ult
	[GHz]	[mV]	[dBm]	[dBm]	[dB]	[dBi]	[m]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
1	60.50	2.19	9.22	-12.50	25.20	23.74	0.65	64.34	2.90	1.95	18.11	-15.21	0.04
2	60.00	2.02	9.06	-12.41	25.37	23.67	0.65	64.26	2.82	1.92	18.11	-15.29	0.03
3	61.00	1.96	9.43	-13.39	25.03	23.80	0.65	64.41	2.19	1.66	18.11	-15.92	0.03
4	59.50	2.25	9.36	-12.25	25.45	23.70	0.65	64.19	2.80	1.91	18.11	-15.31	0.03
5	60.50	2.09	9.15	-12.75	25.20	23.74	0.65	64.34	2.65	1.85	18.11	-15.46	0.03

Calculating formula:

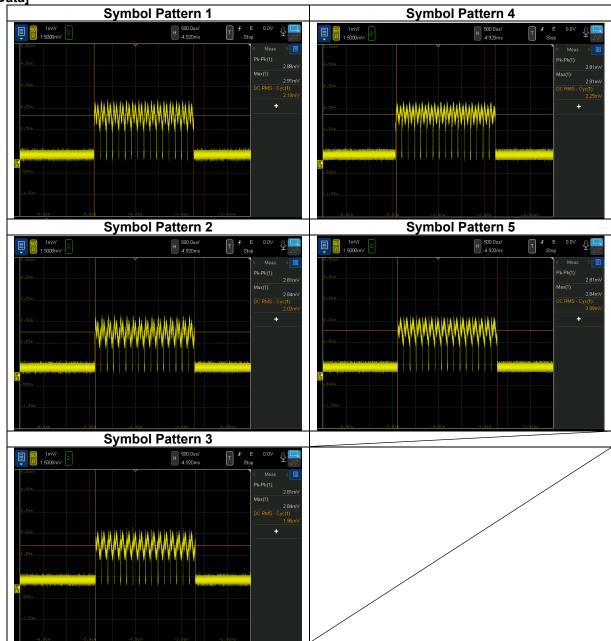
FSL (Free Space path Loss) = 10 * log10((4 * Pi * Tested Distance / Lambda) ^2)

EIRP (Burst Average) = P/M Reading - Rx Ant. Gain - LNA Gain + FSL

EIRP (Timed Average) = EIRP (Burst Average) - Duty Factor

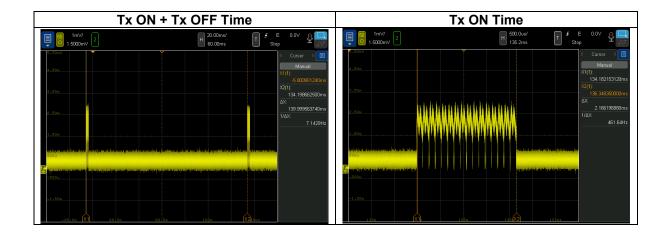
*1) Duty Factor

Tx	Tx	Duty	
ON+OFF	ON	Factor	
Time	Time		
[ms]	[ms]	[dB]	
140.000	2.166	18.11	


Calculating formula:

Duty factor = 10 * log (Tx ON + OFF Time / Tx ON Time)

*1) Refer to Duty Cycle data page.


EIRP

Duty Cycle (Test Data)

Test place Ise EMC Lab.
Semi Anechoic Chamber No. 4
Date July 11, 2023
Temperature / Humidity 21 deg. C / 55 % RH
Engineer Junki Nagatomi
Mode Tx Symbol Pattern 1

Test instruments

Test equipment

	est equipment										
Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int			
MPE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24			
MPE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/14/2023	24			
MPE	MCC-55	141326	Microwave Cable	Suhner	SUCOFLEX101	2874(1m) / 2877(5m)	03/07/2023	12			
MPE	MCC-67	141329	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28635/2	04/10/2023	12			
MPE	MDO-10	211944	Digital Storage Oscilloscope	Keysight Technologies Inc	DSOX6002A	MY59380318	11/07/2022	12			
MPE	MDPLX-01	142026	Diplexer	OML INC.	DPL26	-	11/25/2022	12			
MPE	MDT-04	142528	Detector	Millitech	DET-15-RPFW0	34	-	-			
MPE	MFT-02	142545	Fullband Tripler	Millitech	MUT-15-LF000	19	-	-			
MPE	MHA-33	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/20/2023	12			
MPE	MISO-03	142592	Waveguide Isolator	Millitech	FBI-15-RSES0	1858	-	-			
MPE	MJM-29	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-			
MPE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/18/2023	12			
MPE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/13/2023	12			
MPE	MPA-23	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	03/22/2023	12			
MPE	MPM-01	141801	Power Meter	Keysight Technologies Inc	E4417A	GB41290639	04/11/2023	12			
MPE	MPSE-07	142238	Power sensor	Keysight Technologies Inc	V8486A	MY44420112	06/16/2023	12			
MPE	MSG-12	141892	Signal Generator	Keysight Technologies Inc	E8257D	US49280311	11/24/2022	12			
MPE	MISO-01	142590	Waveguide Isolator	Keysight Technologies Inc	V365A	60004	-	-			

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

MPE: Maximum Permissible Exposure

[Results]

Mode	Average	Separation	Power Density	
	EIRP*	Distance	Result	Limit
	[mW]	[cm]	[mW/cm ²]	[mW/cm ²]
Average Power	1.95	20	0.00039	1

Calculating formula:

Power Density = Average EIRP / (4 * Pi * Separation Distance ^ 2)

This EIRP was measured in sufficient far field of 0.65 m distance and calculated at 20 cm.

Even the RF Specification EIRP, the power density is below the RF Exposure Limit of 1 mW/cm^2.