

RADIO TEST REPORT

Test Report No. 14937749H-B-R2

Customer	KEYENCE CORPORATION
Description of EUT	WLAN unit
Model Number of EUT	WM-WL
FCC ID	RF41637A
Test Regulation	FCC Part 15 Subpart E
Test Result	Complied
Issue Date	January 12, 2024
Remarks	Wireless LAN (5 GHz band) part

Representative Test Engineer	Approved By
K.OkaBaki	S. Matsuyama
Kiyoshiro Okazaki Engineer	Satofumi Matsuyama Engineer
	ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displaye	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 14937749H-B-R2 Page 2 of 51

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 14937749H-B

This report is a revised version of 14937749H-B. 14937749H-B is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14937749H-B	September 29, 2023	-
1	14937749H-B-R1	October 25, 2023	APPENDIX 1: Test Data Radiated Spurious Emission P.28 to P.44 Replacement of radiated spurious emission data for Band-edge with new data.
2	14937749H-B-R2	January 12, 2024	Cover Page. SECTION 2.1, SECTION 4.2 -Correction of Description of EUT. Wide area CMM→WLAN unit
2	14937749H-B-R2	January 12, 2024	SECTION 2.2: Product Description Radio Specification -Addition of below note. This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below. -Addition of a) in the item of antenna gain for wireless LAN (5 GHz band) part.
2	14937749H-B-R2	January 12, 2024	SECTION 3.2: Procedures and Results -Correction of Results for 6 dB Emission Bandwidth. Complied→N/A -Addition of explanatory note *3) of Remarks for 6 dB Emission Bandwidth.

Test Report No. 14937749H-B-R2 Page 3 of 51

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS		PAGE
SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	5
SECTION 3:	Test specification, Procedures & Results	6
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Conducted Emission	
SECTION 6:		
SECTION 7:	Antenna Terminal Conducted Tests	
APPENDIX 1	: Test Data	17
	ted Emission	
	ccupied Bandwidth	
	m Conducted Output Power	
	m Power Spectral Density	
	d Spurious Emission	
	ted Spurious Emission	
	Test Instruments	
	Photographs of Test Setup	
	ted Emission	
	d Spurious Emission	
	ase Position	
	a Terminal Conducted Tests	

Test Report No. 14937749H-B-R2 Page 5 of 51

SECTION 1: Customer Information

Company Name	KEYENCE CORPORATION
Address	1-3-14, Higashinakajima, Higashiyodogawa-ku, Osaka-shi, Osaka, Japan
Telephone Number	+81-6-6379-1111
Contact Person	Takashi Suzuki

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	WLAN unit
Model Number	WM-WL
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	August 21, 2023
Test Date	August 30 to October 4, 2023

2.2 Product Description

General Specification

Rating	DC 1.8 V / DC 3.3 V
Operating temperature	10 deg. C to 35 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain	0.6 dBi

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

	<u>,</u>	10.1100 00,
Equipment Type	Transceiver	
Frequency of Operation	20 MHz Band	5180 MHz to 5240 MHz
	40 MHz Band	5190 MHz to 5230 MHz
	80 MHz Band	5210 MHz
Type of Modulation	OFDM	
Antenna Gain ^{a)}	1.80 dBi	

Test Report No. 14937749H-B-R2 Page 6 of 51

SECTION 3: Test specification, Procedures & Results

3.1 **Test Specification**

Test	FCC Part 15 Subpart E
Specification	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart E
	Unlicensed National Information Infrastructure Devices
	Section 15.407 General technical requirements

^{*}The customer has declared that the EUT has complies with FCC Part 15 Subpart B as SDoC.

3.2 **Procedures and Results**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: 15.407 (b) (6) / 15.207	16.11 dB,	Complied	-
Emission	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	0.47810 MHz,		
			N, AV		
26 dB Emission	FCC: KDB Publication	FCC: 15.407 (a) (1) (2) (3)	See data	N/A	*1)
Bandwidth	Number 789033		_		
	ISED: -	ISED: -			
Maximum	FCC: KDB Publication	FCC: 15.407 (a) (1) (2) (3)		Complied	Conducted
Conducted	Number 789033		_		
Output Power	ISED: -	ISED: RSS-247 6.2.1.1			
Output Fower		6.2.2.1			
		6.2.3.1			
		6.2.4.1			
Maximum Power	FCC: KDB Publication	FCC : 15.407 (a) (1) (2) (3)		Complied	Conducted
Spectral Density	Number 789033		_		
	ISED: -	ISED: RSS-247 6.2.1.1			
		6.2.2.1			
		6.2.3.1			
		6.2.4.1			
Spurious	FCC: ANSI C63.10-2013	FCC: 15.407 (b), 15.205 and	1.0 dB	Complied	Conducted
Emission	KDB Publication Number	15.209	5150.0 MHz,		(< 30 MHz)
Restricted Band	789033		AV, Vertical		/
Edge	ISED: -	ISED: RSS-247 6.2.1.2			Radiated
		6.2.2.2			(> 30 MHz)
		6.2.3.2			*2)
		6.2.4.2	ļ <u> </u>	1	+0)
6 dB Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (e)	See data	N/A	*3)
Bandwidth	ISED: -	ISED: RSS-247 6.2.4.1			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

^{*1)} The test was not performed since the EUT supports 5 GHz (only W52).

^{*2)} Radiated test was selected over 30 MHz based on FCC 15.407 (b) and KDB 789033 D02 G.3.b).
*3) The test is not applicable since the EUT does not support to W58 bands.

Test Report No. 14937749H-B-R2 Page 7 of 51

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Band Width					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Conducted emission

Item	Frequency range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	dB	3.7
	0.15 MHz to 30 MHz	dB	3.3

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	(Horizontal)	dB	4.8
		(Vertical)	dB	5.0
	200 MHz to 1000 MHz	(Horizontal)	dB	5.1
		(Vertical)	dB	6.2
10 m	30 MHz to 200 MHz	(Horizontal)	dB	4.8
		(Vertical)	dB	4.8
	200 MHz to 1000 MHz	(Horizontal)	dB	4.9
		(Vertical)	dB	5.0
3 m	1 GHz to 6 GHz		dB	4.9
	6 GHz to 18 GHz	dB	5.2	
1 m	10 GHz to 26.5 GHz		dB	5.5
	26.5 GHz to 40 GHz		dB	5.4
0.5 m	26.5 GHz to 40 GHz		dB	5.4
10 m	1 GHz to 18 GHz		dB	5.3

Antenna Terminal Conducted tests

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna Terminated Conducted Emission / Power Density / Burst Power	dB	3.28
Adjacent Channel Power (ACP)	dB	2.27
Bandwidth (OBW)	%	0.96
Time Readout (Time span upto 100 msec)	%	0.11
Time Readout (Time span upto 1000 msec)	%	0.11
Time Readout (Time span upto 60 sec)	%	0.02
Power Measurement (Power Meter)	dB	1.50
Frequency Readout (Frequency Counter)	ppm	0.67
Frequency Readout (Spectrum analyzer frequency readout function)	ppm	1.61
Temperature (Constant temperature bath)	deg.C	0.78
Humidity (Constant temperature bath)	%RH	2.80
Modulation Characteristics	%	6.93
Frequency for Mobile	ppm	0.08

Test Report No. 14937749H-B-R2 Page 8 of 51

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14937749H-B-R2 Page 9 of 51

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
IEEE 802.11a (11a)	48 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 7, PN9
IEEE 802.11ac 20 MHz BW (11ac-20)	MCS 6, PN9
IEEE 802.11n 40 MHz BW (11n-40)	MCS 6, PN9
IEEE 802.11ac 40 MHz BW (11ac-40)	MCS 0, PN9
IEEE 802.11ac 80 MHz BW (11ac-80)	MCS 3, PN9

^{*}The worst condition was determined based on the test result of Maximum Conducted Output Power.

Software: Name: cypress-fmac Version: v5.10.9

(Date: September 9, 2022, Storage location: EUT memory)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009 and also was judged the necessity of 802.11ac/ax mode by the pre-test.

[Power Setting]

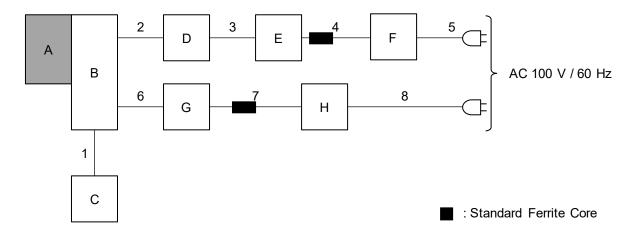
Mode	Ch	Frequency	Power Setting
		, ,	[dBm]
11a	36	5180 MHz	11
	44, 48	5220 MHz, 5240 MHz	12
11n-20	36	5180 MHz	11
	44, 48	5220 MHz, 5240 MHz	12
11ac-20	36	5180 MHz	11
	44, 48	5220 MHz, 5240 MHz	12
11n-40	38	5190 MHz	11
	46	5230 MHz	12
11ac-40	38	5190 MHz	11
	46	5230 MHz	12
11ac-80	42	5210 MHz	11

^{*} Power setting values are different from those of the final product because the power setting values were adjusted so that the maximum power value of the product specifications is output.

*The Details of Operation Mode(s)

Test Item	Operating Mode	Tested Frequency
Conducted emission, Radiated Spurious Emission (Below 1 GHz), Conducted Spurious Emission	Tx 11ac-40 *1)	5230 MHz
Radiated Spurious Emission (Above 1 GHz), 99 % Occupied Bandwidth,	Tx 11a Tx 11ac-20 *2)	5180 MHz 5220 MHz 5240 MHz
Maximum Conducted Output Power, Maximum Power Spectral Density	Tx 11n-40 Tx 11ac-40 Tx 11ac-80	5190 MHz 5230 MHz 5210 MHz

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.
*2) Since each of 20 MHz BW (11n-20 / 11ac-20) have the same modulation method and no differences in transmitting specification, the test was performed on the representative mode that had the highest output power. The test was performed with the antenna that had higher power as a representative.


^{*}Power of the EUT was set by the software as follows Power Setting: Refer to the following table

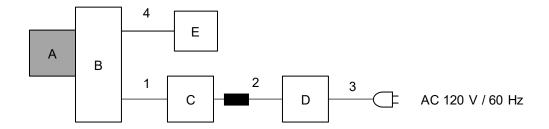
^{*}This setting of software is the worst case.

Test Report No. 14937749H-B-R2 Page 10 of 51

4.2 Configuration and Peripherals

Antenna Terminal Conducted test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


Description of EUT and Support Equipment

No.	Item	Model Number	Serial Number	Manufacturer	Remarks
Α	WLAN unit	WM-WL	001	KEYENCE	EUT
				CORPORATION	
В	Jig Board 01	-	-	KEYENCE	-
				CORPORATION	
С	Jig Board 02	-	-	KEYENCE	-
				CORPORATION	
D	Jig Board 03	-	-	KEYENCE	-
				CORPORATION	
Ε	Laptop PC	CF-NX1GWGYS	2KKSA14614	Panasonic	-
F	AC Adapter	CF-AA6412C	6412CM112714770A	Panasonic	-
G	Jig Board 04	-	-	KEYENCE	-
				CORPORATION	
Н	AC Adapter	OP-88369	004214	KEYENCE	-
				CORPORATION	

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.4	Unshielded	Unshielded	-
2	Signal Cable	0.2	Unshielded	Unshielded	-
3	LAN Cable	2.0	Unshielded	Unshielded	-
4	DC Cable	1.6	Unshielded	Unshielded	-
5	AC Cable	0.8	Unshielded	Unshielded	-
6	DC Cable	0.1	Unshielded	Unshielded	-
7	DC Cable	1.5	Unshielded	Unshielded	-
8	AC Cable	0.8	Unshielded	Unshielded	-

Conducted Emission and Radiated Emission

: Standard Ferrite Core

Description of EUT and Support Equipment

Desc		Support Equipment			
No.	Item	Model Number	Serial Number	Manufacturer	Remarks
Α	WLAN unit	WM-WL	001	KEYENCE CORPORATION	EUT
В	Jig Board 01	-	-	KEYENCE CORPORATION	-
С	Jig Board 04	-	-	KEYENCE CORPORATION	-
D	AC Adapter	OP-88369	6576	KEYENCE CORPORATION	*1)
E	Jig Board 03	-	-	KEYENCE CORPORATION	-

^{*1)} Conducted emission test was conducted using AC adapter that is accessories for limited equipment connected to the EUT.

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	0.1	Unshielded	Unshielded	-
2	DC Cable	1.5	Unshielded	Unshielded	-
3	AC Cable	1.0 *2) 1.8 *3)	Unshielded	Unshielded	-
4	Signal Cable	0.2	Unshielded	Unshielded	-

^{*2)} Used for Conducted Emission test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*}As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

^{*3)} Used for Radiated Emission test

Test Report No. 14937749H-B-R2 Page 12 of 51

SECTION 5: Conducted Emission

Test Procedure and Conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

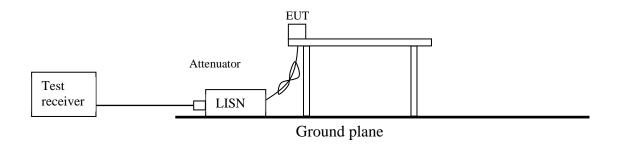
The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).


An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR Average Measurement Range : 0.15 MHz to 30 MHz

Test Data : APPENDIX
Test Result : Pass

Figure 1: Test Setup

Test Report No. 14937749H-B-R2 Page 13 of 51

SECTION 6: Radiated Spurious Emission and Band Edge Compliance

Test Procedure

< Below 1 GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

< Above 1 GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

< Below 1 GHz >

The result also satisfied with the general limits specified in section 15.209 (a).

< Above 1 GHz >

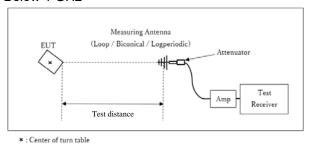
Inside of restricted bands (Section 15.205):
Apply to limit in the Section 15.209 (a).

Outside of the restricted bands:

Apply to limit 68.2 dBuV/m, 3 m (-27 dBm e.i.r.p.*) in the Section 15.407 (b) (1) (2) (3).

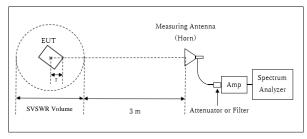
Test Report No. 14937749H-B-R2 Page 14 of 51

Test Antennas are used as below;


Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Frequency	Below 1 GHz	Above 1 GHz	
Instrument Used	Test Receiver	Spectrum Analyzer	
Detector	QP	Peak	Average
IF Bandwidth	BW: 120 kHz	RBW: 1 MHz VBW: 3 MHz	Method AD: RBW: 1 MHz VBW: 3 MHz Detector: Power Averaging (RMS) Trace: ≥ 100 traces If duty cycle was less than 98%, a duty factor was added to the results. Integration Method: RBW: 100 kHz VBW: 300 kHz
			Span: 2 MHz Band Power: 1 MHz Detector: Power Averaging (RMS) Trace: ≥ 100 traces If duty cycle was less than 98%, a duty factor was added to the results.

Test Report No. 14937749H-B-R2 Page 15 of 51

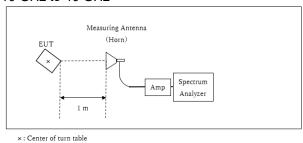

Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table


Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

SVSWR Volume : 2.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

10 GHz to 40 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB *Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 40 GHz

Test Data : APPENDIX Test Result : Pass

Test Report No. 14937749H-B-R2 Page 16 of 51

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

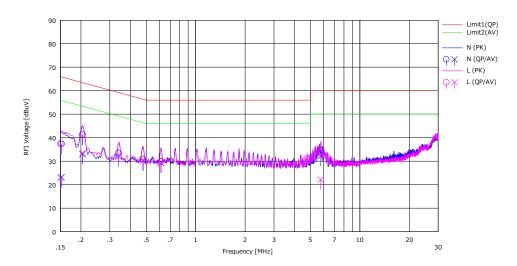
The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
26 dB Bandwidth	Enough to capture the emission	Close to 1 % of EBW	> RBW	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 % to 5 % of OBW	≥ 3 RBW	Auto	Peak	Max Hold	Spectrum Analyzer
6 dB Bandwidth	Enough to capture the emission	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Conducted Output Power	-	-	-	Auto	Average	-	Power Meter (Sensor: 80 MHz BW) (Method PM)
Maximum Power Spectral Density	Encompass the entire EBW	1 MHz or 470 kHz *2)	≥ 3 RBW	Auto	RMS Power Averaging (200 times)	Clear Write	Spectrum Analyzer
Conducted Spurious	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission*3) *4)	150 kHz to 30 MHz	10 kHz	30 kHz				

- *1) Peak hold was applied as Worst-case measurement.
- *2) KDB 789033 D02 says that RBW is set to be 500 kHz for 5.725 GHz to 5.850 GHz, but it is not possible with spectrum analyzer, so RBW Correction Factor (10 log(500 kHz / 470 kHz)) was added to the test result.
- *3) In the frequency range below 30 MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz to 150 kHz: RBW = 200 Hz, 150 kHz to 30 MHz: RBW = 10 kHz).
- *4) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass


Test Report No. 14937749H-B-R2 Page 17 of 51

APPENDIX 1: Test Data

Conducted Emission

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.2 Shielded Room September 8, 2023 20 deg. C / 59 % RH Kiyoshiro Okazaki Tx 11ac-40 5230 MHz

Limit: FCC_Part 15 Subpart E(15.207)

	F	Rea	ding	LISN	1000	Res	ults	Lir	nit	Mai	rgin		
No.	Freq.	(QP)	(AV)	LISN	LOSS	(QP)	(AV)	(QP)	(AV)	(QP)	⟨A V⟩	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15255	24.20	10.00	0.08	13.11	37.39	23.19	65.86	55.86	28.47	32.67	N	
2	0.20440	28.10	19.80	0.08	13.12	41.30	33.00	63.43	53.43	22.13	20.43	N	
3	0.33955	20.30	18.90	0.08	13.16	33.54	32.14	59.21	49.21	25.67	17.07	N	
4	0.47810	17.60	17.00	0.08	13.18	30.86	30.26	56.37	46.37	25.51	16.11	N	
5	0.61495	16.50	16.00	0.08	13.20	29.78	29.28	56.00	46.00	26.22	16.72	N	
6	5.78800	20.80	18.40	0.17	13.68	34.65	32.25	60.00	50.00	25.35	17.75	N	
7	0.15000	24.30	9.70	0.07	13.11	37.48	22.88	66.00	56.00	28.52	33.12	L	
8	0.20525	28.10	20.20	0.08	13.12	41.30	33.40	63.40	53.40	22.10	20.00	L	
9	0.34040	20.20	18.80	0.07	13.16	33.43	32.03	59.19	49.19	25.76	17.16	L	
10	0.47640	17.70	16.90	0.08	13.18	30.96	30.16	56.40	46.40	25.44	16.24	L	
11	0.61495	16.60	15.90	0.08	13.20	29.88	29.18	56.00	46.00	26.12	16.82	L	
12	5.77000	19.40	8.30	0.20	13.68	33.28	22.18	60.00	50.00	26.72	27.82	L	
										ļ			

CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

Test Report No. 14937749H-B-R2 Page 18 of 51

99 % Occupied Bandwidth

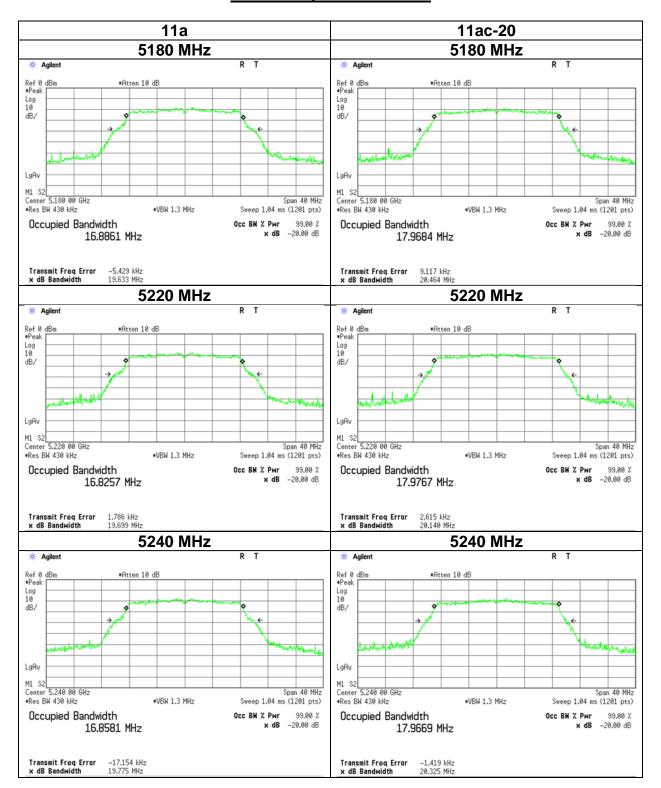
Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room August 30, 2023 20 deg. C / 61 % RH Tetsuro Yoshida Tx

11a

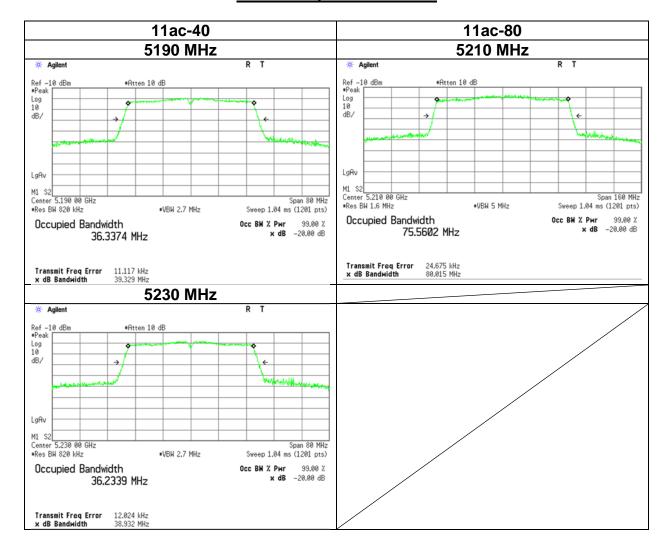
Tested	99 % Occupied
Frequency	Bandwidth
[MHz]	[kHz]
5180	16886.1
5220	16825.7
5240	16858.1

11ac-20

Tested	99 % Occupied
Frequency	Bandwidth
[MHz]	[kHz]
5180	17968.4
5220	17976.7
5240	17966.9


11n-40/11ac-40

Tested	99 % Occupied
Frequency	Bandwidth
[MHz]	[kHz]
5190	36337.4
5230	36233.9


11ac-80

Tested	99 % Occupied
Frequency	Bandwidth
[MHz]	[kHz]
5210	75560.2

99 % Occupied Bandwidth

99 % Occupied Bandwidth

Test Report No. 14937749H-B-R2 Page 21 of 51

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date September 26, 2023
Temperature / Humidity 20 deg. C / 61 % RH
Engineer Yuta Moriya

Mode Tx

11a

Applied limit: 15.407, mobile and portable client device

Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducte	ed Power		e.i.r.p.			
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	Margin	Res	sult	Limit	Margin
	Reading					(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5180	-11.54	2.76	20.01	0.30	1.8	-	16.886	11.53	14.22	23.97	12.44	13.33	21.53	29.97	16.64
5220	-10.59	2.78	20.01	0.30	1.8	-	16.826	12.50	17.78	23.97	11.47	14.30	26.92	29.97	15.67
5240	-10.70	2.79	20.01	0.30	1.8	-	16.858	12.40	17.38	23.97	11.57	14.20	26.30	29.97	15.77

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

11ac-20

Applied limit: 15.407, mobile and portable client device

Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducte	ed Power		e.i.r.p.			
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Re	sult	Limit	Margin	Re	sult	Limit	Margin
	Reading					(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5180	-11.58	2.76	20.01	0.32	1.8	-	17.968	11.51	14.16	23.97	12.46	13.31	21.43	29.97	16.66
5220	-10.60	2.78	20.01	0.32	1.8	-	17.977	12.51	17.82	23.97	11.46	14.31	26.98	29.97	15.66
5240	-10.63	2.79	20.01	0.32	1.8	-	17.967	12.49	17.74	23.97	11.48	14.29	26.85	29.97	15.68

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

11ac-40

Applied limit: 15.407, mobile and portable client device

Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducte	ed Power		e.i.r.p.				
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Re	sult	Limit	Margin	Res	sult	Limit	Margin	
	Reading					(B for FCC)	(B for IC)									
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
5190	-11.35	2.76	20.01	0.08	1.8	-	36.337	11.50	14.13	23.97	12.47	13.30	21.38	29.97	16.67	
5230	-10.35	2.78	20.01	0.08	1.8	-	36.234	12.52	17.86	23.97	11.45	14.32	27.04	29.97	15.65	

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

11ac-80

Applied limit: 15.407, mobile and portable client device

_																	
Г	Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducte	ed Power		e.i.r.p.				
	Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	Margin	Re	sult	Limit	Margin	
		Reading					(B for FCC)	(B for IC)									
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
Γ	5210	-11.78	2.77	20.01	0.51	1.8	-	75.560	11.51	14.16	23.97	12.46	13.31	21.43	29.97	16.66	

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

Test Report No. 14937749H-B-R2 Page 22 of 51

Maximum Conducted Output Power (Worst data rate check)

Test place Ise EMC Lab. No.8 Measurement Room

Date August 30, 2023 Temperature / Humidity 20 deg. C / 61 % RH Tetsuro Yoshida Engineer

Mode

5220	

DZZU IVITIZ			
Mode	Rate	Burst	Remarks
		power	
	Mbps	[dBm]	
11a	6	-10.06	
	9	-9.76	
	12	-9.66	
	18	-9.61	
	24	-9.66	
	36	-9.64	
	48	-9.50	*
	54	-9.54	

5230	MH

5230 MHz			
Mode	MCS	Burst	Remarks
	Number	power	
		[dBm]	
11n-40	0	-9.91	
	1	-9.82	
	2	-10.09	
	3	-10.03	
	4	-9.85	
	5	-9.98	
	6	-9.77	*
	7	-9.79	

5210 MHz

Mode	MCS	Burst	Remarks
	Number	power	
		[dBm]	
11ac-80	0	-10.74	
	1	-10.68	
	2	-10.69	
	3	-10.65	*
	4	-10.72	
	5	-10.69	
	6	-10.71	
	7	-10.71	
	8	-10.76	
	9	-10.68	

5220	IVI	HZ

5220 WHZ			
Mode	MCS	Burst	Remarks
	Number	power	
		[dBm]	
11n-20	0	-9.81	
	1	-10.02	
	2	-10.04	
	3	-10.01	
	4	-9.88	
	5	-9.78	
	6	-9.80	
	7	-9.76	*

5230 MHz

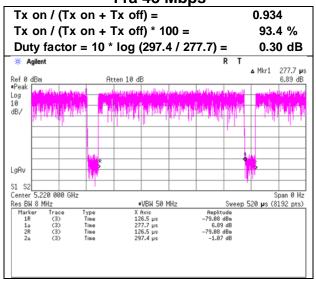
Mode	MCS	Burst	Remarks
	Number	power	
		[dBm]	
11ac-40	0	-9.17	*
	1	-9.23	
	2	-9.35	
	3	-9.22	
	4	-9.36	
	5	-9.37	
	6	-9.35	
	7	-9.39	
	8	-9.39	
	9	-9.40	

5220 MHz

Mode	MCS	Burst	Remarks
	Number	power	
		[dBm]	
11ac-20	0	-10.02	
	1	-9.90	
	2	-10.08	
	3	-10.08	
	4	-9.88	
	5	-9.79	
	6	-9.71	*
	7	-10.01	
	8	-9.88	
	9	-9.77	

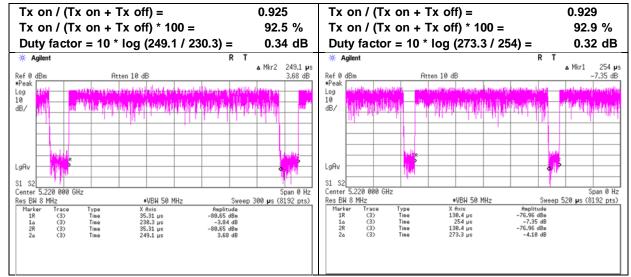
^{*} Worst rate

This test was conduted by the use of Gate function.


All comparison were carried out on same frequency and measurement factors.

Test Report No. 14937749H-B-R2 Page 23 of 51

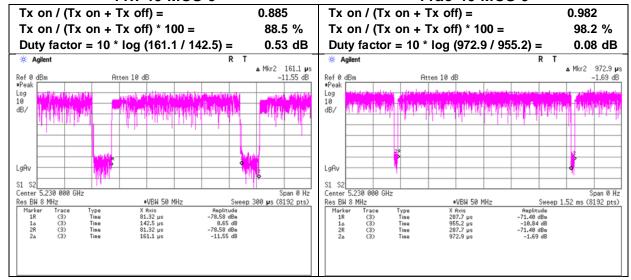
Burst rate confirmation


Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room August 30, 2023 20 deg. C / 61 % RH Tetsuro Yoshida Tx

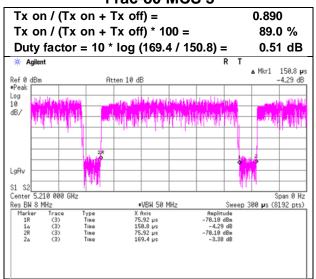
11a 48 Mbps

11n-20 MCS 7

11ac-20 MCS 6


Test Report No. 14937749H-B-R2 Page 24 of 51

Burst rate confirmation


Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room August 30, 2023 20 deg. C / 61 % RH Tetsuro Yoshida Tx

11n-40 MCS 6

11ac-40 MCS 0

11ac-80 MCS 3

Test Report No. 14937749H-B-R2 Page 25 of 51

Maximum Power Spectral Density

Test place Ise EMC Lab. No.8 Measurement Room

September 26, 2023 Date Temperature / Humidity 20 deg. C / 61 % RH Engineer Yuta Moriya

Mode Tx

11a

Applied limit: 15.407, mobile and portable client device

ſ	Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSE	PSD (Conducted)			PSD (e.i.r.p.)		
-	Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin	
-							Factor							
-1	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	
ſ	5180	-20.78	2.76	20.01	0.30	1.8	0.00	2.29	11.00	8.71	4.09	17.00	12.91	
ı	5220	-19.83	2.78	20.01	0.30	1.8	0.00	3.26	11.00	7.74	5.06	17.00	11.94	
ı	5240	-19.91	2.79	20.01	0.30	1.8	0.00	3.19	11.00	7.81	4.99	17.00	12.01	

Sample Calculation:

PSD: Power Spectral Density

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss + Atten. Loss + Duty Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

11ac-20

Applied limit: 15.407, mobile and portable client device

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSD (Conducted)			PSD (e.i.r.p.)		
Frequenc	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
						Factor						
[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]
518	-21.41	2.76	20.01	0.32	1.8	0.00	1.68	11.00	9.32	3.48	17.00	13.52
522	-20.60	2.78	20.01	0.32	1.8	0.00	2.51	11.00	8.49	4.31	17.00	12.69
524	-20.40	2.79	20.01	0.32	1.8	0.00	2.72	11.00	8.28	4.52	17.00	12.48

Sample Calculation:

PSD: Power Spectral Density
RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss + Atten. Loss + Duty Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

11ac-40

Applied limit: 15.407, mobile and portable client device

i i ac	Trac-40												0111 401100
Test	ed	PSD	Cable	Atten.	Duty	Antenna	RBW	PSE	PSD (Conducted)		P	.)	
Freque	ency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
							Factor						
[MHz	z]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]
5	5190	-24.04	2.76	20.01	0.08	1.8	0.00	-1.19	11.00	12.19	0.61	17.00	16.39
5	5230	-23.08	2.78	20.01	0.08	1.8	0.00	-0.21	11.00	11.21	1.59	17.00	15.41

Sample Calculation:

PSD: Power Spectral Density
RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss + Atten. Loss + Duty Factor

PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

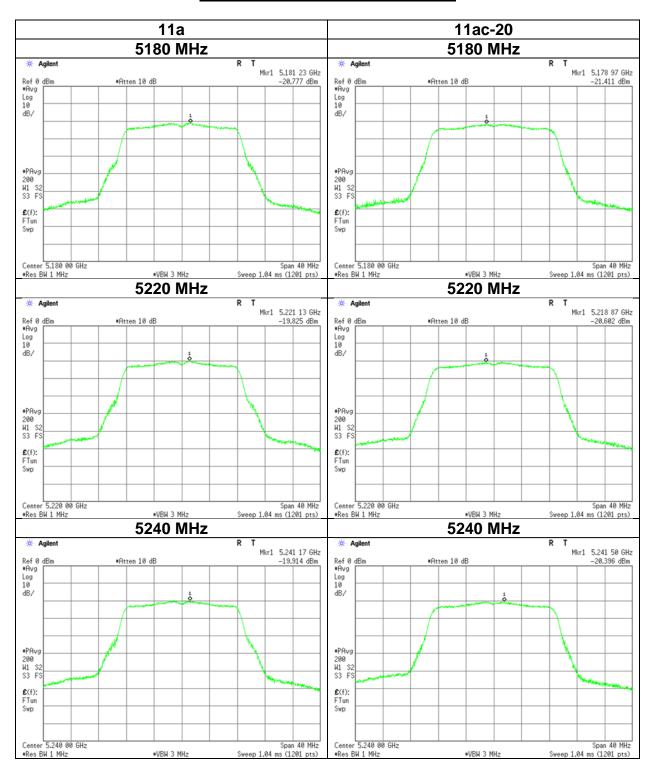
11ac-80

Applied limit: 15.407, mobile and portable client device

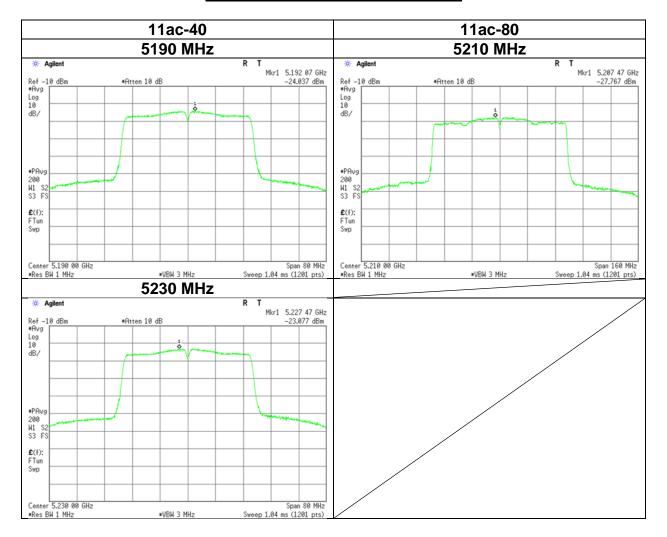
I	Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSE) (Conduc	ted)	Р	SD (e.i.r.p	.)
	Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
							Factor						
	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]
	5210	-27.77	2.77	20.01	0.51	1.8	0.00	-4.48	11.00	15.48	-2.68	17.00	19.68

Sample Calculation:

PSD: Power Spectral Density


RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss + Atten. Loss + Duty Factor


PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Although the EUT operates on Master mode, more stringent limit for Client device was applied. (W52 for FCC)

Maximum Power Spectral Density

Maximum Power Spectral Density

Test Report No. 14937749H-B-R2 Page 28 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.1 No.3

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 23 deg. C / 50 % RH 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Humidity

Engineer Daiki Matsui Yuta Moriya Yuta Moriya Junya Okuno (Band-edge)

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz)

except band-edge) Mode Tx 11a 5180 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
	, ,	(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5150.0	60.6	45.5	32.1	6.4	35.6	0.3	63.5	48.6	73.9	53.9	10.4	5.3	*1)
Hori.	10360.0	41.6	-	40.0	-2.7	33.1	-	45.8	-	68.2	-	22.4	-	Floor noise
Hori.	15540.0	42.7	-	37.7	-0.6	32.2	-	47.6	-	68.2	-	20.6	-	Floor noise
Vert.	5150.0	60.3	45.1	32.1	6.4	35.6	0.3	63.2	48.3	73.9	53.9	10.7	5.7	*1)
Vert.	10360.0	41.3	-	40.0	-2.7	33.1	-	45.5	-	68.2	-	22.7	-	Floor noise
Vert.	15540.0	41.9	-	37.7	-0.6	32.2	-	46.8	-	68.2	-	21.4	-	Floor noise

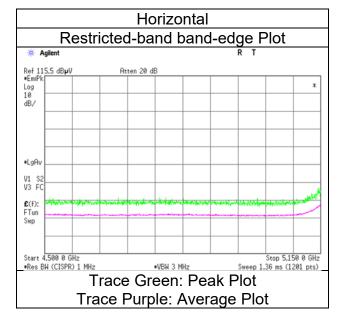
20log (4 m / 3.0 m) = 2.5 dB Distance factor: 1 GHz - 10 GHz

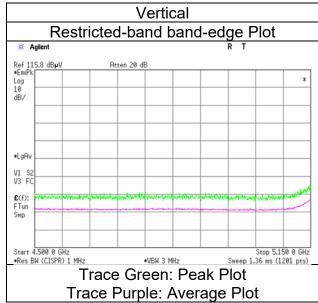
10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Test Report No. 14937749H-B-R2 Page 29 of 51


Radiated Spurious Emission


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11a 5180 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 30 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Date August 31, 2023 September 1, 2023 September 3, 2023 Temperature / Humidity 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Engineer Daiki Matsui Yuta Moriya Yuta Moriya (10 GHz to 18 GHz) (Above 18 GHz) (1 GHz to 10 GHz)

Mode Tx 11a 5220 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	10440.0	42.4	-	40.0	-2.6	33.1	-	46.6	-	68.2	-	21.6	-	Floor noise
Hori.	15660.0	42.9		37.5	-0.6	32.2	-	47.6	-	68.2	-	20.7	-	Floor noise
Vert.	10440.0	42.0	-	40.0	-2.6	33.1	-	46.2	-	68.2	-	22.0	-	Floor noise
Vert.	15660.0	42.9		37.5	-0.6	32.2	-	47.6	-	68.2	-	20.6	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

> 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 14937749H-B-R2 Page 31 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.1 No.3

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 23 deg. C / 50 % RH 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Humidity

Engineer Daiki Matsui Yuta Moriya Yuta Moriya Junya Okuno

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge) Mode Tx 11a 5240 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5350.0	45.1	36.5	31.8	6.5	35.6	0.3	47.8	39.4	73.9	53.9	26.1	14.5	*1)
Hori.	10480.0	42.5	-	39.9	-2.6	33.1	-	46.6	-	68.2	-	21.6	-	Floor noise
Hori.	15720.0	42.8	-	37.4	-0.6	32.2	-	47.4	-	68.2	-	20.8	-	Floor noise
Vert.	5350.0	45.2	36.8	31.8	6.5	35.6	0.3	47.8	39.7	73.9	53.9	26.1	14.2	*1)
Vert.	10480.0	42.5	-	39.9	-2.6	33.1	-	46.7	-	68.2	-	21.5	-	Floor noise
Vert.	15720.0	42.6	-	37.4	-0.6	32.2	-	47.2	-	68.2	-	21.0	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

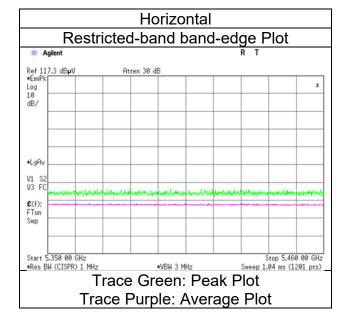
Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

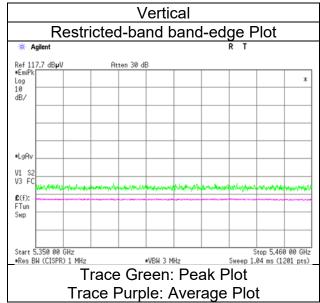
> 10 GHz - 40 GHz $20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Test Report No. 14937749H-B-R2 Page 32 of 51


Radiated Spurious Emission


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11a 5240 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 33 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.3 No.1

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH 23 deg. C / 50 % RH

Humidity

Engineer Daiki Matsui Yuta Moriya Yuta Moriya Junya Okuno

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge)
Mode Tx 11ac-20 5180 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5150.0	61.5	45.5	32.1	6.4	35.6	0.3	64.4	48.7	73.9	53.9	9.5	5.2	*1)
Hori.	10360.0	42.9	-	40.0	-2.7	33.1	-	47.1	-	68.2	-	21.1	-	Floor noise
Hori.	15540.0	42.7	-	37.7	-0.6	32.2	-	47.6	-	68.2	-	20.6	-	Floor noise
Vert.	5150.0	62.6	45.8	32.1	6.4	35.6	0.3	65.5	49.1	73.9	53.9	8.5	4.9	*1)
Vert.	10360.0	42.6	-	40.0	-2.7	33.1	-	46.9	-	68.2	-	21.3	-	Floor noise
Vert.	15540.0	42.8	-	37.7	-0.6	32.2	-	47.7	-	68.2	-	20.5	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

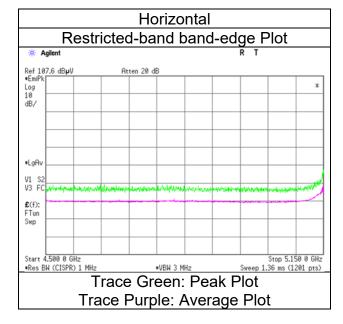
Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

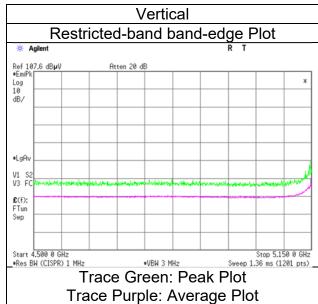
10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

 $^{^{\}star}$ Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. 14937749H-B-R2 Page 34 of 51


Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11ac-20 5180 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 35 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Date August 31, 2023 September 1, 2023 September 3, 2023 Temperature / Humidity 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Engineer Daiki Matsui Yuta Moriya Yuta Moriya (10 GHz to 18 GHz) (Above 18 GHz) (1 GHz to 10 GHz)

Mode Tx 11ac-20 5220 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Ver	t] [MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	10440.0	42.5	-	40.0	-2.6	33.1	-	46.7	-	68.2	-	21.5	-	Floor noise
Hori.	15660.0	42.0	-	37.5	-0.6	32.2	-	46.7	-	68.2	-	21.5	-	Floor noise
Vert.	10440.0	42.6	-	40.0	-2.6	33.1	-	46.8	-	68.2	-	21.4	-	Floor noise
Vert	15660.0	42.8	l _	37.5	-0.6	32.2	_	47.5	_	68.2	_	20.7	_	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Art Factor + Loss (Cable-Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 14937749H-B-R2 Page 36 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.1 No.3

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 23 deg. C / 50 % RH 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Humidity

Engineer Daiki Matsui Yuta Moriya Yuta Moriya Junya Okuno

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge) Mode Tx 11ac-20 5240 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5350.0	45.4	36.6	31.8	6.5	35.6	0.3	48.1	39.6	73.9	53.9	25.8	14.3	*1)
Hori.	10480.0	42.4	-	39.9	-2.6	33.1	-	46.6	-	68.2	-	21.6	-	Floor noise
Hori.	15720.0	43.0	-	37.4	-0.6	32.2	-	47.5	-	68.2	-	20.7	-	Floor noise
Vert.	5350.0	45.5	36.8	31.8	6.5	35.6	0.3	48.2	39.8	73.9	53.9	25.7	14.1	*1)
Vert.	10480.0	42.6	-	39.9	-2.6	33.1	-	46.8	-	68.2	-	21.4	-	Floor noise
Vert.	15720.0	42.3	-	37.4	-0.6	32.2	-	46.9	-	68.2	-	21.3	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

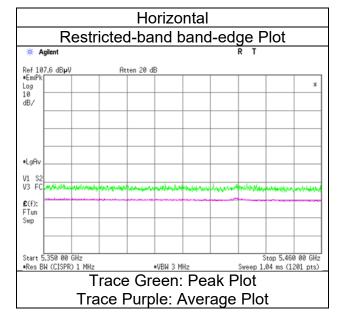
20log (4 m / 3.0 m) = 2.5 dB Distance factor: 1 GHz - 10 GHz

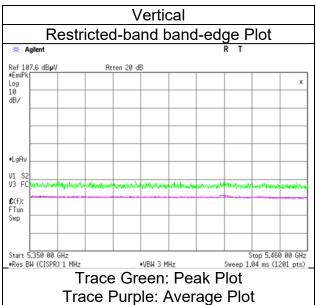
10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. 14937749H-B-R2 Page 37 of 51


Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11ac-20 5240 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 38 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.1 No.3

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 23 deg. C / 50 % RH 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Humidity

Mode

Engineer Daiki Matsui Yuta Moriya Yuta Moriya Junya Okuno

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge) Tx 11ac-40 5190 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5150.0	63.1	47.4	32.1	6.4	35.6	-	66.0	50.3	73.9	53.9	7.9	3.6	*2)
Hori.	10380.0	42.6	-	40.0	-2.7	33.1	-	46.9	-	68.2	-	21.3	-	Floor noise
Hori.	15570.0	42.9	-	37.7	-0.6	32.2	-	47.8	-	68.2	-	20.4	-	Floor noise
Vert.	5150.0	63.2	47.8	32.1	6.4	35.6	-	66.1	50.7	73.9	53.9	7.8	3.2	*2)
Vert.	10380.0	42.5	-	40.0	-2.7	33.1	-	46.7	-	68.2	-	21.5	-	Floor noise
Vert	15570 0	42 7		37.7	-0.6	32.2	_	47.5		68.2	_	20.7	_	Floor noise

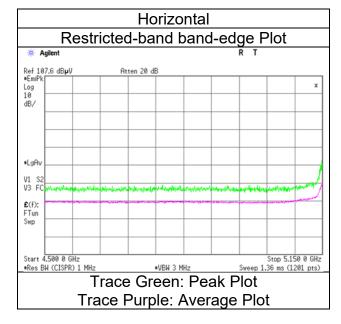
vert. 1557.0 42.7 - 37.7 - 0.5 32.2 - 47.5 - 65. Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

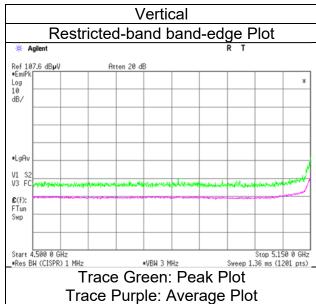
1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB Distance factor:

10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

^{*2)} Integration method (AV only)


Test Report No. 14937749H-B-R2 Page 39 of 51


Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11ac-40 5190 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 40 of 51

No.3

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date August 31, 2023 September 1, 2023 September 3, 2023 Temperature / Humidity 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH Daiki Matsui Yuta Moriya Yuta Moriya Engineer (Above 18 GHz)

(10 GHz to 18 GHz) (1 GHz to 10 GHz except band-edge)

Mode Tx 11ac-40 5230 MHz

Ise EMC Lab. Test place

Semi Anechoic Chamber No.3 No.1

September 4, 2023 October 4, 2023 Date 22 deg. C / 61 % RH 23 deg. C / 50 % RH Temperature / Humidity Junya Okuno Engineer Yuta Moriya

(Below 1 GHz) (Band-edge) Tx 11ac-40 5230 MHz Mode

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	812.2	20.8	-	20.9	13.2	31.3	-	23.6	-	68.2	-	44.6	-	Floor noise
Hori.	838.8	20.5	-	21.3	13.4	31.2	-	24.0	-	68.2	-	44.2	-	Floor noise
Hori.	863.1	20.4	-	21.7	13.5	31.0	-	24.6	-	68.2	-	43.6	-	Floor noise
Hori.	888.9	20.0	-	22.1	13.6	30.9	-	24.8	-	68.2	-	43.4	-	Floor noise
Hori.	913.4	19.8	-	22.2	13.7	30.8	-	25.0	-	68.2	-	43.2	-	Floor noise
Hori.	938.2	19.8	-	22.0	13.9	30.6	-	25.0	-	68.2	-	43.2	-	Floor noise
Hori.	5350.0	48.0	38.8	31.8	6.5	35.6	-	50.7	41.4	73.9	53.9	23.2	12.5	
Hori.	10460.0	42.3	-	39.9	-2.6	33.1	-	46.5	-	68.2	-	21.7	-	Floor noise
Hori.	15690.0	42.9	-	37.4	-0.6	32.2	-	47.5	-	68.2	-	20.7	-	Floor noise
Vert.	812.2	20.9	-	20.9	13.2	31.3	-	23.7	-	68.2	-	44.5	-	Floor noise
Vert.	838.8	20.6	-	21.3	13.4	31.2	-	24.1	-	68.2	-	44.1	-	Floor noise
Vert.	863.1	20.4	-	21.7	13.5	31.0	-	24.6	-	68.2	-	43.6	-	Floor noise
Vert.	888.9	20.2	-	22.1	13.6	30.9	-	25.0	-	68.2	-	43.2	-	Floor noise
Vert.	913.4	20.0	-	22.2	13.7	30.8	-	25.2	-	68.2	-	43.0	-	Floor noise
Vert.	938.2	19.9	-	22.0	13.9	30.6	-	25.1	-	68.2	-	43.1	-	Floor noise
Vert.	5350.0	47.4	38.7	31.8	6.5	35.6	-	50.1	41.3	73.9	53.9	23.8	12.6	
Vert.	10460.0	42.4	-	39.9	-2.6	33.1	-	46.5	-	68.2	-	21.7	-	Floor noise
Vert.	15690.0	42.7	-	37.4	-0.6	32.2	-	47.2	-	68.2	-	21.0	-	Floor noise

 Vert.
 15690.0
 42.7
 37.4
 -0.6
 32.2
 47.2

 Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

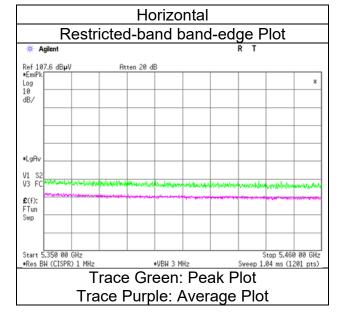
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

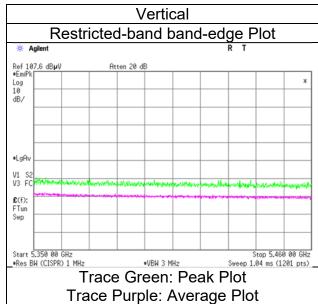
20log (4 m / 3.0 m) = 2.5 dB Distance factor: 1 GHz - 10 GHz

10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.


Test Report No. 14937749H-B-R2 Page 41 of 51


Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11ac-40 5230 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 42 of 51

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.1 No.3

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 23 deg. C / 50 % RH 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH

Humidity

Engineer Daiki Matsui Yuta Moriya Yuta Moriya Junya Okuno

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge) Mode Tx 11ac-80 5210 MHz

Polarity	Frequency	Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
		(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5150.0	61.5	49.5	32.1	6.4	35.6	0.5	64.3	52.9	73.9	53.9	9.6	1.1	*1),*2)
Hori.	5350.0	50.4	40.9	31.8	6.5	35.6	0.5	53.0	44.1	73.9	53.9	20.9	9.8	*1)
Hori.	10420.0	42.3	-	40.0	-2.6	33.1	-	46.6	-	68.2	-	21.7	-	Floor noise
Hori.	15630.0	42.1	-	37.6	-0.6	32.2	-	46.8	-	68.2	-	21.4	-	Floor noise
Vert.	5150.0	61.5	49.5	32.1	6.4	35.6	0.5	64.4	52.9	73.9	53.9	9.5	1.0	*1),*2)
Vert.	5350.0	50.7	41.5	31.8	6.5	35.6	0.5	53.3	44.6	73.9	53.9	20.6	9.3	*1)
Vert.	10420.0	42.7	-	40.0	-2.6	33.1	-	47.0	-	68.2	-	21.3	-	Floor noise
Vert.	15630.0	42.9	-	37.6	-0.6	32.2	-	47.7	-	68.2	-	20.5	-	Floor noise

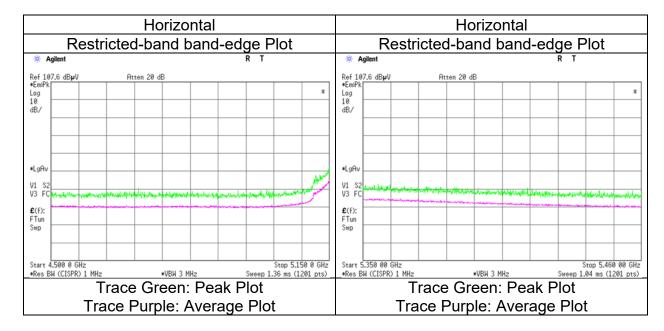
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

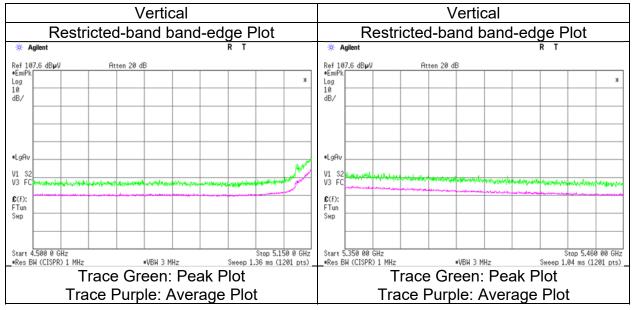
20log (4 m / 3.0 m) = 2.5 dB Distance factor: 1 GHz - 10 GHz

> 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*2)} Integration method (AV only)


Radiated Spurious Emission


Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date October 4, 2023 Temperature / Humidity 23 deg. C / 50 % RH Engineer Junya Okuno (Band-edge)

Mode Tx 11ac-80 5210 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-B-R2 Page 44 of 51

No.3

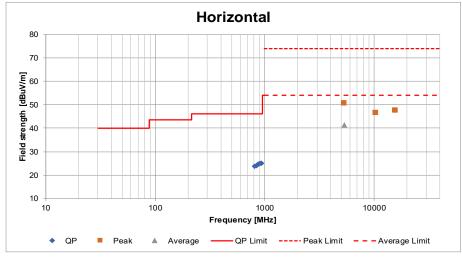
September 3, 2023

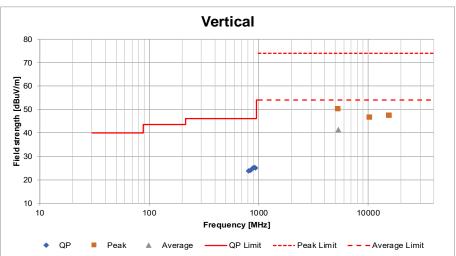
Radiated Spurious Emission (Plot data, Worst case mode for Maximum Conducted Output Power)

Test place Ise EMC Lab. Semi Anechoic Chamber No.3

No.3 September 1, 2023 Date August 31, 2023

Temperature / Humidity 21 deg. C / 44 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH Engineer Daiki Matsui Yuta Moriya Yuta Moriya (1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz)

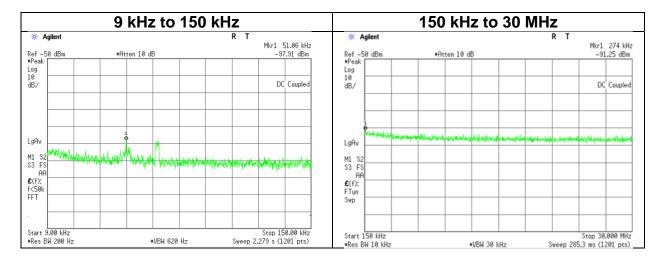

except band-edge) Mode Tx 11ac-40 5230 MHz


Test place Semi Anechoic Chamber No.3 No.1

September 4, 2023 October 4, 2023 Date Temperature / Humidity 22 deg. C / 61 % RH 23 deg. C / 50 % RH Engineer Yuta Moriya Junya Okuno

(Below 1 GHz) (Band-edge) Tx 11ac-40 5230 MHz Mode

Ise EMC Lab.


^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 14937749H-B-R2 Page 45 of 51

Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

Date August 30, 2023
Temperature / Humidity 20 deg. C / 61 % RH
Engineer Tetsuro Yoshida
Mode Tx 11ac-40 5230 MHz

	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Γ	51.06	-97.9	0.01	9.8	2.0	1	-86.1	300	6.0	-24.8	33.4	58.2	
Г	274.00	-91.3	0.01	9.8	2.0	1	-79.4	300	6.0	-18.1	18.8	36.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 * log \ (N)$

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 789033 since antenna gain was less than 2.0 dBi.

Test Report No. 14937749H-B-R2 Page 46 of 51

APPENDIX 2: Test Instruments

ct Equipment (1/2)

	t Equipm	LIMS ID		Manufacturar	Model	Coriol	Loct	Cal
Item		LIM2 ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/10/2022	12
AT	MAT-21	141174	Attenuator(20dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-120	901247	01/20/2023	12
AT	MCC-144	141414	Microwave Cable	Junkosha	MWX221	1207S407	08/01/2023	12
AT	MCC-235	184488	Microwave Cable	Murata Manufacturing Company, Ltd.	MXHS83QE3000	-	09/27/2022	12 *1)
AT	MCC-244	197219	Microwave cable	Huber+Suhner	SF126E/11PC35/1 1PC35/2000MM	536999/126E	03/09/2023	12
AT	MCC-38	141395	Coaxial Cable	UL Japan	_	-	11/18/2022	12
AT	MMM-17	141557	DIGIITAL HITESTER	·	3805	70900530	01/18/2023	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/13/2023	12
AT	MPM-19	141815	Power Meter	Raditeq (Formerly DARE!! Instruments)	RPR3006W	14I00048SNO083	10/21/2022	12
AT	MSA-13	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
AT	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/16/2023	12
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)		Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
CE	MAT-64	141290	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/22/2022	12
CE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini- Circits,Fujikura	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/ 5D-2W(1m)	-	02/01/2023	12
CE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
CE	MLS-25	141537	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-731	07/21/2023	12
CE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
CE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
CE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-01- SVSWR	141994	AC1_Semi Anechoic Chamber(SVSWR)		Semi Anechoic Chamber 10m	DA-06881	04/20/2023	24
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12
RE	MCC-177	141226	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502\$304	03/03/2023	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/01/2023	12
RE	MCC-224	160324	Coaxial Cable	Huber+Suhner	SUCOFLEX 102A	MY009/2A	10/19/2022	12
RE	MCC-265	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/ 1000M, 5000M	537063/126E / 537074/126E	03/16/2023	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
	1	1	I.	i	1	1	1	

Test Equipment (2/2)

	Local ID		Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	ВВНА9170	BBHA9170306	07/19/2023	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/14/2022	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2023	12
RE	MHA-29	141517	Horn Antenna 26.5-40GHz	ETS-Lindgren	3160-10	152399	11/14/2022	12
RE	MHF-22	141293	High Pass Filter 7-20GHz	TOKIMEC	TF37NCCB	602	02/01/2023	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
RE	MJM-25	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	MMM-03	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	01/18/2023	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/13/2023	12
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/13/2023	12
RE	MPA-01	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/14/2023	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2023	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	MPA-22	141588	Pre Amplifier	L3 Narda-MITEQ	AMF-6F-2600400-33-8P / AMF-4F-2600400-33-8P	1871355 / 1871328	01/24/2023	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/16/2023	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	YBA-03	197990	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	01365	11/12/2022	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

The expiration*1) This test equipment was used for the tests before the expiration date of the calibration.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

CE: Conducted Emission RE: Radiated Emission