

# **RADIO TEST REPORT**

# Test Report No. 14937749H-A-R2

| Customer            | KEYENCE CORPORATION              |
|---------------------|----------------------------------|
| Description of EUT  | WLAN unit                        |
| Model Number of EUT | WM-WL                            |
| FCC ID              | RF41637A                         |
| Test Regulation     | FCC Part 15 Subpart C            |
| Test Result         | Complied                         |
| Issue Date          | January 12, 2024                 |
| Remarks             | Wireless LAN (2.4 GHz band) part |

| Representative Test Engineer                          | Approved By                                           |
|-------------------------------------------------------|-------------------------------------------------------|
| Y. Yamazaki                                           | S. Matsuyama                                          |
| Yuichiro Yamazaki<br>Engineer                         | Satofumi Matsuyama<br>Engineer                        |
|                                                       | ACCREDITED                                            |
|                                                       | CERTIFICATE 5107.02                                   |
| The testing in which "Non-accreditation" is displayed | is outside the accreditation scopes in UL Japan, Inc. |

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

There is no testing item of "Non-accreditation".

Test Report No. 14937749H-A-R2 Page 2 of 52

# **ANNOUNCEMENT**

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
   It does not cover administrative issues such as Manual or non-Radio test related Requirements.
   (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

# **REVISION HISTORY**

#### Original Test Report No.: 14937749H-A

This report is a revised version of 14937749H-A. 14937749H-A is replaced with this report.

| Revision        | Test Report No. | Date               | Page Revised Contents                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-----------------|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -<br>(Original) | 14937749H-A     | September 29, 2023 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1               | 14937749H-A-R1  | October 25, 2023   | APPENDIX 1: Test Data Radiated Spurious Emission P 27 to P 41 Replacement of radiated spurious emission data for Band-edge with new data.                                                                                                                                                                                                                                                                                                                      |  |
| 2               | 14937749H-A-R2  | January 12, 2024   | Cover Page. SECTION 2.1, SECTION 4.2 -Correction of Description of EUT. Wide area CMM→WLAN unit                                                                                                                                                                                                                                                                                                                                                                |  |
| 2               | 14937749H-A-R2  | January 12, 2024   | SECTION 2.2: Product Description Radio Specification  -Addition of below note. This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.  -Addition of a) in the item of antenna gain for wireless LAN (2.4 GHz band) part. |  |

Test Report No. 14937749H-A-R2 Page 3 of 52

# Reference: Abbreviations (Including words undescribed in this report)

| A2LA           | The American Association for Laboratory Accreditation           | ICES    | Interference-Causing Equipment Standard                |
|----------------|-----------------------------------------------------------------|---------|--------------------------------------------------------|
| AC             | Alternating Current                                             | IEC     | International Electrotechnical Commission              |
| AFH            | Adaptive Frequency Hopping                                      | IEEE    | Institute of Electrical and Electronics Engineers      |
| AM             | Amplitude Modulation                                            | IF      | Intermediate Frequency                                 |
| Amp, AMP       | Amplifier                                                       | ILAC    | International Laboratory Accreditation Conference      |
| ANSI           | American National Standards Institute                           | ISED    | Innovation, Science and Economic Development Canada    |
| Ant, ANT       | Antenna                                                         | ISO     | International Organization for Standardization         |
| AP             | Access Point                                                    | JAB     | Japan Accreditation Board                              |
| ASK            | Amplitude Shift Keying                                          | LAN     | Local Area Network                                     |
| Atten., ATT    | Attenuator                                                      | LIMS    | Laboratory Information Management System               |
| AV             | Average                                                         | MCS     | Modulation and Coding Scheme                           |
| BPSK           | Binary Phase-Shift Keying                                       | MRA     | Mutual Recognition Arrangement                         |
| BR             | Bluetooth Basic Rate                                            | N/A     | Not Applicable                                         |
| BT             | Bluetooth                                                       | NIST    | National Institute of Standards and Technology         |
| BT LE          | Bluetooth Low Energy                                            | NS      | No signal detect.                                      |
| BW             | BandWidth                                                       | NSA     | Normalized Site Attenuation                            |
| Cal Int        | Calibration Interval                                            | NVLAP   | National Voluntary Laboratory Accreditation<br>Program |
| CCK            | Complementary Code Keying                                       | OBW     | Occupied Band Width                                    |
| Ch., CH        | Channel                                                         | OFDM    | Orthogonal Frequency Division Multiplexing             |
| CISPR          | Comite International Special des Perturbations Radioelectriques | P/M     | Power meter                                            |
| CW             | Continuous Wave                                                 | PCB     | Printed Circuit Board                                  |
| DBPSK          | Differential BPSK                                               | PER     | Packet Error Rate                                      |
| DC             | Direct Current                                                  | PHY     | Physical Layer                                         |
| D-factor       | Distance factor                                                 | PK      | Peak                                                   |
| DFS            | Dynamic Frequency Selection                                     | PN      | Pseudo random Noise                                    |
| DQPSK          | Differential QPSK                                               | PRBS    | Pseudo-Random Bit Sequence                             |
| DSSS           | Direct Sequence Spread Spectrum                                 | PSD     | Power Spectral Density                                 |
| EDR            | Enhanced Data Rate                                              | QAM     | Quadrature Amplitude Modulation                        |
| EIRP, e.i.r.p. | Equivalent Isotropically Radiated Power                         | QP      | Quasi-Peak                                             |
| EMC            | ElectroMagnetic Compatibility                                   | QPSK    | Quadri-Phase Shift Keying                              |
| EMI            | ElectroMagnetic Interference                                    | RBW     | Resolution Band Width                                  |
| EN             | European Norm                                                   | RDS     | Radio Data System                                      |
| ERP, e.r.p.    | Effective Radiated Power                                        | RE      | Radio Equipment                                        |
| EU             | European Union                                                  | RF      | Radio Frequency                                        |
| EUT            | Equipment Under Test                                            | RMS     | Root Mean Square                                       |
| Fac.           | Factor                                                          | RSS     | Radio Standards Specifications                         |
| FCC            | Federal Communications Commission                               | Rx      | Receiving                                              |
| FHSS           | Frequency Hopping Spread Spectrum                               | SA, S/A | Spectrum Analyzer                                      |
| FM             | Frequency Modulation                                            | SG      | Signal Generator                                       |
| Freq.          | Frequency                                                       | SVSWR   | Site-Voltage Standing Wave Ratio                       |
| FSK            | Frequency Shift Keying                                          | TR      | Test Receiver                                          |
| GFSK           | Gaussian Frequency-Shift Keying                                 | Tx      | Transmitting                                           |
| GNSS           | Global Navigation Satellite System                              | VBW     | Video BandWidth                                        |
| GPS            | Global Positioning System                                       | Vert.   | Vertical                                               |
|                | Horizontal                                                      | WLAN    | Wireless LAN                                           |

| SECTION 1:       Customer Information       5         SECTION 2:       Equipment Under Test (EUT)       5         SECTION 3:       Test Specification, Procedures & Results       6         SECTION 4:       Operation of EUT during testing       9         SECTION 5:       Conducted Emission       12         SECTION 6:       Radiated Spurious Emission       13         SECTION 7:       Antenna Terminal Conducted Tests       15         APPENDIX 1:       Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2:       Test Instruments       47         APPENDIX 3:       Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51 | CONTENTS                              | PAGE |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| SECTION 2: Equipment Under Test (EUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SECTION 1: Customer Information       | 5    |
| SECTION 3: Test Specification, Procedures & Results       6         SECTION 4: Operation of EUT during testing       9         SECTION 5: Conducted Emission       12         SECTION 6: Radiated Spurious Emission       13         SECTION 7: Antenna Terminal Conducted Tests       15         APPENDIX 1: Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                   |                                       |      |
| SECTION 4: Operation of EUT during testing       9         SECTION 5: Conducted Emission       12         SECTION 6: Radiated Spurious Emission       13         SECTION 7: Antenna Terminal Conducted Tests       15         APPENDIX 1: Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                       |                                       |      |
| SECTION 5:       Conducted Emission       12         SECTION 6:       Radiated Spurious Emission       13         SECTION 7:       Antenna Terminal Conducted Tests       15         APPENDIX 1:       Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2:       Test Instruments       47         APPENDIX 3:       Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                              |                                       |      |
| SECTION 6: Radiated Spurious Emission       13         SECTION 7: Antenna Terminal Conducted Tests       15         APPENDIX 1: Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                                                                                                                 |                                       |      |
| SECTION 7: Antenna Terminal Conducted Tests       15         APPENDIX 1: Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
| APPENDIX 1: Test Data       16         Conducted Emission       16         99 % Occupied Bandwidth and 6 dB Bandwidth       17         Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |      |
| Conducted Emission1699 % Occupied Bandwidth and 6 dB Bandwidth17Maximum Peak Output Power23Average Output Power24Radiated Spurious Emission27Conducted Spurious Emission42Power Density43APPENDIX 2: Test Instruments47APPENDIX 3: Photographs of Test Setup49Conducted Emission49Radiated Spurious Emission50Worst Case Position51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |      |
| 99 % Occupied Bandwidth and 6 dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |      |
| Maximum Peak Output Power       23         Average Output Power       24         Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |      |
| Average Output Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |      |
| Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum Peak Output Power             | 23   |
| Radiated Spurious Emission       27         Conducted Spurious Emission       42         Power Density       43         APPENDIX 2: Test Instruments       47         APPENDIX 3: Photographs of Test Setup       49         Conducted Emission       49         Radiated Spurious Emission       50         Worst Case Position       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average Output Power                  | 24   |
| Conducted Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |      |
| Power Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                     |      |
| APPENDIX 2: Test Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
| APPENDIX 3: Photographs of Test Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |      |
| Conducted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |      |
| Radiated Spurious Emission50 Worst Case Position51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |      |
| Worst Case Position51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • |      |
| Antenna Terminal Conducted Tests 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |      |

Test Report No. 14937749H-A-R2 Page 5 of 52

### **SECTION 1: Customer Information**

| Company Name     | KEYENCE CORPORATION                                                  |
|------------------|----------------------------------------------------------------------|
| Address          | 1-3-14, Higashinakajima, Higashiyodogawa-ku, Osaka-shi, Osaka, Japan |
| Telephone Number | +81-6-6379-1111                                                      |
| Contact Person   | Takashi Suzuki                                                       |

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- \* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

# **SECTION 2:** Equipment Under Test (EUT)

#### 2.1 Identification of EUT

| Description   | WLAN unit                                                         |
|---------------|-------------------------------------------------------------------|
| Model Number  | WM-WL                                                             |
| Serial Number | Refer to SECTION 4.2                                              |
| Condition     | Production prototype                                              |
|               | (Not for Sale: This sample is equivalent to mass-produced items.) |
| Modification  | No Modification by the test lab                                   |
| Receipt Date  | August 21, 2023                                                   |
| Test Date     | August 29 to October 4, 2023                                      |

#### 2.2 Product Description

#### **General Specification**

| Rating                | DC 1.8 V / DC 3.3 V    |
|-----------------------|------------------------|
| Operating temperature | 10 deg. C to 35 deg. C |

#### **Radio Specification**

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

#### WLAN (IEEE802.11b/11g/11n-20)

| Equipment Type         | Transceiver          |
|------------------------|----------------------|
| Frequency of Operation | 2412 MHz to 2462 MHz |
| Type of Modulation     | DSSS, OFDM           |
| Antenna Gain a)        | 0.6 dBi              |

#### WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

| Equipment Type         | Transceiver |                      |
|------------------------|-------------|----------------------|
| Frequency of Operation | 20 MHz Band | 5180 MHz to 5240 MHz |
|                        | 40 MHz Band | 5190 MHz to 5230 MHz |
|                        | 80 MHz Band | 5210 MHz             |
| Type of Modulation     | OFDM        |                      |
| Antenna Gain           | 1.80 dBi    |                      |

Test Report No. 14937749H-A-R2 Page 6 of 52

# **SECTION 3: Test Specification, Procedures & Results**

#### 3.1 Test Specification

| Test Specification | FCC Part 15 Subpart C                                                     |
|--------------------|---------------------------------------------------------------------------|
|                    | The latest version on the first day of the testing period                 |
| Title              | FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators |
|                    | Section 15.207 Conducted limits                                           |
|                    | Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,   |
|                    | and 5725-5850 MHz                                                         |

<sup>\*</sup>The customer has declared that the EUT has complies with FCC Part 15 Subpart B as SDoC.

#### 3.2 Procedures and Results

| Item                               | Test Procedure                                                    | Specification                                    | Worst Margin                          | Results  | Remarks                                  |
|------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|----------|------------------------------------------|
| Conducted<br>Emission              | FCC: ANSI C63.10-2013 6. Standard test methods                    | FCC: Section 15.207                              | 16.09 dB,<br>0.48529 MHz, L, AV       | Complied | -                                        |
| 6dB Bandwidth                      | ISED: RSS-Gen 8.8 FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 | ISED: RSS-Gen 8.8  FCC: Section 15.247(a)(2)     | See data.                             | Complied | Conducted                                |
|                                    | ISED: -                                                           | ISED: RSS-247 5.2(a)                             |                                       |          |                                          |
| Maximum<br>Peak<br>Output Power    | FCC: KDB 558074 D01<br>15.247<br>Meas Guidance v05r02             | FCC: Section<br>15.247(b)(3)                     |                                       | Complied | Conducted                                |
|                                    | ISED: RSS-Gen 6.12                                                | <b>ISED</b> : RSS-247 5.4(d)                     |                                       |          |                                          |
| Power Density                      | FCC: KDB 558074 D01<br>15.247<br>Meas Guidance v05r02             | <b>FCC:</b> Section 15.247(e)                    |                                       | Complied | Conducted                                |
|                                    | ISED: -                                                           | <b>ISED:</b> RSS-247 5.2(b)                      |                                       |          |                                          |
| Spurious<br>Emission<br>Restricted | FCC: KDB 558074 D01<br>15.247<br>Meas Guidance v05r02             | FCC: Section15.247(d)                            | 2.1 dB<br>2390.0 MHz,<br>AV, Vertical | Complied | Conducted<br>(below 30 MHz)/<br>Radiated |
| Band Edges                         | ISED: RSS-Gen 6.13                                                | ISED: RSS-247 5.5<br>RSS-Gen 8.9<br>RSS-Gen 8.10 |                                       |          | (above 30 MHz)<br>*1)                    |

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

#### FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Part regardless of input voltage. Therefore, this EUT complies with the requirement.

#### FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

<sup>\*</sup> In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

 $<sup>^{*}</sup>$ 1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 14937749H-A-R2 Page 7 of 52

#### 3.3 Addition to Standard

| Item         | Test Procedure    | Specification | Worst Margin | Results | Remarks   |
|--------------|-------------------|---------------|--------------|---------|-----------|
| 99% Occupied | ISED: RSS-Gen 6.7 | ISED: -       | N/A          | =       | Conducted |
| Bandwidth    |                   |               |              |         |           |

Other than above, no addition, exclusion nor deviation has been made from the standard.

#### 3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

**Conducted emission** 

| Item       | Frequency Range       | Unit | Calculated Uncertainty (+/-) |
|------------|-----------------------|------|------------------------------|
| AMN (LISN) | 0.009 MHz to 0.15 MHz | dB   | 3.7                          |
|            | 0.15 MHz to 30 MHz    | dB   | 3.3                          |

**Radiated emission** 

| Measurement distance | Frequency Range     |            | Unit | Calculated Uncertainty (+/-) |
|----------------------|---------------------|------------|------|------------------------------|
| 3 m                  | 9 kHz to 30 MHz     |            | dB   | 3.3                          |
| 10 m                 |                     |            | dB   | 3.1                          |
| 3 m                  | 30 MHz to 200 MHz   | Horizontal | dB   | 4.8                          |
|                      |                     | Vertical   | dB   | 5.0                          |
|                      | 200 MHz to 1000 MHz | Horizontal | dB   | 5.1                          |
|                      |                     | Vertical   | dB   | 6.2                          |
| 10 m                 | 30 MHz to 200 MHz   | Horizontal | dB   | 4.8                          |
|                      |                     | Vertical   | dB   | 4.8                          |
|                      | 200 MHz to 1000 MHz | Horizontal | dB   | 4.9                          |
|                      |                     | Vertical   | dB   | 5.0                          |
| 3 m                  | 1 GHz to 6 GHz      |            | dB   | 4.9                          |
|                      | 6 GHz to 18 GHz     |            | dB   | 5.2                          |
| 1 m                  | 10 GHz to 26.5 GHz  |            | dB   | 5.5                          |
|                      | 26.5 GHz to 40 GHz  |            | dB   | 5.4                          |
| 10 m                 | 1 GHz to 18 GHz     | ·          | dB   | 5.3                          |

**Antenna Terminal Conducted Tests** 

| Item                                                                | Unit   | Calculated Uncertainty (+/-) |
|---------------------------------------------------------------------|--------|------------------------------|
| Antenna Terminated Conducted Emission / Power Density / Burst Power | dB     | 3.28                         |
| Adjacent Channel Power (ACP)                                        | dB     | 2.27                         |
| Bandwidth (OBW)                                                     | %      | 0.96                         |
| Time Readout (Time span upto 100 msec)                              | %      | 0.11                         |
| Time Readout (Time span upto 1000 msec)                             | %      | 0.11                         |
| Time Readout (Time span upto 60 sec)                                | %      | 0.02                         |
| Power Measurement (Power meter)                                     | dB     | 1.50                         |
| Frequency Readout (Frequency counter)                               | ppm    | 0.67                         |
| Frequency Readout (Spectrum analyzer frequency readout function)    | ppm    | 1.61                         |
| Temperature (Constant temperature bath)                             | deg. C | 0.78                         |
| Humidity (Constant temperature bath)                                | %RH    | 2.80                         |
| Modulation Characteristics                                          | %      | 6.93                         |
| Frequency for Mobile                                                | ppm    | 0.08                         |

Test Report No. 14937749H-A-R2 Page 8 of 52

#### 3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

| Test site                  | Width x Depth x<br>Height (m) | Size of reference ground plane (m) / horizontal conducting plane | Other rooms           | Maximum<br>measurement<br>distance |
|----------------------------|-------------------------------|------------------------------------------------------------------|-----------------------|------------------------------------|
| No.1 semi-anechoic         | 19.2 x 11.2 x 7.7             | 7.0 x 6.0                                                        | No.1 Power            | 10 m                               |
| chamber                    |                               |                                                                  | source room           |                                    |
| No.2 semi-anechoic chamber | 7.5 x 5.8 x 5.2               | 4.0 x 4.0                                                        | -                     | 3 m                                |
| No.3 semi-anechoic chamber | 12.0 x 8.5 x 5.9              | 6.8 x 5.75                                                       | No.3 Preparation room | 3 m                                |
| No.3 shielded room         | 4.0 x 6.0 x 2.7               | N/A                                                              | -                     | -                                  |
| No.4 semi-anechoic chamber | 12.0 x 8.5 x 5.9              | 6.8 x 5.75                                                       | No.4 Preparation room | 3 m                                |
| No.4 shielded room         | 4.0 x 6.0 x 2.7               | N/A                                                              | -                     | -                                  |
| No.5 semi-anechoic chamber | 6.0 x 6.0 x 3.9               | 6.0 x 6.0                                                        | -                     | -                                  |
| No.5 measurement room      | 6.4 x 6.4 x 3.0               | 6.4 x 6.4                                                        | -                     | -                                  |
| No.6 shielded room         | 4.0 x 4.5 x 2.7               | 4.0 x 4.5                                                        | -                     | -                                  |
| No.6 measurement room      | 4.75 x 5.4 x 3.0              | 4.75 x 4.15                                                      | -                     | -                                  |
| No.7 shielded room         | 4.7 x 7.5 x 2.7               | 4.7 x 7.5                                                        | -                     | -                                  |
| No.8 measurement room      | 3.1 x 5.0 x 2.7               | 3.1 x 5.0                                                        | -                     | -                                  |
| No.9 measurement room      | 8.8 x 4.6 x 2.8               | 2.4 x 2.4                                                        | -                     | -                                  |
| No.10 shielded room        | 3.8 x 2.8 x 2.8               | 3.8 x 2.8                                                        | -                     | -                                  |
| No.11 measurement room     | 4.0 x 3.4 x 2.5               | N/A                                                              | -                     | -                                  |
| No.12 measurement room     | 2.6 x 3.4 x 2.5               | N/A                                                              | -                     | -                                  |
| Large Chamber              | 16.9 x 22.1 x 10.17           | 16.9 x 22.1                                                      | -                     | 10 m                               |
| Small Chamber              | 5.3 x 6.69 x 3.59             | 5.3 x 6.69                                                       | -                     | -                                  |

<sup>\*</sup> Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

Test Report No. 14937749H-A-R2 Page 9 of 52

# **SECTION 4: Operation of EUT during testing**

#### 4.1 Operating Mode(s)

| Mode                            | Remarks*     |
|---------------------------------|--------------|
| IEEE 802.11b (11b)              | 11 Mbps, PN9 |
| IEEE 802.11g (11g)              | 48 Mbps, PN9 |
| IEEE 802.11n 20 MHz BW (11n-20) | MCS 5, PN9   |

<sup>\*</sup>The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

Power Setting: Refer to the following table Software: Name: cypress-fmac Version: v5.10.9

(Date: September 9, 2022, Storage location: EUT memory)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing -

Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

[Power Setting]

| Mode        | Ch           | Frequency            | Power Setting [dBm] |
|-------------|--------------|----------------------|---------------------|
| 11b         | 1 to 11      | 2412 MHz to 2462 MHz | 16                  |
|             | 1, 2, 10, 11 | 2412 MHz, 2417 MHz,  | 12                  |
| 11g, 11n-20 |              | 2457 MHz, 2462 MHz   |                     |
| -           | 3 to 9       | 2422 MHz to 2452 MHz | 15                  |

<sup>\*</sup> Power setting values are different from those of the final product because the power setting values were adjusted so that the maximum power value of the product specifications is output.

\*The Details of Operating Mode(s)

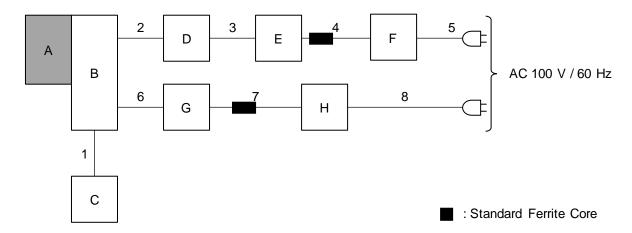
| Test Item                                 | Operating Mode | Tested Frequency |
|-------------------------------------------|----------------|------------------|
| Conducted Emission,                       | Tx 11n-20 *1)  | 2452 MHz         |
| Radiated Spurious Emission (Below 1 GHz), |                |                  |
| Conducted Spurious Emission               |                |                  |
| Radiated Spurious Emission (Above 1 GHz)  | Tx 11b         | 2412 MHz         |
|                                           |                | 2437 MHz         |
|                                           |                | 2462 MHz         |
|                                           | Tx 11n-20 * 2) | 2412 MHz *3)     |
|                                           |                | 2422 MHz         |
|                                           |                | 2437 MHz         |
|                                           |                | 2452 MHz         |
|                                           |                | 2462 MHz *3)     |
| Maximum Peak Output Power,                | Tx 11b         | 2412 MHz         |
| Power Density,                            | Tx 11g         | 2422 MHz *4)     |
| 6dB Bandwidth,                            | Tx 11n-20      | 2437 MHz         |
| 99% Occupied Bandwidth                    |                | 2452 MHz *4)     |
|                                           |                | 2462 MHz         |

<sup>\*1)</sup> The mode was tested as a representative, because it had the highest power at antenna terminal test.

<sup>\*</sup>Power of the EUT was set by the software as follows;

<sup>\*</sup>This setting of software is the worst case.

<sup>\*2)</sup> Since 11g and 11n-20 have the same modulation method and no differences in transmitting specification, test was performed on the representative mode that had the highest peak output power.


<sup>\*3)</sup> Only Band-Edge

<sup>\*4)</sup> Tests were performed on except 11b.

Test Report No. 14937749H-A-R2 Page 10 of 52

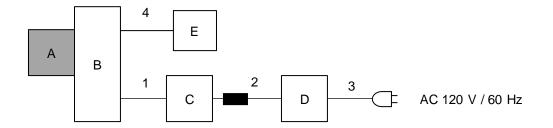
# 4.2 Configuration and Peripherals

### **Antenna Terminal Conducted test**



<sup>\*</sup> Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

**Description of EUT and Support Equipment** 


| No. | Item         | Model Number | Serial Number    | Manufacturer | Remarks |
|-----|--------------|--------------|------------------|--------------|---------|
| Α   | WLAN unit    | WM-WL        | 001              | KEYENCE      | EUT     |
|     |              |              |                  | CORPORATION  |         |
| В   | Jig Board 01 | -            | -                | KEYENCE      | -       |
|     |              |              |                  | CORPORATION  |         |
| С   | Jig Board 02 | -            | -                | KEYENCE      | -       |
|     |              |              |                  | CORPORATION  |         |
| D   | Jig Board 03 | -            | -                | KEYENCE      | -       |
|     |              |              |                  | CORPORATION  |         |
| Е   | Laptop PC    | CF-NX1GWGYS  | 2KKSA14614       | Panasonic    | -       |
| F   | AC Adapter   | CF-AA6412C   | 6412CM112714770A | Panasonic    | -       |
| G   | Jig Board 04 | -            | -                | KEYENCE      | -       |
|     |              |              |                  | CORPORATION  |         |
| Н   | AC Adapter   | OP-88369     | 004214           | KEYENCE      | -       |
|     |              |              |                  | CORPORATION  |         |

#### **List of Cables Used**

| No. | Name         | Length (m) | Shield     |            | Remarks |
|-----|--------------|------------|------------|------------|---------|
|     |              |            | Cable      | Connector  |         |
| 1   | Signal Cable | 0.4        | Unshielded | Unshielded | -       |
| 2   | Signal Cable | 0.2        | Unshielded | Unshielded | -       |
| 3   | LAN Cable    | 2.0        | Unshielded | Unshielded | -       |
| 4   | DC Cable     | 1.6        | Unshielded | Unshielded | -       |
| 5   | AC Cable     | 0.8        | Unshielded | Unshielded | -       |
| 6   | DC Cable     | 0.1        | Unshielded | Unshielded | -       |
| 7   | DC Cable     | 1.5        | Unshielded | Unshielded | -       |
| 8   | AC Cable     | 0.8        | Unshielded | Unshielded | -       |

Test Report No. 14937749H-A-R2 Page 11 of 52

### **Conducted Emission test and Radiated Emission test**



: Standard Ferrite Core

**Description of EUT and Support Equipment** 

| Desc | ription of Lot and | Support Equipment |               |                        |         |
|------|--------------------|-------------------|---------------|------------------------|---------|
| No.  | Item               | Model Number      | Serial Number | Manufacturer           | Remarks |
| Α    | WLAN unit          | WM-WL             | 001           | KEYENCE<br>CORPORATION | EUT     |
| В    | Jig Board 01       | -                 | -             | KEYENCE<br>CORPORATION | -       |
| С    | Jig Board 04       | -                 | -             | KEYENCE<br>CORPORATION | -       |
| D    | AC Adapter         | OP-88369          | 6576          | KEYENCE<br>CORPORATION | *1)     |
| E    | Jig Board 03       | -                 | -             | KEYENCE<br>CORPORATION | -       |

<sup>\*1)</sup> Conducted emission test was conducted using AC adapter that is accessories for limited equipment connected to the EUT.

#### **List of Cables Used**

| No. | Name         | Length (m)         | Shield     |            | Remarks |
|-----|--------------|--------------------|------------|------------|---------|
|     |              |                    | Cable      | Connector  |         |
| 1   | DC Cable     | 0.1                | Unshielded | Unshielded | -       |
| 2   | DC Cable     | 1.5                | Unshielded | Unshielded | -       |
| 3   | AC Cable     | 1.0 *2)<br>1.8 *3) | Unshielded | Unshielded | -       |
| 4   | Signal Cable | 0.2                | Unshielded | Unshielded | -       |

<sup>\*2)</sup> Used for Conducted Emission test

<sup>\*</sup> Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

<sup>\*</sup>As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

<sup>\*3)</sup> Used for Radiated Emission test

Test Report No. 14937749H-A-R2 Page 12 of 52

### **SECTION 5: Conducted Emission**

#### **Test Procedure and Conditions**

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

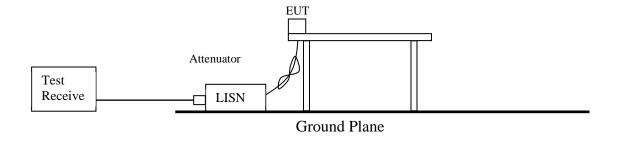
The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

#### For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).


An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV Measurement Range : 0.15 MHz to 30 MHz

Test Data : APPENDIX Test Result : Pass

Figure 1: Test Setup



Test Report No. 14937749H-A-R2 Page 13 of 52

# **SECTION 6: Radiated Spurious Emission**

#### **Test Procedure**

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

#### [For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

#### [For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

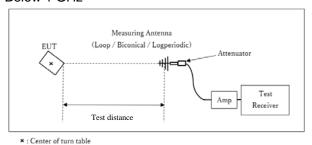
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

#### Test Antennas are used as below;

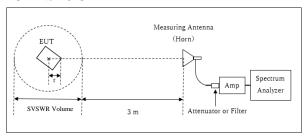
| Frequency    | 30 MHz to 200 MHz | 200 MHz to 1 GHz | Above 1 GHz |
|--------------|-------------------|------------------|-------------|
| Antenna Type | Biconical         | Logperiodic      | Horn        |

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


# 20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

| and outside the re | nd outside the restricted band of FCC 15.205 / Table 6 of R55-Gen 8.10 (15ED). |               |                          |                   |  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------|---------------|--------------------------|-------------------|--|--|--|--|--|--|
| Frequency          | Below 1 GHz                                                                    | Above 1 GHz   |                          | 20 dBc            |  |  |  |  |  |  |
| Instrument Used    | Test Receiver                                                                  | Spectrum Anal | yzer                     | Spectrum Analyzer |  |  |  |  |  |  |
| Detector           | QP                                                                             | PK            | AV                       | PK                |  |  |  |  |  |  |
| IF Bandwidth       | BW 120 kHz                                                                     | RBW: 1 MHz    | <u>11.12.2.5.1</u>       | RBW: 100 kHz      |  |  |  |  |  |  |
|                    |                                                                                | VBW: 3 MHz    | RBW: 1 MHz               | VBW: 300 kHz      |  |  |  |  |  |  |
|                    |                                                                                |               | VBW: 3 MHz               |                   |  |  |  |  |  |  |
|                    |                                                                                |               | Detector:                |                   |  |  |  |  |  |  |
|                    |                                                                                |               | Power Averaging (RMS)    |                   |  |  |  |  |  |  |
|                    |                                                                                |               | Trace: 100 traces        |                   |  |  |  |  |  |  |
|                    |                                                                                |               | <u>11.12.2.5.2</u>       |                   |  |  |  |  |  |  |
|                    |                                                                                |               | The duty cycle was less  |                   |  |  |  |  |  |  |
|                    |                                                                                |               | than 98% for detected    |                   |  |  |  |  |  |  |
|                    |                                                                                |               | noise, a duty factor was |                   |  |  |  |  |  |  |
|                    |                                                                                |               | added to the 11.12.2.5.1 |                   |  |  |  |  |  |  |
|                    |                                                                                |               | results.                 |                   |  |  |  |  |  |  |

Test Report No. 14937749H-A-R2 Page 14 of 52


#### Figure 2: Test Setup

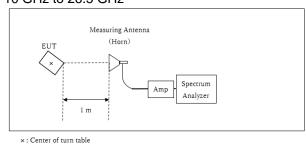
#### Below 1 GHz



Test Distance: 3 m

#### 1 GHz to 10 GHz




- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor:  $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ \* Test Distance: (3 + SVSWR Volume / 2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0m

 $^{\star}$  The test was performed with r=0.0 m since EUT is small and it was the rather conservative condition.

#### 10 GHz to 26.5 GHz



Distance Factor:  $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ \*Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 14937749H-A-R2 Page 15 of 52

# **SECTION 7: Antenna Terminal Conducted Tests**

### **Test Procedure**

The tests were made with below setting connected to the antenna port.

| Test                          | Span                                    | RBW                | VBW                      | Sweep time | Detector                | Trace    | Instrument Used                    |
|-------------------------------|-----------------------------------------|--------------------|--------------------------|------------|-------------------------|----------|------------------------------------|
| 6dB Bandwidth                 | 20 MHz                                  | 100 kHz            | 300 kHz                  | Auto       | Peak                    | Max Hold | Spectrum Analyzer                  |
| 99% Occupied<br>Bandwidth *1) | Enough width to display emission skirts | 1 to 5 %<br>of OBW | Three<br>times<br>of RBW | Auto       | Peak                    | Max Hold | Spectrum Analyzer                  |
| Maximum Peak<br>Output Power  | -                                       | -                  | -                        | Auto       | Peak/<br>Average<br>*2) | -        | Power Meter<br>(Sensor: 50 MHz BW) |
| Peak Power<br>Density         | 1.5 times the<br>6dB Bandwidth          | 3 kHz              | 10 kHz                   | Auto       | Peak                    | Max Hold | Spectrum Analyzer *3)              |
| Conducted                     | 9 kHz to 150 kHz                        | 200 Hz             | 620 Hz                   | Auto       | Peak                    | Max Hold | Spectrum Analyzer                  |
| Spurious<br>Emission *4) *5)  | 150 kHz to 30 MHz                       | 10 kHz             | 30 kHz                   |            |                         |          |                                    |

<sup>\*1)</sup> Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

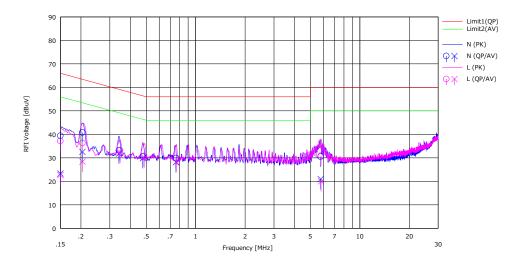
<sup>\*2)</sup> Reference data

<sup>\*3)</sup> Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

<sup>\*4)</sup> In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

<sup>\*5)</sup> The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 14937749H-A-R2 Page 16 of 52


# **APPENDIX 1: Test Data**

# **Conducted Emission**

Test place Ise EMC Lab. No.2 Shielded Room

Date September 8, 2023
Temperature / Humidity 20 deg. C / 59 % RH
Engineer Kiyoshiro Okazaki
Mode Tx 11n-20 2452 MHz

Limit: FCC\_Part 15 Subpart C(15.207)



|     | Голо    | Rea    | ding   | LISN  | LOSS  | Res    | ults   | Lin    | nit    | Mai   | rgin  |       |         |
|-----|---------|--------|--------|-------|-------|--------|--------|--------|--------|-------|-------|-------|---------|
| No. | Freq.   | (QP)   | (AV)   | LISIN | LU55  | (QP)   | (AV)   | (QP)   | (AV)   | (QP)  | ⟨A V⟩ | Phase | Comment |
|     | [MHz]   | [dBuV] | [dBuV] | [dB]  | [dB]  | [dBuV] | [dBuV] | [dBuV] | [dBuV] | [dB]  | [dB]  |       |         |
| 1   | 0.15000 | 26.20  | 10.10  | 0.08  | 13.11 | 39.39  | 23.29  | 66.00  | 56.00  | 26.61 | 32.71 | N     |         |
| 2   | 0.20440 | 27.60  | 19.30  | 0.08  | 13.12 | 40.80  | 32.50  | 63.43  | 53.43  | 22.63 | 20.93 | N     |         |
| 3   | 0.34125 | 19.90  | 18.60  | 0.08  | 13.16 | 33.14  | 31.84  | 59.17  | 49.17  | 26.03 | 17.33 | N     |         |
| 4   | 0.47640 | 17.30  | 16.60  | 0.08  | 13.18 | 30.56  | 29.86  | 56.40  | 46.40  | 25.84 | 16.54 | N     |         |
| 5   | 0.75860 | 16.50  | 14.80  | 0.08  | 13.22 | 29.80  | 28.10  | 56.00  | 46.00  | 26.20 | 17.90 | N     |         |
| 6   | 5.77000 | 16.60  | 7.10   | 0.17  | 13.68 | 30.45  | 20.95  | 60.00  | 50.00  | 29.55 | 29.05 | N     |         |
| 7   | 0.15000 | 24.00  | 9.50   | 0.07  | 13.11 | 37.18  | 22.68  | 66.00  | 56.00  | 28.82 | 33.32 | L     |         |
| 8   | 0.20440 | 23.10  | 15.20  | 0.08  | 13.12 | 36.30  | 28.40  | 63.43  | 53.43  | 27.13 | 25.03 | L     |         |
| 9   | 0.34635 | 20.00  | 18.90  | 0.07  | 13.16 | 33.23  | 32.13  | 59.05  | 49.05  | 25.82 | 16.92 | L     |         |
| 10  | 0.48529 | 17.50  | 16.90  | 0.08  | 13.18 | 30.76  | 30.16  | 56.25  | 46.25  | 25.49 | 16.09 | L     |         |
| 11  | 0.76200 | 16.60  | 15.00  | 0.09  | 13.22 | 29.91  | 28.31  | 56.00  | 46.00  | 26.09 | 17.69 | L     |         |
| 12  | 5.80600 | 17.10  | 6.10   | 0.20  | 13.68 | 30.98  | 19.98  | 60.00  | 50.00  | 29.02 | 30.02 | L     |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        |        |       |       |        |        |        |        |       |       |       |         |
|     |         |        | ļ      |       |       |        |        |        |        |       | ļ     |       |         |
|     | l       | ļ      | ļ      |       |       |        |        |        | ļ      | ļ     | ļ     |       |         |

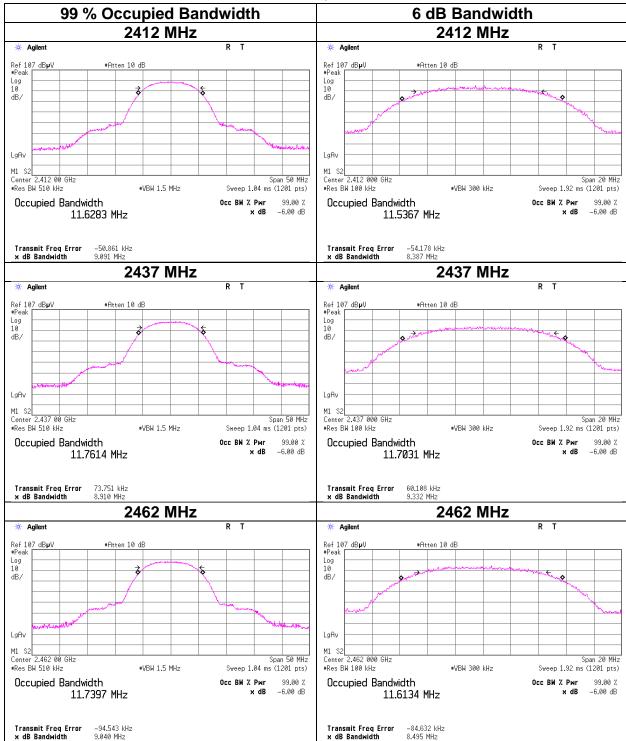
CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

Test Report No. 14937749H-A-R2 Page 17 of 52

# 99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.8 Measurement Room

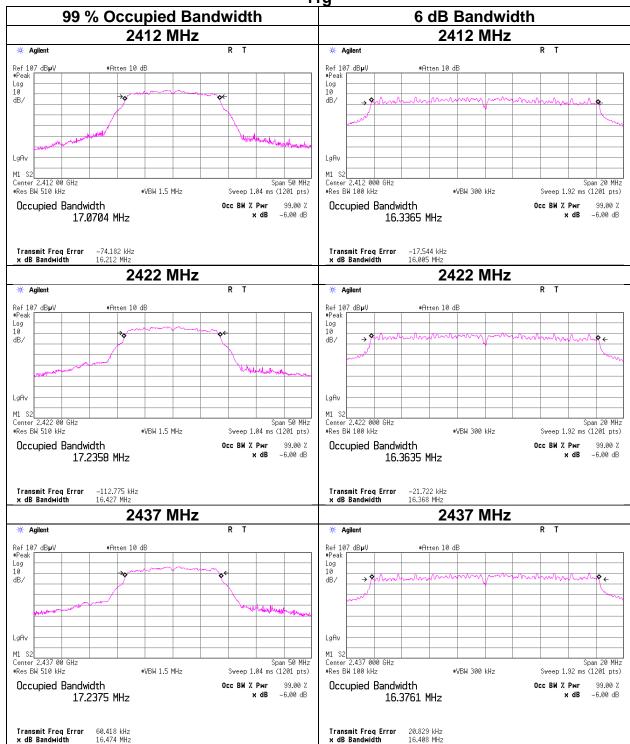
Date August 29, 2023
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Yuichiro Yamazaki


Mode T:

| Mode   | Frequency | 99% Occupied | 6dB Bandwidth | Limit for     |
|--------|-----------|--------------|---------------|---------------|
|        |           | Bandwidth    |               | 6dB Bandwidth |
|        | [MHz]     | [kHz]        | [MHz]         | [MHz]         |
| 11b    | 2412      | 11628.3      | 8.387         | > 0.5000      |
|        | 2437      | 11761.5      | 9.332         | > 0.5000      |
|        | 2462      | 11739.7      | 8.495         | > 0.5000      |
| 11g    | 2412      | 17070.4      | 16.005        | > 0.5000      |
|        | 2422      | 17235.8      | 16.368        | > 0.5000      |
|        | 2437      | 17237.5      | 16.408        | > 0.5000      |
|        | 2452      | 17054.5      | 15.975        | > 0.5000      |
|        | 2462      | 16992.4      | 15.793        | > 0.5000      |
| 11n-20 | 2412      | 18136.5      | 17.618        | > 0.5000      |
|        | 2422      | 18274.3      | 17.534        | > 0.5000      |
|        | 2437      | 18270.2      | 17.701        | > 0.5000      |
|        | 2452      | 18072.3      | 17.621        | > 0.5000      |
|        | 2462      | 17999.8      | 17.270        | > 0.5000      |

Test Report No. 14937749H-A-R2 Page 18 of 52

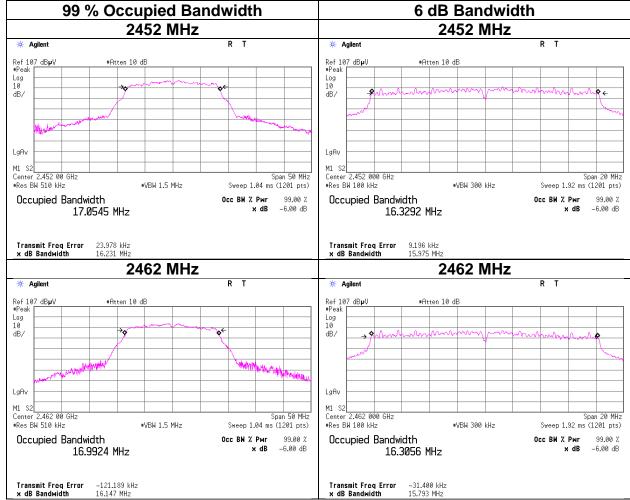
### 99 % Occupied Bandwidth and 6 dB Bandwidth


11b



Test Report No. 14937749H-A-R2 Page 19 of 52

# 99 % Occupied Bandwidth and 6 dB Bandwidth


11g



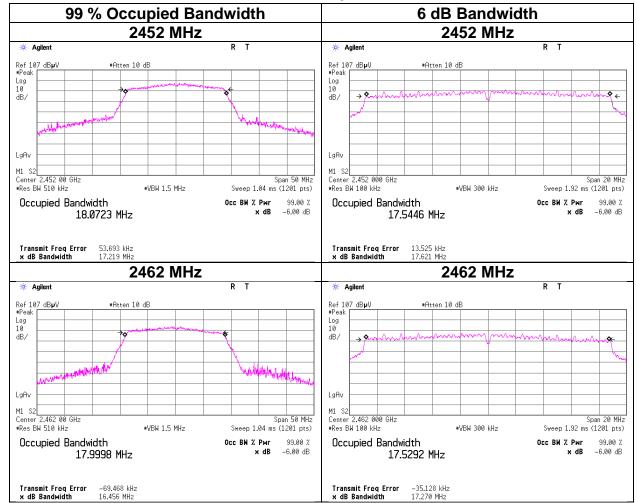
Test Report No. 14937749H-A-R2 Page 20 of 52


# 99 % Occupied Bandwidth and 6 dB Bandwidth

11g



### 99 % Occupied Bandwidth and 6 dB Bandwidth


## 11-n20



Test Report No. 14937749H-A-R2 Page 22 of 52

# 99 % Occupied Bandwidth and 6 dB Bandwidth

# 11n-20



Test Report No. 14937749H-A-R2 Page 23 of 52

# **Maximum Peak Output Power**

Test place Ise EMC Lab. No.8 Measurement Room

Date September 25, 2023 Temperature / Humidity 23 deg. C / 60 % RH

Engineer Yuta Moriya

Mode Tx

#### 11b

|       |         |       |        | Conducted Power |       |       |      |        | e.i.r.p. for RSS-247 |       |        |       |      |        |
|-------|---------|-------|--------|-----------------|-------|-------|------|--------|----------------------|-------|--------|-------|------|--------|
| Freq. | Reading | Cable | Atten. | Re              | sult  | Lir   | mit  | Margin | Antenna              | Re    | sult   | Lir   | mit  | Margin |
|       |         | Loss  | Loss   |                 |       |       |      |        | Gain                 |       |        |       |      |        |
| [MHz] | [dBm]   | [dB]  | [dB]   | [dBm]           | [mW]  | [dBm] | [mW] | [dB]   | [dBi]                | [dBm] | [mW]   | [dBm] | [mW] | [dB]   |
| 2412  | -2.62   | 1.88  | 19.99  | 19.25           | 84.14 | 30.00 | 1000 | 10.75  | 0.60                 | 19.85 | 96.61  | 36.02 | 4000 | 16.17  |
| 2437  | -2.89   | 1.90  | 19.99  | 19.00           | 79.43 | 30.00 | 1000 | 11.00  | 0.60                 | 19.60 | 91.20  | 36.02 | 4000 | 16.42  |
| 2462  | -2.50   | 1.91  | 19.99  | 19.40           | 87.10 | 30.00 | 1000 | 10.60  | 0.60                 | 20.00 | 100.00 | 36.02 | 4000 | 16.02  |

11g

|       |         |       |        | Conducted Power |        |       |      |        | e.i.r.p. for RSS-247 |       |        |       |      |        |
|-------|---------|-------|--------|-----------------|--------|-------|------|--------|----------------------|-------|--------|-------|------|--------|
| Freq. | Reading | Cable | Atten. | Re              | sult   | Lir   | nit  | Margin | Antenna              | Re    | sult   | Lir   | nit  | Margin |
|       |         | Loss  | Loss   |                 |        |       |      |        | Gain                 |       |        |       |      |        |
| [MHz] | [dBm]   | [dB]  | [dB]   | [dBm]           | [mW]   | [dBm] | [mW] | [dB]   | [dBi]                | [dBm] | [mW]   | [dBm] | [mW] | [dB]   |
| 2412  | 1.33    | 1.88  | 19.99  | 23.20           | 208.93 | 30.00 | 1000 | 6.80   | 0.60                 | 23.80 | 239.88 | 36.02 | 4000 | 12.22  |
| 2422  | 2.63    | 1.89  | 19.99  | 24.51           | 282.49 | 30.00 | 1000 | 5.49   | 0.60                 | 25.11 | 324.34 | 36.02 | 4000 | 10.91  |
| 2437  | 2.70    | 1.90  | 19.99  | 24.59           | 287.74 | 30.00 | 1000 | 5.41   | 0.60                 | 25.19 | 330.37 | 36.02 | 4000 | 10.83  |
| 2452  | 2.81    | 1.90  | 19.99  | 24.70           | 295.12 | 30.00 | 1000 | 5.30   | 0.60                 | 25.30 | 338.84 | 36.02 | 4000 | 10.72  |
| 2462  | 1.39    | 1.91  | 19.99  | 23.29           | 213.30 | 30.00 | 1000 | 6.71   | 0.60                 | 23.89 | 244.91 | 36.02 | 4000 | 12.13  |

#### 11n-20

|       |         |       |        |       | Conducted Power |       |      |        |         | e.i.r.p. for RSS-247 |        |       |      |        |  |
|-------|---------|-------|--------|-------|-----------------|-------|------|--------|---------|----------------------|--------|-------|------|--------|--|
| Freq. | Reading | Cable | Atten. | Re    | sult            | Lir   | nit  | Margin | Antenna | Re                   | sult   | Lir   | mit  | Margin |  |
|       |         | Loss  | Loss   |       |                 |       |      |        | Gain    |                      |        |       |      |        |  |
| [MHz] | [dBm]   | [dB]  | [dB]   | [dBm] | [mW]            | [dBm] | [mW] | [dB]   | [dBi]   | [dBm]                | [mW]   | [dBm] | [mW] | [dB]   |  |
| 2412  | 1.43    | 1.88  | 19.99  | 23.30 | 213.80          | 30.00 | 1000 | 6.70   | 0.60    | 23.90                | 245.47 | 36.02 | 4000 | 12.12  |  |
| 2422  | 2.81    | 1.89  | 19.99  | 24.69 | 294.44          | 30.00 | 1000 | 5.31   | 0.60    | 25.29                | 338.06 | 36.02 | 4000 | 10.73  |  |
| 2437  | 2.63    | 1.90  | 19.99  | 24.52 | 283.14          | 30.00 | 1000 | 5.48   | 0.60    | 25.12                | 325.09 | 36.02 | 4000 | 10.90  |  |
| 2452  | 2.86    | 1.90  | 19.99  | 24.75 | 298.54          | 30.00 | 1000 | 5.25   | 0.60    | 25.35                | 342.77 | 36.02 | 4000 | 10.67  |  |
| 2462  | 1.41    | 1.91  | 19.99  | 23.31 | 214.29          | 30.00 | 1000 | 6.69   | 0.60    | 23.91                | 246.04 | 36.02 | 4000 | 12.11  |  |

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
\*The equipment and cables were not used for factor 0 dB of the data sheets.

#### Worst Rate Check

| 1 | 1 | h |
|---|---|---|
|   |   |   |

| מוו    |         |        |
|--------|---------|--------|
| Rate   | Reading | Remark |
| [Mbps] | [dBm]   |        |
| 1      | -4.40   |        |
| 2      | -4.01   |        |
| 5.5    | -4.04   |        |
| 11     | -3.85   | *      |

| 11g    |         |        |
|--------|---------|--------|
| Rate   | Reading | Remark |
| [Mbps] | [dBm]   |        |
| 6      | 2.82    |        |
| 9      | 2.77    |        |
| 12     | 2.79    |        |
| 18     | 2.45    |        |
| 24     | 2.25    |        |
| 36     | 1.90    |        |
| 48     | 2.90    | *      |
| 54     | 2 25    |        |

#### 11n-20

| 1111-20 |         |        |
|---------|---------|--------|
| MCS     | Reading | Remark |
| Number  |         |        |
|         | [dBm]   |        |
| 0       | 2.97    |        |
| 1       | 3.03    |        |
| 2       | 2.73    |        |
| 3       | 2.66    |        |
| 4       | 2.56    |        |
| 5       | 3.16    | *      |
| 6       | 2.50    |        |
| 7       | 2.57    |        |

All comparison were carried out on same frequency and measurement factors.

Rate check frequency: 2437 MHz

Difference between worst rate check data and dformal testresult is due to the different test condition.

<sup>\*:</sup> Worst Rate

Test Report No. 14937749H-A-R2 Page 24 of 52

# <u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.8 Measurement Room

Date September 25, 2023 Temperature / Humidity 23 deg. C / 60 % RH

Engineer Yuta Moriya

Mode Tx

11b **1 Mbps** 

| Freq. | Reading | Cable | Atten. | Re          | sult    | Duty   | Re         | sult        |
|-------|---------|-------|--------|-------------|---------|--------|------------|-------------|
|       |         | Loss  | Loss   | (Time a     | verage) | factor | (Burst pow | er average) |
| [MHz] | [dBm]   | [dB]  | [dB]   | [dBm] [mW]  |         | [dB]   | [dBm]      | [mW]        |
| 2412  | -6.04   | 1.88  | 19.99  | 15.83 38.28 |         | 0.00   | 15.83      | 38.28       |
| 2437  | -6.39   | 1.90  | 19.99  | 15.50 35.48 |         | 0.00   | 15.50      | 35.48       |
| 2462  | -5.85   | 1.91  | 19.99  | 16.05       | 40.27   | 0.00   | 16.05      | 40.27       |

11g **6 Mbps** 

|   | 9     | 0pc     |       |        |            |         |        |            |             |
|---|-------|---------|-------|--------|------------|---------|--------|------------|-------------|
| Ī | Freq. | Reading | Cable | Atten. | Re         | sult    | Duty   | Re         | sult        |
| ١ |       |         | Loss  | Loss   | (Time a    | verage) | factor | (Burst pow | er average) |
|   | [MHz] | [dBm]   | [dB]  | [dB]   | [dBm] [mW] |         | [dB]   | [dBm]      | [mW]        |
| ſ | 2412  | -9.51   | 1.88  | 19.99  | 12.36      | 17.22   | 0.04   | 12.40      | 17.38       |
| Ī | 2422  | -6.47   | 1.89  | 19.99  | 15.41      | 34.75   | 0.04   | 15.45      | 35.08       |
| ſ | 2437  | -6.55   | 1.90  | 19.99  | 15.34      | 34.20   | 0.04   | 15.38      | 34.51       |
| ſ | 2452  | -6.47   | 1.90  | 19.99  | 15.42      | 34.83   | 0.04   | 15.46      | 35.16       |
|   | 2462  | -9.54   | 1.91  | 19.99  | 12.36      | 17.22   | 0.04   | 12.40      | 17.38       |

#### 11n-20 MCS 0

| 1111-20 | IVICS U |       |        |            |         |        |            |             |
|---------|---------|-------|--------|------------|---------|--------|------------|-------------|
| Freq.   | Reading | Cable | Atten. | Re         | sult    | Duty   | Re         | sult        |
|         |         | Loss  | Loss   | (Time a    | verage) | factor | (Burst pow | er average) |
| [MHz]   | [dBm]   | [dB]  | [dB]   | [dBm] [mW] |         | [dB]   | [dBm]      | [mW]        |
| 2412    | -9.50   | 1.88  | 19.99  | 12.37      | 17.26   | 0.04   | 12.41      | 17.42       |
| 2422    | -6.61   | 1.89  | 19.99  | 15.27      | 33.65   | 0.04   | 15.31      | 33.96       |
| 2437    | -6.75   | 1.90  | 19.99  | 15.14      | 32.66   | 0.04   | 15.18      | 32.96       |
| 2452    | -6.45   | 1.90  | 19.99  | 15.44      | 34.99   | 0.04   | 15.48      | 35.32       |
| 2462    | -9.54   | 1.91  | 19.99  | 12.36      | 17.22   | 0.04   | 12.40      | 17.38       |

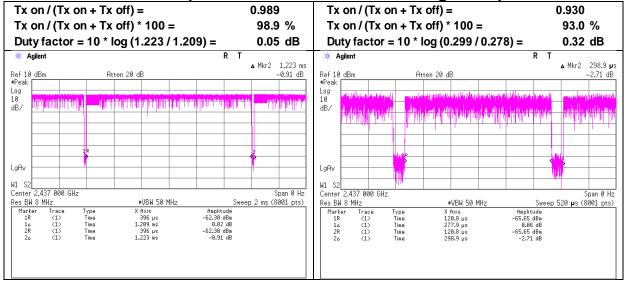
#### Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

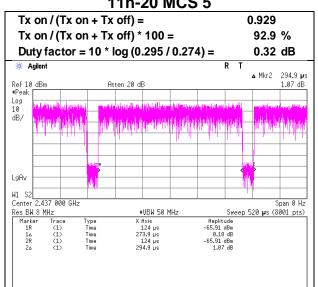
The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Test Report No. 14937749H-A-R2 Page 25 of 52

# **Burst rate confirmation**


Test place Ise EMC Lab. No.8 Measurement Room

Date August 29, 2023 23 deg. C / 60 % RH Temperature / Humidity Engineer Yuichiro Yamazaki


Mode

11b 11 Mbps

11g 48 Mbps

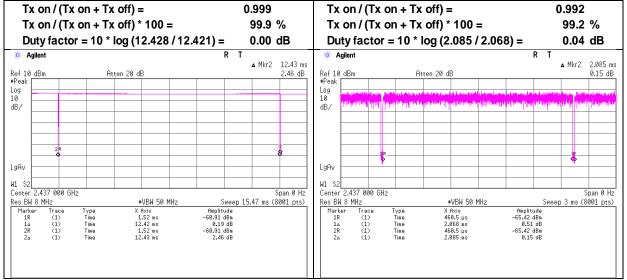


### 11n-20 MCS 5

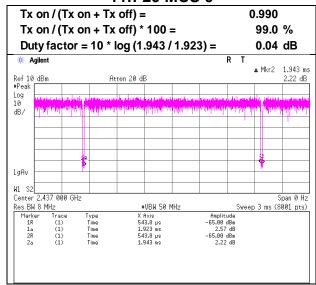


<sup>\*</sup> Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 14937749H-A-R2 Page 26 of 52


# **Burst rate confirmation**

Test place Ise EMC Lab. No.8 Measurement Room


Date August 29, 2023
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Yuichiro Yamazaki

Mode T:

11b 1 Mbps 11g 6Mbps



#### 11n-20 MCS 0



<sup>\*</sup> Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 14937749H-A-R2 Page 27 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.3 No.1

Chamber

Date August 30, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 22 deg. C / 60 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH 23 deg. C / 50 % RH

Humidity

Engineer Junya Okuno Junya Okuno Yuta Moriya Yuta Moriya

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge)

Tx 11b 2412 MHz Mode

| Polarity    | Frequency    | Reading      | Reading     | Ant.         | Loss          | Gain         | Duty        | Result       | Result        | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|--------------|--------------|-------------|--------------|---------------|--------------|-------------|--------------|---------------|----------|----------|---------|--------|-------------|
|             |              | (QP/PK)      | (AV)        | Factor       |               |              | Factor      | (QP/PK)      | (AV)          | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]        | [dBuV]       | [dBuV]      | [dB/m]       | [dB]          | [dB]         | [dB]        | [dBuV/m]     | [dBuV/m]      | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 2390.0       | 57.4         | 47.5        | 27.8         | 5.1           | 36.1         |             | 54.2         | 44.3          | 73.9     | 53.9     | 19.7    | 9.6    |             |
| Hori.       | 4824.0       | 40.2         | 32.4        | 31.5         | 7.6           | 31.4         | -           | 47.9         | 40.1          | 73.9     | 53.9     | 26.0    | 13.8   | Floor noise |
| Hori.       | 7236.0       | 41.8         | 33.5        | 35.9         | 9.0           | 32.3         | -           | 54.3         | 46.0          | 73.9     | 53.9     | 19.6    | 7.9    | Floor noise |
| Hori.       | 9648.0       | 43.1         | 32.4        | 38.9         | 9.4           | 33.0         | -           | 58.5         | 47.8          | 73.9     | 53.9     | 15.4    | 6.1    | Floor noise |
| Vert.       | 2390.0       | 56.8         | 47.0        | 27.8         | 5.1           | 36.1         | -           | 53.7         | 43.8          | 73.9     | 53.9     | 20.2    | 10.1   |             |
| Vert.       | 4824.0       | 40.2         | 32.4        | 31.5         | 7.6           | 31.4         | -           | 47.9         | 40.1          | 73.9     | 53.9     | 26.0    | 13.8   | Floor noise |
| Vert.       | 7236.0       | 41.7         | 33.5        | 35.9         | 9.0           | 32.3         | -           | 54.2         | 46.0          | 73.9     | 53.9     | 19.7    | 7.9    | Floor noise |
| Vert.       | 9648.0       | 43.1         | 32.4        | 38.9         | 9.4           | 33.0         |             | 58.5         | 47.8          | 73.9     | 53.9     | 15.4    | 6.1    | Floor noise |
| Result (QP  | / PK) = Read | ing + Ant Fa | ctor + Loss | (Cable+Atter | nuator+Filter | +Distance fa | actor(above | 1 GHz)) - Ga | ain(Amplifier | )        |          |         |        | -           |

Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

#### 20dBc Data Sheet

| Polarity    | Frequency | Reading | Ant    | Loss | Gain | Result   | Limit    | Margin | Remark  |
|-------------|-----------|---------|--------|------|------|----------|----------|--------|---------|
|             |           | (PK)    | Factor |      |      |          |          |        |         |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |         |
| Hori.       | 2412.0    | 103.2   | 27.8   | 5.1  | 36.1 | 100.0    | -        | -      | Carrier |
| Hori.       | 2398.5    | 66.3    | 27.8   | 5.1  | 36.1 | 63.1     | 80.0     | 16.8   |         |
| Hori.       | 2400.0    | 63.4    | 27.8   | 5.1  | 36.1 | 60.2     | 80.0     | 19.8   |         |
| Vert.       | 2412.0    | 101.8   | 27.8   | 5.1  | 36.1 | 98.6     | -        | -      | Carrier |
| Vert.       | 2398.5    | 65.3    | 27.8   | 5.1  | 36.1 | 62.1     | 78.6     | 16.5   |         |
| Vert.       | 2400.0    | 62.3    | 27.8   | 5.1  | 36.1 | 59.1     | 78.6     | 19.5   |         |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

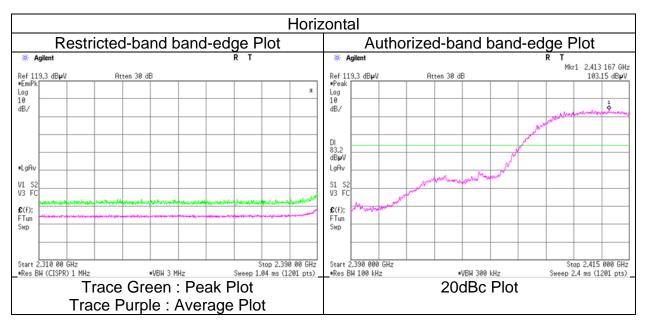
1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB Distance factor:

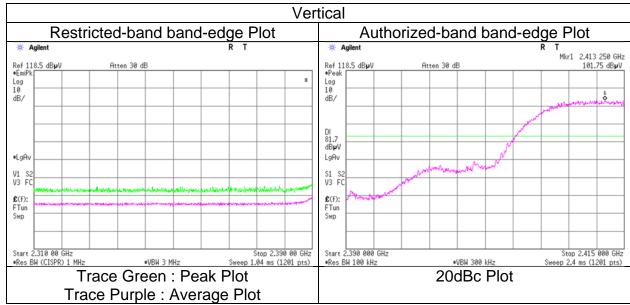
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

<sup>\*</sup>QP detector was used up to 1GHz.

# **Radiated Spurious Emission** (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Ise EMC Lab. No.1


Date Temperature / Humidity


October 4, 2023 23 deg. C / 50 % RH Junya Okuno

Engineer

(Band-edge)

Tx 11b 2412 MHz Mode





The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14937749H-A-R2 Page 29 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Date August 30, 2023 September 1, 2023 September 3, 2023 22 deg. C / 60 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH Temperature / Humidity

Engineer Junya Okuno Yuta Moriya Yuta Moriya (Above 18 GHz) (1 GHz to 10 GHz) (10 GHz to 18 GHz)

Mode Tx 11b 2437 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 4874.0    | 40.0    | 32.2    | 31.5   | 7.7  | 31.4 | -      | 47.8     | 39.9     | 73.9     | 53.9     | 26.1    | 14.0   | Floor noise |
| Hori.       | 7311.0    | 41.7    | 33.5    | 36.0   | 9.0  | 32.3 | -      | 54.3     | 46.0     | 73.9     | 53.9     | 19.6    | 7.9    | Floor noise |
| Hori.       | 9748.0    | 42.9    | 32.2    | 39.1   | 9.5  | 33.0 | -      | 58.5     | 47.8     | 73.9     | 53.9     | 15.4    | 6.1    | Floor noise |
| Vert.       | 4874.0    | 40.1    | 32.1    | 31.5   | 7.7  | 31.4 | -      | 47.9     | 39.8     | 73.9     | 53.9     | 26.0    | 14.1   | Floor noise |
| Vert.       | 7311.0    | 41.7    | 33.6    | 36.0   | 9.0  | 32.3 | -      | 54.2     | 46.1     | 73.9     | 53.9     | 19.7    | 7.8    | Floor noise |
| Vert.       | 9748.0    | 42.9    | 32.3    | 39.1   | 9.5  | 33.0 | -      | 58.5     | 47.8     | 73.9     | 53.9     | 15.4    | 6.1    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). \*QP detector was used up to 1GHz.

Test Report No. 14937749H-A-R2 Page 30 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.3 No.1

Chamber

Date August 30, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 22 deg. C / 60 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH 23 deg. C / 50 % RH

Humidity

Engineer Junya Okuno Yuta Moriya Junya Okuno Yuta Moriya

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge) Mode Tx 11b 2462 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 2483.5    | 53.5    | 45.5    | 27.7   | 5.2  | 36.1 |        | 50.3     | 42.3     | 73.9     | 53.9     | 23.7    | 11.6   |             |
| Hori.       | 4924.0    | 40.4    | 32.1    | 31.6   | 7.7  | 31.4 | -      | 48.2     | 39.9     | 73.9     | 53.9     | 25.7    | 14.0   | Floor noise |
| Hori.       | 7386.0    | 42.0    | 33.7    | 36.1   | 9.0  | 32.4 | -      | 54.7     | 46.4     | 73.9     | 53.9     | 19.2    | 7.5    | Floor noise |
| Hori.       | 9848.0    | 42.0    | 32.2    | 39.2   | 9.5  | 33.0 | -      | 57.6     | 47.8     | 73.9     | 53.9     | 16.3    | 6.1    | Floor noise |
| Vert.       | 2483.5    | 53.7    | 45.5    | 27.7   | 5.2  | 36.1 | -      | 50.4     | 42.2     | 73.9     | 53.9     | 23.5    | 11.7   |             |
| Vert.       | 4924.0    | 40.3    | 32.0    | 31.6   | 7.7  | 31.4 | -      | 48.2     | 39.9     | 73.9     | 53.9     | 25.8    | 14.1   | Floor noise |
| Vert.       | 7386.0    | 41.9    | 33.7    | 36.1   | 9.0  | 32.4 | -      | 54.6     | 46.4     | 73.9     | 53.9     | 19.3    | 7.5    | Floor noise |
| Vert.       | 9848.0    | 42.1    | 32.2    | 39.2   | 9.5  | 33.0 | -      | 57.7     | 47.9     | 73.9     | 53.9     | 16.2    | 6.1    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

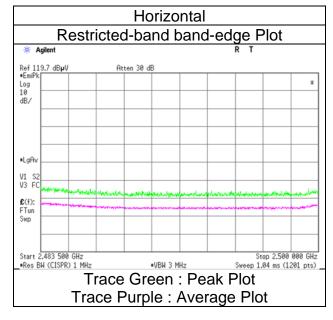
Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

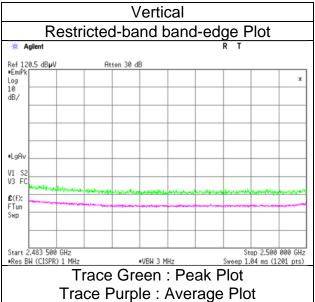
> 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). \*QP detector was used up to 1GHz.

Test Report No. 14937749H-A-R2 Page 31 of 52

# Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date


Temperature / Humidity

Engineer

Mode

Ise EMC Lab.
No.1
October 4, 2023
23 deg. C / 50 % RH
Junya Okuno
(Band-edge)
Tx 11b 2462 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-A-R2 Page 32 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date October 4, 2023 23 deg. C / 50 % RH Temperature / Humidity

Junya Okuno Engineer

(Band-edge)

Mode Tx 11n-20 2412 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|--------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |        |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |        |
| Hori.       | 2390.0    | 67.3    | 54.4    | 27.8   | 5.1  | 36.1 | 0.3    | 64.2     | 51.6     | 73.9     | 53.9     | 9.7     | 2.3    | *1)    |
| Vert.       | 2390.0    | 67.5    | 54.6    | 27.8   | 5.1  | 36.1 | 0.3    | 64.3     | 51.8     | 73.9     | 53.9     | 9.6     | 2.1    | *1)    |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). \*QP detector was used up to 1GHz.

#### 20dBc Data Sheet

| Polarity    | Frequency | Reading | Ant    | Loss | Gain | Result   | Limit    | Margin | Remark  |
|-------------|-----------|---------|--------|------|------|----------|----------|--------|---------|
|             |           | (PK)    | Factor |      |      |          |          |        |         |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |         |
| Hori.       | 2412.0    | 97.2    | 27.8   | 5.1  | 36.1 | 94.1     | -        | -      | Carrier |
| Hori.       | 2400.0    | 61.9    | 27.8   | 5.1  | 36.1 | 58.7     | 74.1     | 15.4   |         |
| Vert.       | 2412.0    | 96.5    | 27.8   | 5.1  | 36.1 | 93.4     | -        | -      | Carrier |
| Vert.       | 2400.0    | 61.4    | 27.8   | 5.1  | 36.1 | 58.3     | 73.4     | 15.1   |         |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

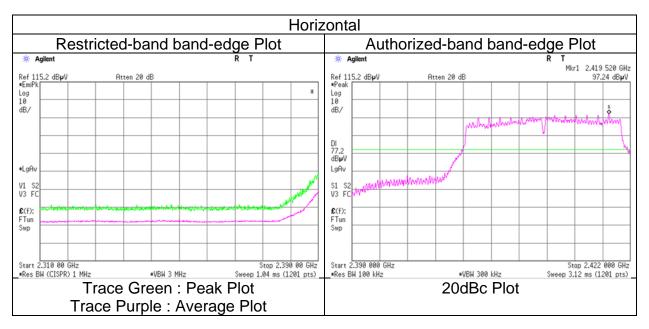
Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

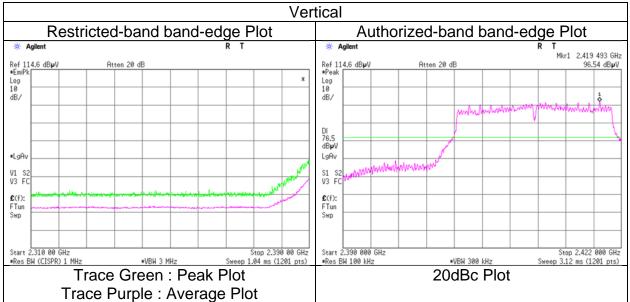
<sup>\*1)</sup> Not Out of Band emission(Leakage Power)

Test Report No. 14937749H-A-R2 Page 33 of 52

# Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber


ni Anechoic Chamber No.1


Date October 4, 2023
Temperature / Humidity 23 deg. C / 50 % RH
Engineer Junya Okuno

Ise EMC Lab.

(Band-edge)

Mode Tx 11n-20 2412 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14937749H-A-R2 Page 34 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic No.3 No.3 No.3 No.1

Chamber

Date August 31, 2023 September 1, 2023 September 3, 2023 October 4, 2023 Temperature / 23 deg. C / 59 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH 23 deg. C / 50 % RH

Humidity

Engineer Yuta Moriya Junya Okuno Yuta Moriya Yuta Moriya

(1 GHz to 10 GHz (10 GHz to 18 GHz) (Above 18 GHz) (Band-edge)

except band-edge) Mode Tx 11n-20 2422 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 2390.0    | 61.6    | 48.4    | 27.8   | 5.1  | 36.1 | 0.3    | 58.4     | 45.5     | 73.9     | 53.9     | 15.5    | 8.4    | *1)         |
| Hori.       | 4844.0    | 41.7    | 31.4    | 31.5   | 7.7  | 31.4 | -      | 49.4     | 39.2     | 73.9     | 53.9     | 24.5    | 14.7   | Floor noise |
| Hori.       | 7266.0    | 42.3    | 32.7    | 35.9   | 8.9  | 32.3 | -      | 54.9     | 45.2     | 73.9     | 53.9     | 19.1    | 8.7    | Floor noise |
| Hori.       | 9688.0    | 42.4    | 32.3    | 39.0   | 9.5  | 33.0 | -      | 57.8     | 47.8     | 73.9     | 53.9     | 16.1    | 6.1    | Floor noise |
| Vert.       | 2390.0    | 62.9    | 49.6    | 27.8   | 5.1  | 36.1 | 0.3    | 59.8     | 46.8     | 73.9     | 53.9     | 14.2    | 7.1    | *1)         |
| Vert.       | 4844.0    | 41.2    | 31.4    | 31.5   | 7.7  | 31.4 | -      | 49.0     | 39.1     | 73.9     | 53.9     | 24.9    | 14.8   | Floor noise |
| Vert.       | 7266.0    | 42.8    | 32.6    | 35.9   | 8.9  | 32.3 | -      | 55.4     | 45.1     | 73.9     | 53.9     | 18.5    | 8.8    | Floor noise |
| Vert.       | 9688.0    | 42.4    | 32.3    | 39.0   | 9.5  | 33.0 |        | 57.9     | 47.7     | 73.9     | 53.9     | 16.0    | 6.2    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

#### 20dBc Data Sheet

| LOGDO DUIG  | a Officer |         |        |      |      |          |          |        |         |
|-------------|-----------|---------|--------|------|------|----------|----------|--------|---------|
| Polarity    | Frequency | Reading | Ant    | Loss | Gain | Result   | Limit    | Margin | Remark  |
|             |           | (PK)    | Factor |      |      |          |          |        |         |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |         |
| Hori.       | 2422.0    | 101.8   | 27.8   | 5.1  | 36.1 | 98.6     | -        | -      | Carrier |
| Hori.       | 2400.0    | 58.1    | 27.8   | 5.1  | 36.1 | 54.9     | 78.6     | 23.7   |         |
| Vert.       | 2422.0    | 101.2   | 27.8   | 5.1  | 36.1 | 97.9     | -        | -      | Carrier |
| Vert.       | 2400.0    | 58.9    | 27.8   | 5.1  | 36.1 | 55.8     | 77.9     | 22.2   |         |

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$ 

Distance factor: 1 GHz - 10 GHz  $20\log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ 

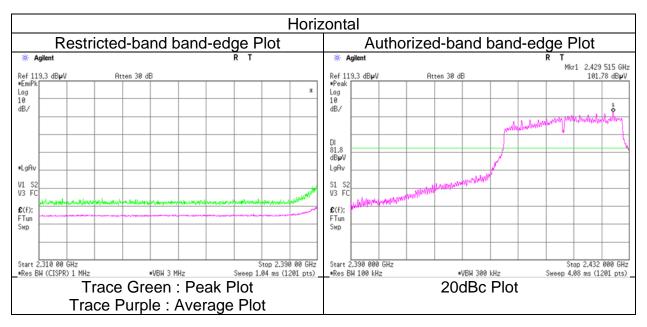
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

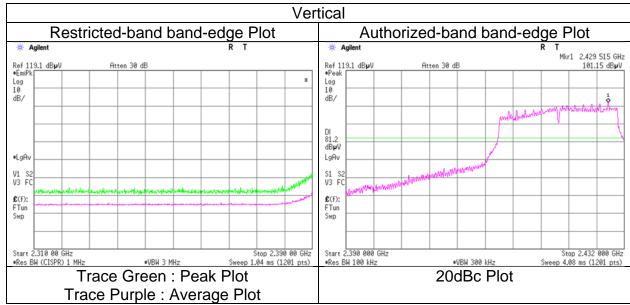
<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

<sup>\*</sup>QP detector was used up to 1GHz.
\*1) Not Out of Band emission(Leakage Power)

Test Report No. 14937749H-A-R2 Page 35 of 52

# Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Ise EMC Lab. No.1


Date Temperature / Humidity October 4, 2023 23 deg. C / 50 % RH

Engineer

Junya Okuno (Band-edge)

Mode Tx 11n-20 2422 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14937749H-A-R2 Page 36 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Date August 31, 2023 September 1, 2023 September 3, 2023 23 deg. C / 59 % RH 22 deg. C / 58 % RH 21 deg. C / 42 % RH Temperature / Humidity

Engineer Yuta Moriya Yuta Moriya Yuta Moriya (Above 18 GHz) (1 GHz to 10 GHz) (10 GHz to 18 GHz)

Mode Tx 11n-20 2437 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 4874.0    | 42.9    | 31.0    | 31.5   | 7.7  | 31.4 | -      | 50.6     | 38.8     | 73.9     | 53.9     | 23.3    | 15.1   | Floor noise |
| Hori.       | 7311.0    | 43.0    | 32.5    | 36.0   | 9.0  | 32.3 | -      | 55.6     | 45.1     | 73.9     | 53.9     | 18.3    | 8.8    | Floor noise |
| Hori.       | 9748.0    | 42.6    | 32.2    | 39.1   | 9.5  | 33.0 | -      | 58.2     | 47.7     | 73.9     | 53.9     | 15.7    | 6.2    | Floor noise |
| Vert.       | 4874.0    | 42.6    | 31.1    | 31.5   | 7.7  | 31.4 | -      | 50.4     | 38.8     | 73.9     | 53.9     | 23.5    | 15.1   | Floor noise |
| Vert.       | 7311.0    | 43.3    | 32.5    | 36.0   | 9.0  | 32.3 | -      | 55.8     | 45.1     | 73.9     | 53.9     | 18.1    | 8.8    | Floor noise |
| Vert.       | 9748.0    | 42.4    | 32.2    | 39.1   | 9.5  | 33.0 | -      | 58.0     | 47.8     | 73.9     | 53.9     | 15.9    | 6.1    | Floor noise |

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

<sup>|</sup> Vert. | 34-0.0 | 42.4 | 32.2 | 33.1 | 33.1 | 33.3 | 33.0 | 7.1 | 33.0 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

<sup>\*</sup>QP detector was used up to 1GHz.

Test Report No. 14937749H-A-R2 Page 37 of 52

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Date August 31, 2023 September 1, 2023 September 3, 2023

21 deg. C / 42 % RH 23 deg. C / 59 % RH 22 deg. C / 58 % RH Temperature / Humidity Engineer Yuta Moriya Yuta Moriya Yuta Moriya

(10 GHz to 18 GHz) (Above 18 GHz) (1 GHz to 10 GHz except band-edge)

Mode Tx 11n-20 2452 MHz

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.1

September 4, 2023 October 4, 2023 Temperature / Humidity 22 deg. C / 61 % RH 23 deg. C / 50 % RH Engineer

Yuta Moriya Junya Okuno (Below 1 GHz) (Band-edge)

Mode Tx 11n-20 2452 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 812.9     | 20.7    | -       | 20.9   | 13.2 | 31.3 | -      | 23.5     | -        | 46.0     | -        | 22.5    |        | Floor noise |
| Hori.       | 837.1     | 20.7    | -       | 21.3   | 13.4 | 31.2 | -      | 24.1     | -        | 46.0     | -        | 21.9    | -      | Floor noise |
| Hori.       | 862.5     | 20.2    | -       | 21.7   | 13.5 | 31.1 | -      | 24.4     | -        | 46.0     | -        | 21.6    | -      | Floor noise |
| Hori.       | 887.4     | 20.1    | -       | 22.1   | 13.6 | 30.9 | -      | 24.9     | -        | 46.0     | -        | 21.1    | -      | Floor noise |
| Hori.       | 913.5     | 19.9    | -       | 22.2   | 13.7 | 30.8 | -      | 25.1     | -        | 46.0     | -        | 20.9    | -      | Floor noise |
| Hori.       | 937.6     | 20.0    | -       | 22.0   | 13.9 | 30.6 | -      | 25.2     | -        | 46.0     | -        | 20.8    | -      | Floor noise |
| Hori.       | 2483.5    | 62.5    | 52.2    | 27.7   | 5.2  | 36.1 | 0.3    | 59.2     | 49.3     | 73.9     | 53.9     | 14.7    | 4.6    | *1)         |
| Hori.       | 4904.0    | 40.7    | 28.4    | 31.6   | 7.7  | 31.4 | -      | 48.5     | 36.2     | 73.9     | 53.9     | 25.4    | 17.7   | Floor noise |
| Hori.       | 7356.0    | 42.4    | 30.2    | 36.1   | 9.0  | 32.4 | -      | 55.1     | 42.9     | 73.9     | 53.9     | 18.8    | 11.0   | Floor noise |
| Hori.       | 9808.0    | 42.6    | 32.1    | 39.2   | 9.5  | 33.0 | -      | 58.3     | 47.7     | 73.9     | 53.9     | 15.7    | 6.2    | Floor noise |
| Vert.       | 812.9     | 20.8    | -       | 20.9   | 13.2 | 31.3 | -      | 23.6     | -        | 46.0     | -        | 22.4    | -      | Floor noise |
| Vert.       | 837.1     | 20.7    | -       | 21.3   | 13.4 | 31.2 | -      | 24.1     | -        | 46.0     | -        | 21.9    | -      | Floor noise |
| Vert.       | 862.5     | 20.4    | -       | 21.7   | 13.5 | 31.1 | -      | 24.6     | -        | 46.0     | -        | 21.4    | -      | Floor noise |
| Vert.       | 887.4     | 20.0    | -       | 22.1   | 13.6 | 30.9 | -      | 24.8     | -        | 46.0     | -        | 21.2    | -      | Floor noise |
| Vert.       | 913.5     | 20.0    | -       | 22.2   | 13.7 | 30.8 | -      | 25.2     | -        | 46.0     | -        | 20.8    | -      | Floor noise |
| Vert.       | 937.6     | 19.9    | -       | 22.0   | 13.9 | 30.6 | -      | 25.1     | -        | 46.0     | -        | 20.9    | -      | Floor noise |
| Vert.       | 2483.5    | 62.8    | 51.7    | 27.7   | 5.2  | 36.1 | 0.3    | 59.6     | 48.7     | 73.9     | 53.9     | 14.3    | 5.2    | *1)         |
| Vert.       | 4904.0    | 40.1    | 28.5    | 31.6   | 7.7  | 31.4 | -      | 47.9     | 36.3     | 73.9     | 53.9     | 26.0    | 17.6   | Floor noise |
| Vert.       | 7356.0    | 42.6    | 30.2    | 36.1   | 9.0  | 32.4 | -      | 55.2     | 42.8     | 73.9     | 53.9     | 18.7    | 11.1   | Floor noise |
| Vert.       | 9808.0    | 42.4    | 32.1    | 39.2   | 9.5  | 33.0 | -      | 58.1     | 47.7     | 73.9     | 53.9     | 15.8    | 6.2    | Floor noise |

Vert. 9808.0 42.4 32.1 39.2 9.5 33.0 - 58.1 47.7 7

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

\*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

\*QP detector was used up to 1 GHz.

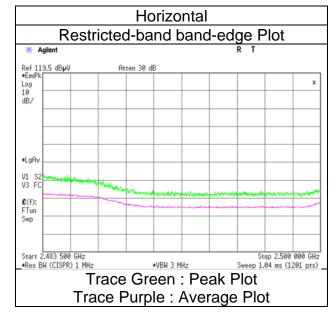
Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

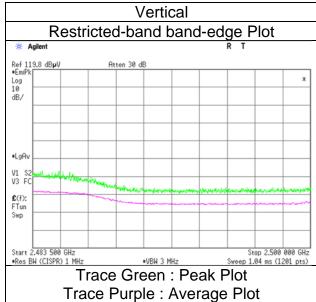
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

<sup>\*1)</sup> Not Out of Band emission(Leakage Power)

Test Report No. 14937749H-A-R2 Page 38 of 52

# Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date


Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11n-20 2452 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-A-R2 Page 39 of 52

# **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date October 4, 2023 Temperature / Humidity 23 deg. C / 50 % RH

Junya Okuno (Band-edge) Engineer

Mode Tx 11n-20 2462 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|--------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |        |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |        |
| Hori.       | 2483.5    | 62.6    | 49.4    | 27.7   | 5.2  | 36.1 | 0.3    | 59.4     | 46.4     | 73.9     | 53.9     | 14.5    | 7.5    | *1)    |
| Vert.       | 2483.5    | 62.9    | 49.4    | 27.7   | 5.2  | 36.1 | 0.3    | 59.6     | 46.5     | 73.9     | 53.9     | 14.3    | 7.4    | *1)    |

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

Vert. 2483.5 62.9 49.4 27.7 5.2 36.1 0.3 59.6 46.5 7

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

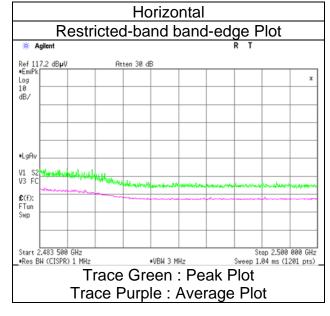
\*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

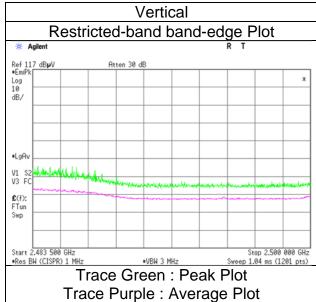
\*QP detector was used up to 1GHz.

<sup>\*1)</sup> Not Out of Band emission(Leakage Power)

Test Report No. 14937749H-A-R2 Page 40 of 52

# Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date


Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.1 October 4, 2023 23 deg. C / 50 % RH Junya Okuno (Band-edge) Tx 11n-20 2462 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14937749H-A-R2 Page 41 of 52

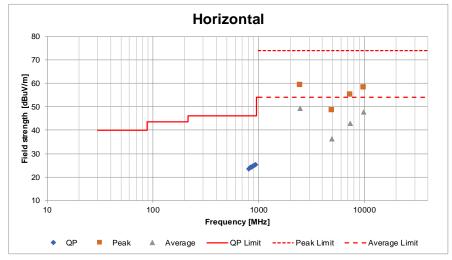
# **Radiated Spurious Emission** (Plot data, Worst case mode for Maximum Peak Output Power)

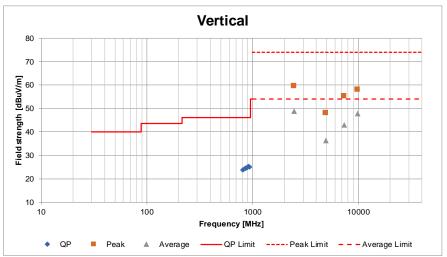
Test place Ise EMC Lab. Semi Anechoic Chamber No.3

No.3 No.3 Date August 31, 2023 September 1, 2023

September 3, 2023 Temperature / Humidity 23 deg. C / 59 % RH 22 deg. C / 58 % RH

21 deg. C / 42 % RH Engineer Yuta Moriya Yuta Moriya Yuta Moriya (10 GHz to 18 GHz) (Above 18 GHz) (1 GHz to 10 GHz


except band-edge) Mode Tx 11n-20 2452 MHz


Test place Ise EMC Lab. Semi Anechoic Chamber No.3

No.1 September 4, 2023 Date October 4, 2023

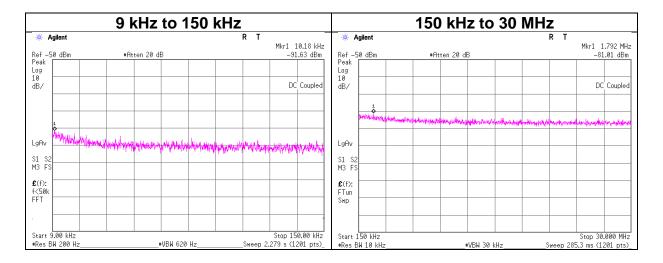
Temperature / Humidity 22 deg. C / 61 % RH 23 deg. C / 50 % RH Engineer Yuta Moriya Junya Okuno (Below 1 GHz) (Band-edge)

Mode Tx 11n-20 2452 MHz





<sup>\*</sup>These plots data contain sufficient number to show the trend of characteristic features for EUT.


Test Report No. 14937749H-A-R2 Page 42 of 52

## **Conducted Spurious Emission**

Test place Ise EMC Lab. No.8 Measurement Room

Date
Temperature / Humidity
Engineer
Mode

August 29, 2023
23 deg. C / 60 % RH
Yuichiro Yamazaki
Tx 11n-20 2452 MHz



| Frequency | Reading | Cable | Attenuator | Antenna | N          | EIRP  | Distance | Ground | E                | Limit    | Margin | Remark |
|-----------|---------|-------|------------|---------|------------|-------|----------|--------|------------------|----------|--------|--------|
|           |         | Loss  | Loss       | Gain*   | (Number    |       |          | bounce | (field strength) |          |        |        |
| [kHz]     | [dBm]   | [dB]  | [dB]       | [dBi]   | of Output) | [dBm] | [m]      | [dB]   | [dBuV/m]         | [dBuV/m] | [dB]   |        |
| 10.18     | -91.6   | 0.01  | 9.8        | 2.0     | 1          | -79.8 | 300      | 6.0    | -18.5            | 47.4     | 65.9   |        |
| 1792.00   | -81.0   | 0.03  | 9.8        | 2.0     | 1          | -69.1 | 30       | 6.0    | 12.1             | 29.5     | 17.4   |        |

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 \* log (N)

N: Number of output

<sup>\*2.0</sup> dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 14937749H-A-R2 Page 43 of 52

# **Power Density**

Test place Ise EMC Lab. No.8 Measurement Room Date September 25, 2023

Temperature / Humidity 23 deg. C / 60 % RH Yuta Moriya

Engineer Mode Tx

11b

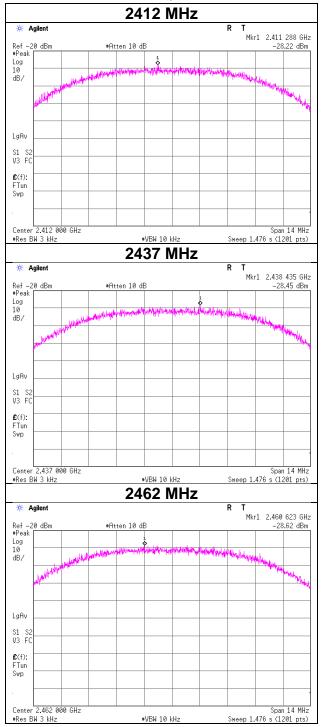
| ווט   |               |       |        |               |               |        |
|-------|---------------|-------|--------|---------------|---------------|--------|
| Freq. | Reading       | Cable | Atten. | Result        | Limit         | Margin |
|       |               | Loss  | Loss   |               |               |        |
| [MHz] | [dBm / 3 kHz] | [dB]  | [dB]   | [dBm / 3 kHz] | [dBm / 3 kHz] | [dB]   |
| 2412  | -28.22        | 1.88  | 19.99  | -6.35         | 8.00          | 14.35  |
| 2437  | -28.45        | 1.90  | 19.99  | -6.56         | 8.00          | 14.56  |
| 2462  | -28.62        | 1.91  | 19.99  | -6.72         | 8.00          | 14.72  |

11a

| 9     |               |       |        |               |               |        |
|-------|---------------|-------|--------|---------------|---------------|--------|
| Freq. | Reading       | Cable | Atten. | Result        | Limit         | Margin |
|       |               | Loss  | Loss   |               |               |        |
| [MHz] | [dBm / 3 kHz] | [dB]  | [dB]   | [dBm / 3 kHz] | [dBm / 3 kHz] | [dB]   |
| 2412  | -34.67        | 1.88  | 19.99  | -12.80        | 8.00          | 20.80  |
| 2422  | -31.57        | 1.89  | 19.99  | -9.69         | 8.00          | 17.69  |
| 2437  | -31.67        | 1.90  | 19.99  | -9.78         | 8.00          | 17.78  |
| 2452  | -31.66        | 1.90  | 19.99  | -9.77         | 8.00          | 17.77  |
| 2462  | -34.17        | 1.91  | 19.99  | -12.27        | 8.00          | 20.27  |

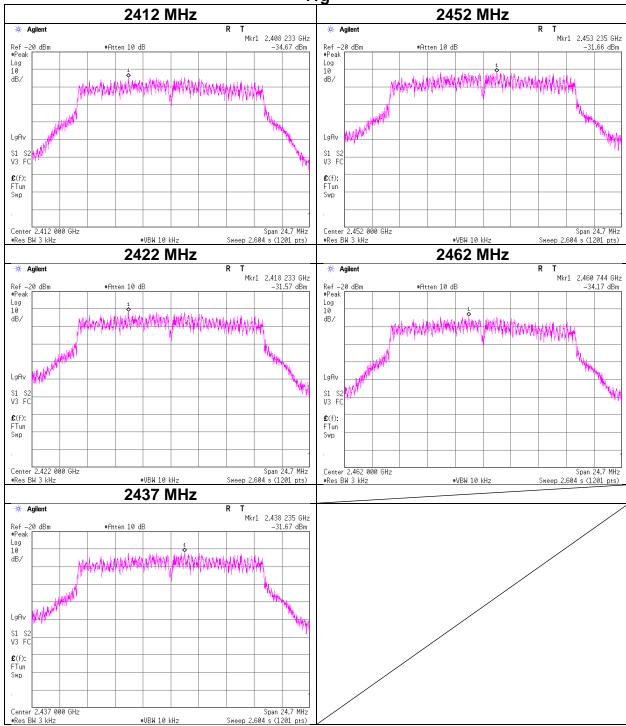
11n-20

| Freq. | Reading       | Cable | Atten. | Result        | Limit         | Margin |
|-------|---------------|-------|--------|---------------|---------------|--------|
|       |               | Loss  | Loss   |               |               |        |
| [MHz] | [dBm / 3 kHz] | [dB]  | [dB]   | [dBm / 3 kHz] | [dBm / 3 kHz] | [dB]   |
| 2412  | -33.60        | 1.88  | 19.99  | -11.73        | 8.00          | 19.73  |
| 2422  | -30.98        | 1.89  | 19.99  | -9.10         | 8.00          | 17.10  |
| 2437  | -31.57        | 1.90  | 19.99  | -9.68         | 8.00          | 17.68  |
| 2452  | -30.41        | 1.90  | 19.99  | -8.52         | 8.00          | 16.52  |
| 2462  | -33.10        | 1.91  | 19.99  | -11.20        | 8.00          | 19.20  |


#### Sample Calculation:

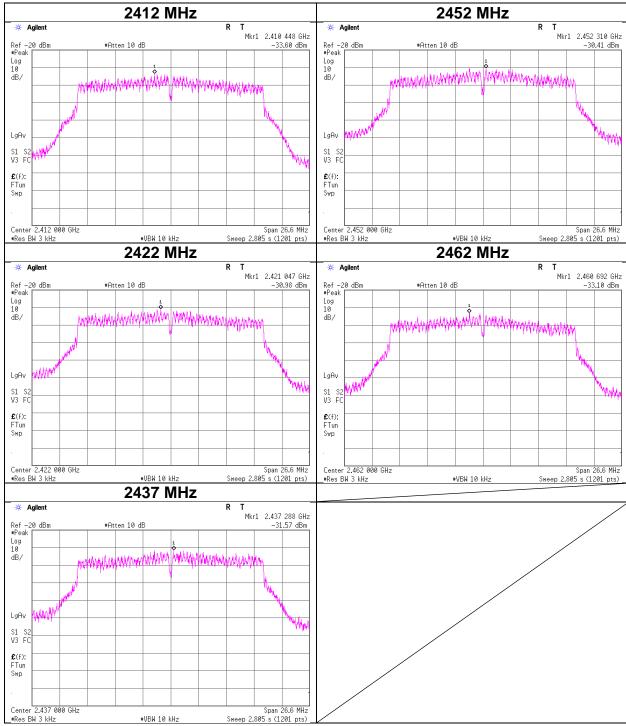
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

<sup>\*</sup>The equipment and cables were not used for factor 0 dB of the data sheets.


## **Power Density**

11b




# **Power Density**





## **Power Density**

### 11n-20



Test Report No. 14937749H-A-R2 Page 47 of 52

# **APPENDIX 2: Test Instruments**

Test Equipment (1/2)

| <u>Test</u>  | <b>Equipme</b>    | nt (1/2) |                                   |                                          |                                                        |                                  |                             |           |
|--------------|-------------------|----------|-----------------------------------|------------------------------------------|--------------------------------------------------------|----------------------------------|-----------------------------|-----------|
| Test<br>Item | Local ID          | LIMS ID  | Description                       | Manufacturer                             | Model                                                  | Serial                           | Last<br>Calibration<br>Date | Cal       |
| AT           | MAT-10            | 141156   | Attenuator(10dB)                  | Weinschel Corp                           | 2                                                      | BL1173                           | 11/10/2022                  | 12        |
| AT           | MAT-21            | 141174   | Attenuator(20dB)<br>(above1GHz)   | HIROSE ELECTRIC CO.,LTD.                 | AT-120                                                 | 901247                           | 01/20/2023                  | 12        |
| AT           | MCC-144           | 141414   | Microwave Cable                   | Junkosha                                 | MWX221                                                 | 1207S407                         | 08/01/2023                  | 12        |
| AT           | MCC-235           | 184488   | Microwave Cable                   | Murata<br>Manufacturing<br>Company, Ltd. | MXHS83QE3000                                           | -                                | 09/27/2022                  | 12<br>*1) |
| AT           | MCC-244           | 197219   | Microwave cable                   | Huber+Suhner                             | SF126E/11PC35/<br>11PC35/2000MM                        | 536999/126E                      | 03/09/2023                  | 12        |
| AT           | MCC-38            | 141395   | Coaxial Cable                     | UL Japan                                 | -                                                      | -                                | 11/18/2022                  | 12        |
| AT           | MMM-17            | 141557   | DIGIITAL HITESTER                 | HIOKI E.E.<br>CORPORATION                | 3805                                                   | 70900530                         | 01/18/2023                  | 12        |
| AT           | MOS-28            | 141567   | Thermo-Hygrometer                 | CUSTOM. Inc                              | CTH-201                                                | 0008                             | 01/13/2023                  | 12        |
| AT           | MPM-12            | 141809   | Power Meter                       | Anritsu Corporation                      | ML2495A                                                | 825002                           | 05/26/2023                  | 12        |
| AT           | MPM-13            | 141810   | Power Meter                       | Anritsu Corporation                      | ML2495A                                                | 824014                           | 12/26/2022                  | 12        |
| AT           | MPM-19            | 141815   | Power Meter                       | Raditeq (Formerly DARE!! Instruments)    | RPR3006W                                               | 14I00048SNO08<br>3               | 10/21/2022                  | 12        |
| AT           | MPSE-17           | 141830   | Power sensor                      | Anritsu Corporation                      | MA2411B                                                | 738285                           | 05/26/2023                  | 12        |
| AT           | MPSE-18           | 141832   | Power sensor                      | Anritsu Corporation                      | MA2411B                                                | 738174                           | 12/26/2022                  | 12        |
| AT           | MSA-13            | 141900   | Spectrum Analyzer                 | Keysight<br>Technologies Inc             | E4440A                                                 | MY46185823                       | 06/16/2023                  | 12        |
| AT           | MSA-14            | 141901   | Spectrum Analyzer                 | Keysight<br>Technologies Inc             | E4440A                                                 | MY48250080                       | 01/16/2023                  | 12        |
| CE           | COTS-<br>MEMI-02  | 178648   | EMI measurement program           | TSJ (Techno<br>Science Japan)            | TEPTO-DV                                               | -                                | -                           | -         |
| CE           | MAEC-02           | 142004   | AC2_Semi Anechoic<br>Chamber(NSA) | TDK                                      | Semi Anechoic<br>Chamber 3m                            | DA-06902                         | 05/30/2022                  | 24        |
| CE           | MAT-64            | 141290   | Attenuator(13dB)                  | JFW Industries, Inc.                     | 50FP-013H2 N                                           | -                                | 12/22/2022                  | 12        |
| CE           | MCC-13            | 141222   | Coaxial Cable                     | Fujikura,HP,Mini-<br>Circits,Fujikura    | 3D-2W(12m)/<br>5D-2W(5m)/<br>5D-2W(0.8m)/<br>5D-2W(1m) | -                                | 02/01/2023                  | 12        |
| CE           | MJM-27            | 142228   | Measure, Tape, Steel              | KOMELON                                  | KMC-36                                                 | -                                | -                           | Ī-        |
| CE           | MLS-25            | 141537   | LISN(AMN)                         | Schwarzbeck Mess-<br>Elektronik OHG      | NSLK8127                                               | 8127-731                         | 07/21/2023                  | 12        |
| CE           | MMM-01            | 141542   | Digital Tester                    | Fluke Corporation                        | FLUKE 26-3                                             | 78030611                         | 08/01/2023                  | 12        |
| CE           | MOS-41            | 192300   | Thermo-Hygrometer                 | CUSTOM. Inc                              | CTH-201                                                | 0013                             | 12/17/2022                  |           |
| CE           | MTR-10            | 141951   | EMI Test Receiver                 | Rohde & Schwarz                          | ESR26                                                  | 101408                           | 04/10/2023                  | 12        |
| RE           | COTS-<br>MEMI-02  | 178648   | EMI measurement program           | TSJ (Techno<br>Science Japan)            | TEPTO-DV                                               | -                                | -                           | -         |
| RE           | MAEC-01-<br>SVSWR | 141994   | AC1_Semi Anechoic Chamber(SVSWR)  | TDK                                      | Semi Anechoic<br>Chamber 10m                           | DA-06881                         | 04/20/2023                  | 24        |
| RE           | MAEC-03           | 142008   | AC3_Semi Anechoic Chamber(NSA)    | TDK                                      | Semi Anechoic<br>Chamber 3m                            | DA-10005                         | 05/23/2022                  | 24        |
| RE           | MAEC-03-<br>SVSWR | 142013   | AC3_Semi Anechoic Chamber(SVSWR)  | TDK                                      | Semi Anechoic<br>Chamber 3m                            | DA-10005                         | 04/12/2023                  | 24        |
| RE           | MAT-95            | 142314   | Attenuator                        | Pasternack<br>Enterprises                | PE7390-6                                               | D/C 1504                         | 06/23/2023                  | 12        |
| RE           | MCC-217           | 141393   | Microwave Cable                   | Junkosha                                 | MWX221                                                 | 1604S254(1 m) /<br>1608S088(5 m) | 08/01/2023                  | 12        |
| RE           | MCC-265           | 234602   | Microwave Cable                   | Huber+Suhner                             | SF126E/11PC35/<br>11PC35/1000M,<br>5000M               | 537063/126E /<br>537074/126E     | 03/16/2023                  | 12        |
| RE           | MCC-51            | 141323   | Coaxial cable                     | UL Japan                                 | -                                                      | -                                | 09/10/2023                  | 12        |

Test Equipment (2/2)

| Test<br>Item | Local ID | LIMS ID | Description                          | Manufacturer                        | Model                   | Serial      | Last<br>Calibration<br>Date | Cal |
|--------------|----------|---------|--------------------------------------|-------------------------------------|-------------------------|-------------|-----------------------------|-----|
| RE           | MHA-16   | 141513  | Horn Antenna<br>15-40GHz             | Schwarzbeck Mess-<br>Elektronik OHG | BBHA9170                | BBHA9170306 | 07/19/2023                  | 12  |
| RE           | MHA-20   | 141507  | Horn Antenna<br>1-18GHz              | Schwarzbeck Mess-<br>Elektronik OHG | BBHA9120D               | 258         | 11/14/2022                  | 12  |
| RE           | MHA-21   | 141508  | Horn Antenna<br>1-18GHz              | Schwarzbeck Mess-<br>Elektronik OHG | BBHA9120D               | 557         | 05/17/2023                  | 12  |
| RE           | MHF-25   | 141232  | High Pass Filter<br>3.5-18.0GHz      | UL Japan                            | HPF SELECTOR            | 001         | 09/04/2023                  | 12  |
| RE           | MJM-16   | 142183  | Measure                              | KOMELON                             | KMC-36                  | -           | 10/03/2022                  | 12  |
| RE           | MJM-25   | 142226  | Measure, Tape,<br>Steel              | KOMELON                             | KMC-36                  | -           | -                           | -   |
| RE           | MLA-22   | 141266  | Logperiodic Antenna<br>(200-1000MHz) | Schwarzbeck Mess-<br>Elektronik OHG | VUSLP9111B              | 9111B-191   | 08/10/2023                  | 12  |
| RE           | MMM-03   | 141530  | Digital Tester                       | Fluke Corporation                   | FLUKE 26-3              | 78030621    | 01/18/2023                  | 12  |
| RE           | MMM-08   | 141532  | DIGITAL HITESTER                     | HIOKI E.E.<br>CORPORATION           | 3805                    | 51201197    | 01/17/2023                  | 12  |
| RE           | MOS-13   | 141554  | Thermo-Hygrometer                    | CUSTOM. Inc                         | CTH-201                 | 1301        | 01/13/2023                  | 12  |
| RE           | MOS-27   | 141566  | Thermo-Hygrometer                    | CUSTOM. Inc                         | CTH-201                 | A08Q26      | 01/13/2023                  | 12  |
| RE           | MPA-01   | 141576  | Pre Amplifier                        | Keysight Technologies Inc           | 8449B                   | 3008A01671  | 02/14/2023                  | 12  |
| RE           | MPA-11   | 141580  | MicroWave System<br>Amplifier        | Keysight<br>Technologies Inc        | 83017A                  | MY39500779  | 03/08/2023                  | 12  |
| RE           | MPA-13   | 141582  | Pre Amplifier                        | SONOMA<br>INSTRUMENT                | 310                     | 260834      | 02/07/2023                  | 12  |
| RE           | MSA-16   | 141903  | Spectrum Analyzer                    | Keysight Technologies Inc           | E4440A                  | MY46186390  | 01/16/2023                  | 12  |
| RE           | MTR-10   | 141951  | EMI Test Receiver                    | Rohde & Schwarz                     | ESR26                   | 101408      | 04/10/2023                  | 12  |
| RE           | YBA-03   | 197990  | Biconical Antenna                    | Schwarzbeck Mess-<br>Elektronik OHG | VHBB 9124<br>+ BBA 9106 | 01365       | 11/12/2022                  | 12  |

<sup>\*</sup>Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

The expiration\*1) This test equipment was used for the tests before the expiration date of the calibration.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

#### Test item:

**AT: Antenna Terminal Conducted test** 

**CE: Conducted Emission RE: Radiated Emission**