

Report No.: KSEM200800098001 Page: 1 of 78

TEST REPORT

Application No.:	KSEM2008000980CR	
FCC ID:	RF41583A	
Applicant:	KEYENCE CORPORATION	
Address of Applicant:	1-3-14 Higashinakajima,Higashiyodogawa-ku,Osaka 533-8555 Japan	
Manufacturer:	KEYENCE CORPORATION	
Address of Manufacturer:	1-3-14 Higashinakajima,Higashiyodogawa-ku,Osaka 533-8555 Japan	
Factory:	KEYENCE CORPORATION	
Address of Factory:	1-3-14 Higashinakajima,Higashiyodogawa-ku,Osaka 533-8555 Japan	
Equipment Under Test (EUT):		
EUT Name:	Handheld Terminal	
Model No.:	BT-A500GA	
Trade mark:	KEYENCE	
Standard(s) :	47 CFR Part 15, Subpart C 15.247	
Date of Receipt:	2020-08-05	
Date of Test:	2020-08-05 to 2020-09-08	
Date of Issue:	2020-09-11	
Test Result:	Pass*	

* In the configuration tested, the EUT complied with the standards specified above.

Ena fri

Eric Lin EMC Lab Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions. A trention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ess.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 2 of 78

Revision Record				
Version	Description	Date	Remark	
00	Original	2020-09-11	/	

Authorized for issue by:			
	l7amon zhou		
	Damon Zhou / Project Engineer	-	
	Ena fri		
	Eric Lin / Reviewer	-	

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 3 of 78

2 Test Summary

Radio Spectrum Technical Requirement				
ltem	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass

Radio Spectrum Matte	er Part			
Item	Standard	Method	Requirement	Result
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 4 of 78

3 Contents

			Page
1	CC	OVER PAGE	1
2	TE	ST SUMMARY	3
2	00	NTENTS	
3		JN I EN I S	4
4	GE	NERAL INFORMATION	5
	4.1	DETAILS OF E.U.T.	5
	4.2	Power level setting using in test:	-
	4.3	DESCRIPTION OF SUPPORT UNITS.	
	4.4		-
	4.5 4.6	TEST LOCATION TEST FACILITY	
	4.7	DEVIATION FROM STANDARDS	
	4.8	Abnormalities from Standard Conditions	
5	FQ	UIPMENT LIST	
•			
6	RA	DIO SPECTRUM TECHNICAL REQUIREMENT	9
	6.1	ANTENNA REQUIREMENT	9
7	RA	DIO SPECTRUM MATTER TEST RESULTS	10
	7.1	MINIMUM 6DB BANDWIDTH	
	7.2	CONDUCTED PEAK OUTPUT POWER	
	7.3	POWER SPECTRUM DENSITY	
	7.4	CONDUCTED BAND EDGES MEASUREMENT	
	7.5	CONDUCTED SPURIOUS EMISSIONS	
	7.6 7.7	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS RADIATED SPURIOUS EMISSIONS	-
8	TE	ST SETUP PHOTOGRAPHS	78
9	FU	T CONSTRUCTIONAL DETAILS	78

 Report No.:
 KSEM200800098001

 Page:
 5 of 78

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.63V By LI-ion Recharge Battery
	Charging base :
	INPUT: DC12V by Adapter
	OUTPUT: 5V
	Adapter:
	Model: FSP060-DHAN3,OP-88389
	INPUT:100-240V,50/60Hz,1.8A
	OUTPUT:12V,5A
Test voltage:	DC 3.63V
Antenna Gain:	6.01dBi
Antenna Type:	PIFA Antenna
Channel Spacing:	5MHz
Modulation Type:	802.11b: DSSS (CCK, DQPSK, DBPSK)
	802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Number of Channels:	802.11b/g/n(HT20):11
	802.11n(HT40):7
Operation Frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz
	802.11n(HT40): 2422MHz to 2452MHz

4.2 Power level setting using in test:

	<u> </u>		
Channel	802.11b	802.11g	802.11n(HT20)
1	20	20	20
6	20	20	20
11	20	20	20
Channel	802.11n(HT40)		
3	20		
6	20		
9	20		

4.3 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	Lenovo	ThinkPad X100e	/
Serial port adapter plate	/	Test Plate 3	/

Report No.: KSEM200800098001 Page: 6 of 78

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.6dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
8	PE Dedicted power	4.6dB (Below 1GHz)
0	RF Radiated power	4.1dB (Above 1GHz)
		4.2dB (Below 30MHz)
0	Radiated Spurious emission test	4.4dB (30MHz-1GHz)
9		4.8dB (1GHz-18GHz)
		5.2dB (Above 18GHz)
10	Temperature test	1°C
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 7 of 78

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory.

Designation Number: CN1172.

• ISED (CAB Identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development (ISED) Canada as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

 Report No.:
 KSEM200800098001

 Page:
 8 of 78

5 Equipment List

Item	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
	F Conducted Test					
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	04/22/2020	04/21/2021
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	12/19/2019	12/18/2020
3	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
4	Vector Signal Generator	R&S	SMU 200A	102744	02/24/2020	02/23/2021
5	Universal Radio Communication Tester	R&S	CMU200	109525	12/19/2019	12/18/2020
6	Universal Radio Communication Tester	R&S	CMW500	159275	12/19/2019	12/18/2020
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
8	Switcher	CCSRF	FY562	KS301219	12/20/2019	12/19/2020
9	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
10	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
11	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
12	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
13	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
14	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021
15	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
RFF	Radiated Test	•		•		
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	11/04/2018	11/03/2020
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	04/21/2020	04/20/2021
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
13	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
15	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
16	Filter (885 MHz \sim 915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
17	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
18	Filter (1745 MHz \sim 1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
19	Filter (1922 MHz \sim 1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
20	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
21	Filter (1532 MHz~1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R
22	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
23	RE test cable	/	RE01-RE04	/	04/21/2020	04/22/2021

Report No.: KSEM200800098001 Page: 9 of 78

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

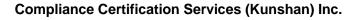
6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

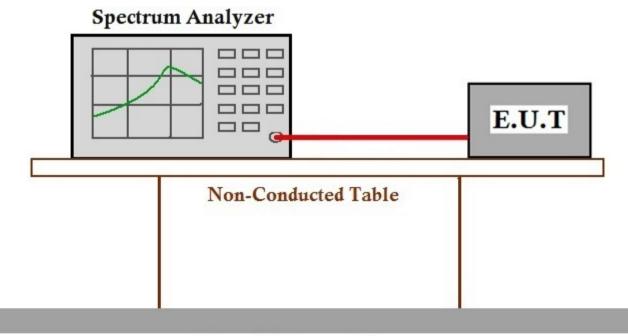
The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 6.01dBi.

Antenna location: Refer to Appendix (Internal Photos).

Report No.: KSEM200800098001 Page: 10 of 78

7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:	25 °C	Humidity:	50	% RH	Atmospheric Pressure:	1002	mbar
Test mode	types. All data data rate @ 1N worst case of I	rates for eac /lbps is the w EEE 802.11(); data rate @	h moo vorst c g; data 0 13.5	dulation type case of IEEE a rate @ 6.5 5Mbps is the	ansmitting mode with all i e have been tested and fe E 802.11b; data rate @ 6i 5Mbps is the worst case o e worst case of IEEE 802 e report.	ound the Mbps is of IEEE	e the

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800098001

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 11 of 78

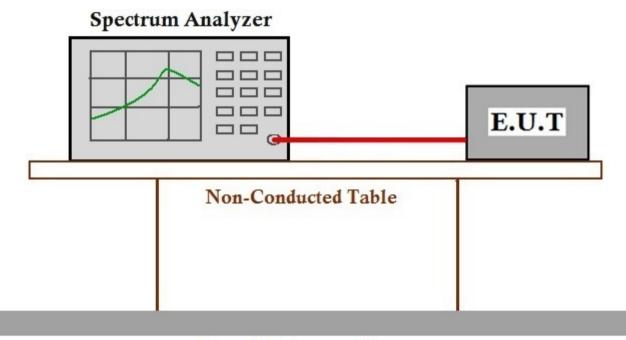
7.2 Conducted Peak Output Power

Test Requirement47 CFR Part 15, Subpart C 15.247(b)(3)Test Method:ANSI C63.10 (2013) Section 11.9.1Limit:Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

Remark: The antenna gain is 6.01 dBi, the limit of output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi, so the limit for 2400-2483.5MHz is 29.99dBm.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300


Report No.: KSEM200800098001 Page: 12 of 78

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with all modulation
types. All data rates for each modulation type have been tested and found the
data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the
worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE
802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).
Only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

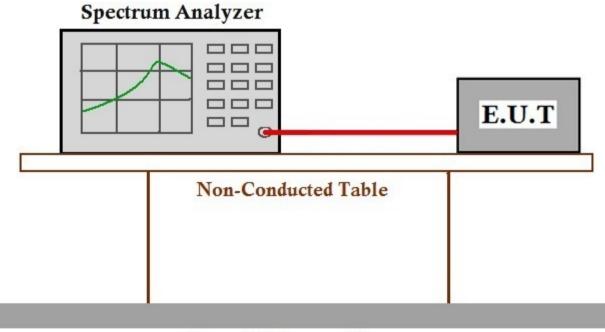
7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800098001

Report No.: KSEM200800098001 Page: 13 of 78

7.3 Power Spectrum Density

Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	${\leq}8\text{dBm}$ in any 3 kHz band during any time interval of continuous transmission


Remark: The antenna gain is 6.01 dBi, the limit of power spectrum density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi, so the limit is 7.99dBm/3KHz..

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	25 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar	r
Test mode	a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40). Only the data of worst case is recorded in the report.	

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800098001

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

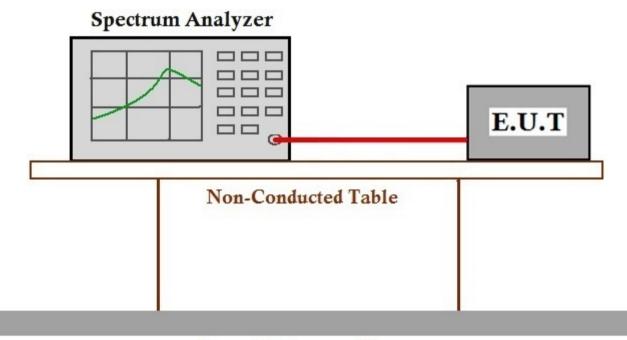
Limit:

Report No.: KSEM200800098001 Page: 14 of 78

7.4 Conducted Band Edges Measurement

Test Requirement47 CFR Part 15, Subpart C 15.247(d)Test Method:ANSI C63.10 (2013) Section 11.13.3.2

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)


Report No.: KSEM200800098001 Page: 15 of 78

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with all modulation
types. All data rates for each modulation type have been tested and found the
data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the
worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE
802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).
Only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

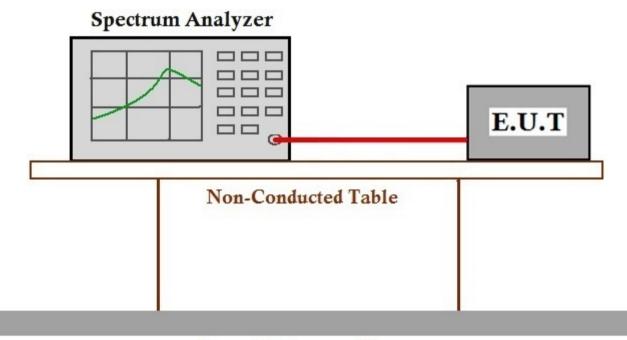
7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800098001

Report No.: KSEM200800098001 Page: 16 of 78

7.5 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 11.11 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)


Report No.: KSEM200800098001 Page: 17 of 78

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with all modulation
types. All data rates for each modulation type have been tested and found the
data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the
worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE
802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).
Only the data of worst case is recorded in the report.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix A for KSEM200800098001

Report No.: KSEM200800098001 Page: 18 of 78

7.6 Radiated Emissions which fall in the restricted bands

 Test Requirement
 47 CFR Part 15, Subpart C 15.209 & 15.247(d)

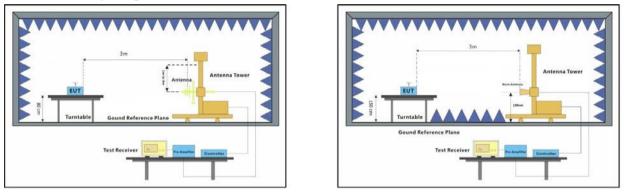
 Test Method:
 ANSI C63.10 (2013) Section 6.10.5

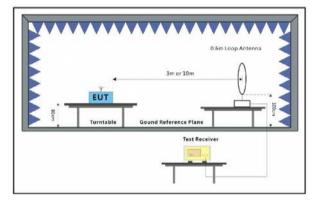
 Limit:
 Ansi C 15.209 & 15.247(d)

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300


Report No.: KSEM200800098001 Page: 19 of 78


7.6.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with all modulation
types. All data rates for each modulation type have been tested and found the
data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the
worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE
802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).
Only the data of worst case is recorded in the report.

7.6.2 Test Setup Diagram

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 20 of 78

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

 Report No.:
 KSEM200800098001

 Page:
 21 of 78

		0									1 I	mitl: — mit2: —
										×		
									1			
										l l		
									- í-			
	70-								j		1-	
									كالعسم		IV Y	
	_ L						1		1		1 No	and a
		n kan kalan na saka	مرمان البطوم سير سامطوريون	ي ديل عندريهموريد.		concerned door	anna an t	···· ·×	/ *		-	Mour
	-	n has stand and a stand	مر مارز ارطوم سور رادهاورموم			andra the an al- I spec	anne produ	~~~ % _~				- Money
	-	n, hay (the particular)	gerabela, ya tekstore se	. de, perto, - etc. ybs; ap	~~~~	and a start of the	anne an d	~~ \$ ~				- Monark
2	- - -		yyesyddin yw radwi llyn yn	ي ولي خدر يەس د.		ineria diser	1 22	~ \$ ~				
2	0.0				52.00	2366.00	2380.00		1.00 210	1 18.00 242	22.00	2150.00 M
	0.0 23	10.000 2324		8.00 23 g Corre	52.00			239	Margin	18.00 242		
	23 Fr	10.0002324	1.00 233	8.00 23 g Corre fac	52.00	2356.00	2380.00	239 nit		18.00 242		2150.00 M
2	23 Fr	10.000 2324 requency (MHz)	1.00 233 Readin ()	8.00 23 g Corre fac -4	52.00 ection tor()	2356.00 Result ()	2380.00	239 nit)	Margin (dB))8.00 242	Ren	2150.00 M nark ak

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM200800098001 Page: 22 of 78

1	20.0																			
																		Limi Limi		
															3					
														1		2				
														1		7				
														1		j				
	70													\square		-				-
													W			ľ	W.			
		hours	at so a base	a a ma	Par Maria	ورجعا معرو		Suma		and beau	and the	in the second	e de la				9,	MW	Cost of the	-
_																\neg				
2	0.0 231	0.0002324	1.00	2338	B.00	235	2.00	235	 6.00	238	0.00	239	1.00	240	8.00	2122	.00		2450	
	_																			
0.	Fre (quency MHz)	Re	ading ()		Correct facto		R	lesult ()		Lir (nıt)		rgin B)			R	lema	rk	
		85.810	5	7.32		-4.2		5	3.07		74.	00).93				peak	c	
		90.000	<u> </u>	4.97		-4.2			0.73		74.	00		3.27				peak	(
- T	~ ~ ~	13.320	1 4 6	6.00		-4.1			01.82		74.			.82				peak		

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 23 of 78

1	120.	0														
														Limi Limi		
		4														
			\mathbb{N}													
		$\left \right $	1													
		1														
	70	/	- In		1											
				×	hur	www.	~amk1	herena	¢.€ni	ah dinang kangkangkang	-way and a second	uhoreann	.a. 	an an an an Anna an Anna Anna Anna Anna	went weekensteren a	
2	20.0															
	21	150.000248	55.00 248	0.00	249	5.00	251	0.00	252	5.00 254	0.00 25	55.00	2570 .0)0	2500.00	MHz
No.	F	requency (MHz)	Readin ()	9	Corre facto		R	Result		Limit ()	Margin (dB)	1		Rema	rk	
1	2	2463.275	107.94	1	-4.(1	03.89	\top	74.00	29.89			peak	¢	
2	2	2483.500	54.18		-4.()0	5	50.18		74.00	-23.82	!		peak	c	
3	2	2488.175	57.49		-3.9	99	5	53.50		74.00	-20.50			peak	c	
4	2	2500.000	52.52		-3.9	96	4	8.56		74.00	-25.44			peak	C	

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 24 of 78

1	20.0																_
															Limitl: Limit2:		
		1															
	1		$\langle $														
	17																
	70		1														
	//		5		1												
				*	and the second	n.je	(1972-1945)	n julian nagrad	ų-34	فأوريه المعروف والمستحد والمساط	la Maria a Maria		and and a sec	ann acharag		ann Anainm	
2	0.0																
	2150.0003	2465	5.00 2480).00	249	5.00	2510	D.00	252	5.00 254	0.00 2	555.	00 257	0.00		2500.00	MH:
lo.	Frequence (MHz)	су	Reading ()		Correct facto		R	esult ()		Limit ()	Margi (dB)			Re	emark		
	2463.27	75	106.55		-4.0	M	1(02.50		74.00	28.5	_		p	eak		
2	2483.50)0	54.62		-4.0)0	5	0.62		74.00	-23.3	8		p	eak		
}	2486.82	25	57.26		-3.9	9	5	3.27		74.00	-20.7	3		p	eak		
1	2500.00	0	52.95		-3.9)6	4	8.99	\top	74.00	-25.0	1		p	eak		

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

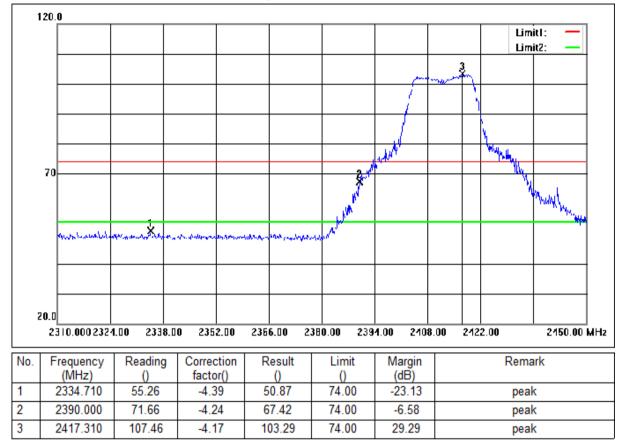
 Page:
 25 of 78

	20.0	ļ																	
																Limi Limi		_	
											(~~~							
														Ì					
											. All				hopen				
										2 8*	p	_				ny 1			
	70-								. Mark	,l						1	nunder aber	ed anno	
	•	w waard and	and and a start of the	Aurop	maada Milkada ah	en versaarde	and the state of the	ብር ብር ዓ ር ምሳሌ	swort M										
	-	~~~~~	and and and a	Augusta A	muda Nelanakana	en versæde	(),-(),-(),-(),-(),-(),-(),-(),-(),-(),-	-11-11-15-15-15-15-											
2	- - !0.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	And some the	Mar.els 1996s Jacob	en 10-16-360	v	-11.4 ⁻⁴ 14.1444											
2	.0.D	10.000 2324		2338.1			2356.		380.00	239	1.00 2	108.0	0 2/	122.	00			0.00 k	
z No.	23			2338.1		2.00 :tion	2356.				1.00 2 Margi (dB)	n	0 24	122.		ema	215		
	23	10.000 2324	1.00	2338.1 ding	00 235;	2.00 ction	2356.	00 2	380.00	it	Margi	n	0 2/	122.	R		215 Irk		
۱o.	23 Fr	10.0002324 requency (MHz)	1.00 Rea	2338.1 ding)	00 235	2.00 ction or() i9	2356. Re (00 2 sult ()	380.00 Limi	it 10	Margi (dB)	n 1	0 2/	122.	R	lema	215 rrk		

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 26 of 78


1	20.0																			
																	Limit Limit			
															2					
	L												\sim		Ř.					
															Ì					
	70																			
												part of					\mathbf{X}			
											ž						Ì			
	-					- *				1										
2	0.0																			
	2310	D. 000 232 4	1.00 23	38.00	235	2.00	235	6.00	238	0.00	239	4.00	240	8.00 i	212	2.00		2450	.00 h	IHz
No.	Fre (I	quency MHz)	Readir ()	ıg	Correc facto		R	lesult ()		Lim ()	it	Mai (di	rgin 3)			R	emar	ĸ		
1	23	57.600	41.59		-4.3	3		87.26		54.0		-16	.74				AVG			
2		90.000	53.54		-4.2		<u> </u>	9.30		54.0			70				AVG			
3	24	17.800	99.87	·	-4.1	7	9	5.70		54.0)0	41	.70				AVG			

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 27 of 78

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国 • 江苏 • 昆山市留学生创业园伟业路10号 邮编 215300

 Report No.:
 KSEM200800098001

 Page:
 28 of 78

1	20.0	D																			
																		Limi Limi			
														_	جسر سرب	3					
																ľ					
	_															Ц					
	70																				
													and a				- Mary				
												ž						N	·		
				*								<u> </u>									
z	0.0																				
	23	110.0002324	1.00	233	B.00	235	2.00	235	6.00	238	0.00	239	1.00	2408	8.00 2	12	2.00		2450.	00 M	Hz
No.	F	requency (MHz)	Rea	ading ())	Correct facto		R	esult ()		Lim ()	it	Mar (df	gin 3)			R	ema	rk		
1	2	2333.380	41	.35		-4.3		3	6.96		54.0)0	-17					AVG	i		
2		2390.000	50	.15		-4.2	4	4	5.91		54.0)0		09				AVG			
3	2418.640 97.63					-4.1	7	9	3.46		54.0)0	39.	46				AVG			

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 29 of 78

1	20.0							
								mit1: — mit2: —
	- Annotes -							
	1							
	/							
	70	W. MARK	ž					
	70							
			m. Ash	للمارين والمطلحة المريحة والمحصر المطلح	ulla compactore	havenounin	ha mada ang ang ang ang ang ang ang ang ang an	na hanna ana
2	20.0							
	2450.000246	5.00 2480.0	00 2495.00	2510.00 2	525.00 254	0.00 2555.	.00 2570.00	2500.00 MHz
No.	Frequency (MHz)	Reading	Correction factor()	Result ()	Limit ()	Margin (dB)	Ren	nark
1	2464.250	109.20	-4.05	105.15	74.00	31.15	pe	ak
2	2483.500	75.43	-4.00	71.43	74.00	-2.57	pe	ak
3	2486.675	69.69	-3.99	65.70	74.00	-8.30	pe	ak
4	2500.000	53.55	-3.96	49.59	74.00	-24.41	pe	ak

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 30 of 78

1	20.0							
								nit1: — nit2: —
	(v	4						
	1							
	70							
			*					
2	0.0							
	2150.000 216	5.00 2480.0	00 2495.00	2510.00 2	525.00 254	0.00 2555.	00 2570.00	2500.00 MHz
No.	Frequency (MHz)	Reading	Correction factor()	Result	Limit	Margin (dB)	Rem	ark
1	2465.825	99.02	-4.05	94.97	54.00	40.97	AV	G
2	2483.500	53.87	-4.00	49.87	54.00	-4.13	AV	G
3	2487.650	46.47	-3.99	42.48	54.00	-11.52	AV	G
4	2500.000	40.88	-3.96	36.92	54.00	-17.08	AV	G

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

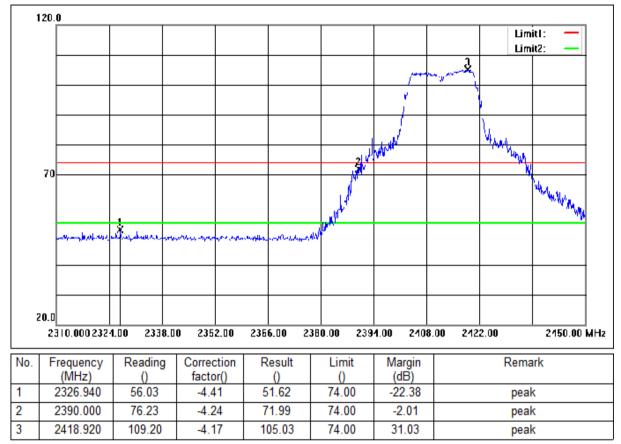
 Page:
 31 of 78

1	120.0	0									
										Lim Lim	
			1 *								
		/									
		1									
	70		y w								
	70										
					4	and and a second second	har suite an	ay distance on the provide strate the	re, reconstance	the second s	No. Assetiment to all
					++						
2	20.0 21	150.000 2465).00 24	95.00	2510.00	2525.00 254	 0.00 2555	.00 2570	.00	2600.00 M
No.	F	requency	Reading		ection	Result	Limit	Margin		Rema	ark
	1	(MILI-)		- fac	har()						
1		(MHz) 2467.325	() 107.52	_	tor() .04	() 103.48	() 74.00	(dB) 29.48		pea	k
	2		() 107.52 68.74	-4	14	() 103.48 64.74	() 74.00 74.00			pea pea	
1	2	2467.325		-4 -4	.04			29.48			k

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 32 of 78


•	20.0						Lim	
		*						
	70							
		Ĭ	23					
							· · · · · · · · · · · · · · · · ·	
2	.O.D							
	2150.000 216	5.00 2480.0	0 2495.00	2510.00 2	525.00 254	0.00 2555.0	00 2570.00	2500.00 MH
0.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Rema	ark
	2466.650	97.52	-4.05	93.47	54.00	39.47	AV	3
	2483.500	51.59	-4.00	47.59	54.00	-6.41	AV	3
	2486.300	46.64	-4.00	42.64	54.00	-11.36	AV	3
- 1								

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 33 of 78

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 34 of 78

1	20.	0																-
															Lim Lim		_	
														{				
												$\ell^{\pi\pi}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۱.				
	70																-	
										200	www				1			
									1	×								
2	20.0																	
	23	310. 0 002324	1.00 2338	B.OO 235	2.00	235	6.00	238	0.00	239	1.00	240	8.00 24	122.00		215	0.00 k	4Hz
No.	F	requency (MHz)	Reading ()	Correct facto		R	esult ()		Limit ()		Ma (d	rgin B)			Rema	ark		
1		2329.320	41.42	-4.4		3	7.02		54.00)	-16	5.98			AVG			
2		2390.000	56.10	-4.2			1.86		54.00			.14			AVG			
3	1	2419.620	99.66	-4.1	7	9	5.49		54.00)	41	.49			AVG	3		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

 Report No.:
 KSEM200800098001

 Page:
 35 of 78

1	20.0	0																		
																		Lim Lim		
															n jeri	3				
														/						
														1			Į.			
												110	p. www				Wynd	Yery.		
	70											A. Martin	1					10		\neg
												J.							Merchand .	
											Jul 1								aW	W.
		Musta	eront and	Enne	~~	Maran	Amaria	unsa.	or the state	furnals	 elaw de			_					Aleverally	W.,
		Hawada.	erent suit	(mark	**\#*\\$`	M-44.W	den and th	per la mar	en de de la gue	furence	 ylaw die								, Mu	₩U _@
		Hour A	erent sur	(**\#*\\$*	ww	den an	uns an	or the state	furente	elawa dhe								, . Mle, .	1100
2	0.0		erent sub	(-~~	Maya W	alaan a aadh	pola de	•.A. #A \&_	fun van de	 elow de								, Mu, ,	^{MU} n
2	0.0		went 34			м.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		цьл.ц. 2.00		yununun 6.00	и ^л и 0.00	239	1.00	2108	3.00	212:	2.00			0.00 M
2	0.0 23	310.00	00232 ency	1.00		8.00	235: Correc	2.00	235				Ма	argin	3.00	212:		Rema	215	
	0.0 23	310.00	00232 ency z)	1.00	233	8.00	235	2.00 ction or()	236 R	6.00	0.00	it	Ma (d		8.00	212:			215 1rk	
	0.0 23 Fr	10.00 reque	200 232 ency z) .860	1.00	233 eading	8.00	235 Correct	2.00 ction or()	236 R	6.00 esult ()	0.00 Limi	it 0	Ma (d	argin IB)	3.00	212:		Rema	215 ark	

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

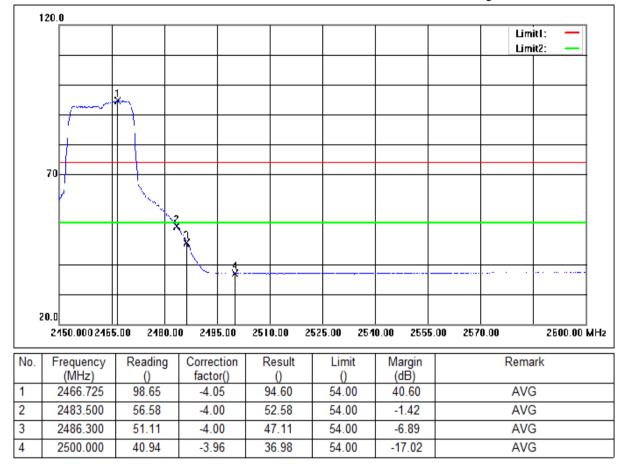
 Page:
 36 of 78

1	20.0	n																		
		-																Limi Limi		-
																4,				
	70																			1
													w				1			
												¥						Ì	- mark	
				*			~													
Z	20.0																			
	23	110.0002324	1.00	233	8.00	235	2.00	236	6.00	238	0.00	239	1.00	2408	3.00 2	12	2.00		2450.0	10 MH:
No.	F	requency (MHz)	R	eading ()	9	Correct facto		R	lesult ()		Lim ()	it	Ma (d	rgin B)			R	ema	rk	
1	2	2330.510	4	41.53		-4.4		3	37.13		54.0)0		.87				AVG	ì	
2	2	2390.000	!	52.63		-4.2	4	4	8.39		54.0)0	-5	.61				AVG	ì	
3	2	2418.500	9	97.47		-4.1	7	9	3.30		54.0)0	39	.30				AVG	ì	

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 37 of 78


1	20.0)					_											_
																Limitl Limit2	-	
		man	3	4														
		1																
		/		- X														
				Why when	2	2												
	70-				- 1													
						Yhow	mham	an ya kada	ad interest	er de r	ana ang ang ang ang ang ang ang ang ang	anahar how	n Maria Maria	w, Anji suh	an an that the second		nakiminan da	
2	0.0																	
	21	50.000 246	5.0	10 2480	.00	249	5.00	251	0.00	252	5.00 25 4	10.00 258	55.00	2570	D.00		2500.00	MHz
No.	Fr	requency (MHz)		Reading ()		Correct facto		R	lesult		Limit	Margin (dB)			Re	emark	:	
1	2	2468.075	t	109.05	╈	-4.0		1	05.01	╈	74.00	31.01			р	eak		
2	2	2483.500	T	76.76		-4.0)0	7	2.76		74.00	-1.24			р	eak		
3	2	2485.925	T	73.37		-4.0	0	6	9.37		74.00	-4.63			р	eak		
4	2	2500.000	T	53.06	╈	-3.9)6	4	9.10		74.00	-24.90		peak				

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 38 of 78

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 39 of 78

1	120.0							
								mit1: — mit2: —
	ر در	<u>k</u>						
		Winty (
	70							
			New marships	e, barban, been ay adaman	eren an	madroniem	em der nen en	and an an an and a star
2	20.0	<u> </u>	.00 2495.00	2510.00 2!	525.00 254	0.00 2555.	00 2570.00	2500.00 MHz
	2130.00021	00.00 2100.	.00 2433.00	2010.00 23	20.00 201	0.00 2000.	00 2010:00	2800.00 MT12
No.	Frequency (MHz)	Reading	Correction factor()	Result ()	Limit ()	Margin (dB)	Rem	hark
1	2464.925	107.33	-4.05	103.28	74.00	29.28	pea	ak
2	2483.500	71.80	-4.00	67.80	74.00	-6.20	pea	ak
3	2485.025	73.81	-4.00	69.81	74.00	-4.19	pea	ak
4	2500.000	53.24	-3.96	49.28	74.00	-24.72	pea	

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: KSEM200800098001 Page: 40 of 78

1	20.0							
							Lim Lim	
	m	×-						
	1							
	70							
			;					
		ĺ	3					
2	20.0							
	2150.0002469	5.00 2480.0	0 2495.00	2510.00 2	525.00 254	0.00 2555.	00 2570.00	2500.00 MHz
No.	Frequency (MHz)	Reading ()	Correction factor()	Result	Limit	Margin (dB)	Rema	ark
1	2467.625	97.28	-4.04	93.24	54.00	39.24	AVC	3
2	2483.500	54.78	-4.00	50.78	54.00	-3.22	AVC	3
3	2488.700	44.62	-3.99	40.63	54.00	-13.37	AVC	3
4	2500.000	41.14	-3.96	37.18	54.00	-16.82	AVC	G

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 41 of 78

-	20.0	0										
											1 I	jmitl: — jmit2: —
										and the second second second	3	Mar ala
									ſ		1	
									Ĵ.			
												<u> </u>
	70						UM.	X31/WA	*			uq.
							. Welling					
		n Mahayan Anger	Verpellikuntere	aha mar samat ka na	www.uk	nagen have made	м ^р м					
2	.o.0											
2	L	110.000232	4.00 233	8.00 23	j2.00	2356.00	2380.00	2394.	00 240:	B.00 212	22.00	2150.00 MH
	23	requency	1.00 233	g Corre	ction	2356.00 Result	2380.00		Margin	8.00 242		2150.00 Mł
	23 Fi			g Corre fact	ction or()			it		8.00 242	Re	
2 0.	23 Fi	requency (MHz)	Readin	g Corre fact	ction or() 25	Result ()	Lim ()	it O	Margin (dB)	8.00 243	Re	mark

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

 Report No.:
 KSEM200800098001

 Page:
 42 of 78

1	20 .	0																	
																	Lim Lim	nitl: — nit2: —	
																			4
															3				
													\square			¥		<u>n</u>	
	70			_									1		_				-
	10																		1
											2	-						1 may	~
									,	1	×]
		• • • • • • • • • • • • • • • • • • • •							~										1
2	20.0																		
		110.0002324	1.00 2	338.0	10 235	2.00	235	6.00	238	10.00	239	1.00	2408	3.00	212	2.00		2150.0	0 MHz
No.	F	requency (MHz)	Read	ling	Correct facto		R	esult ()		Lim ()	it	Ma (d	rgin B)				Rema	ark	
1	1	2379.090	43.0	32	-4.2		3	9.55		54.0	00		.45				AV	G	
2	1	2390.000	56.	50	-4.2	4	5	2.26		54.0)0	-1	.74				AV	G	
3	1	2418.640	95.2	22	-4.1	7	9	1.05		54.0)0	37	.05	AVG					

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

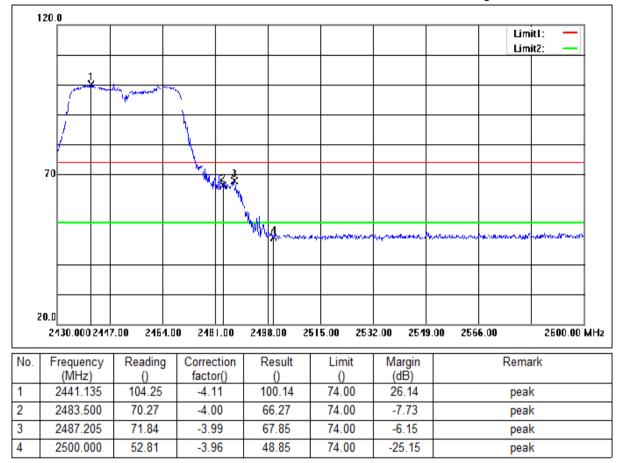
 Report No.:
 KSEM200800098001

 Page:
 43 of 78

1	20.0							
								Limit1: — Limit2: —
							here - strate freedomen	
						Í		
	70				1	W		- W
		unterrite recorded	an have a ballous	and an				
2	20.0							
	2310.0002324	1.00 2338.0	0 2352.00	2356.00 2	380.00 239	1.00 2408.	00 2422.00	2450.00 MH
	Frequency	Reading	Correction	Result	Limit	Margin (dB)	R	emark
I O.	(MHz)	0	factor()	I V				
lo.		() 71.27	-4.25	67.02	74.00	-6.98		peak
	(MHz)	() 71.27 68.28		67.02 64.04	74.00 74.00			peak peak

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: KSEM200800098001 Page: 44 of 78


1	20.0																			
																	Limi Limi			
				_																
															3	مىرىرىسى	-			
													1					$\sum_{i=1}^{n}$		
	70												' 							
																		Ì		
	-			-							3		;						<u> </u>	
										1	<i>,</i> *									
						×		·		1										
2	0.0																			
	2310.	0002324	1.00 23	38.00	235	2.00	235	6.00	238	0.00	239	1.00	2408	3.00	212	2.00		24	50.00 I	viHz
No.		uency IHz)	Readi	ng	Correct facto		R	lesult		Lim	it	Ma (d	rgin B)			F	Rema	ırk		
1		7.600	41.7	7	-4.3		3	37.44	+	54.0)0		6.56				AVG	3		
2	239	0.000	53.2	5	-4.2	24	4	9.01		54.0)0	-4	.99				AVG	3		
3	242	0.040	92.93	3	-4.1	7	8	88.76		54.0)0	34	.76				AVG	3		

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

 Report No.:
 KSEM200800098001

 Page:
 45 of 78

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: KSEM200800098001 Page: 46 of 78

1	20.0										_
										Limitl: — Limit2: —	
	,	K		~							
	Ĺ		Y	ì							
	70										
				U							
	-				2 1 ¥						1
					ļļ,	4.					
											1
2	0.0										
	2130.000	02447	'.00 2 1 64	1.00 2481	.00	2498.00	2515.00 253	32.00 2549	.00 2566.00	2500.00	MHz
No.	Frequer (MHz	ncy	Reading	Correc facto		Result	Limit	Margin (dB)	F	Remark	
1	2440.3		94.32	-4.1		90.21	54.00	36.21		AVG	
2	2483.5	00	56.87	-4.0	0	52.87	54.00	-1.13		AVG	
3	2488.0	55	54.77	-3.9	9	50.78	54.00	-3.22		AVG	
4	2500.000 41.59 -3.96				6	37.63 54.00 -16.37 AVG				AVG	

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: KSEM200800098001 Page: 47 of 78

1	20.0							
								mit1: — mit2: —
		1.						
	and the second s	man	2					
	í							
	70							
	70		W. R. R.					
				Warman	ina inakananana	Annan an Iga wayaa	laguar da provinsi da provi	ulan yan wasan waa No
2	20.0							
	2130.000211	7.00 2464.0	00 2481.00	2498.00 2	515.00 253	2.00 25/19.0	00 2566.00	2500.00 MHz
No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Rem	nark
1	2465.190	103.01	-4.05	98.96	74.00	24.96	pea	ak
2	2483.500	68.67	-4.00	64.67	74.00	-9.33	pea	ak
3	2486.440	69.55	-3.99	65.56	74.00	-8.44	pe	ak
4	2500.000	52.69	-3.96	48.73	74.00	-25.27	pea	ak

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

 Report No.:
 KSEM200800098001

 Page:
 48 of 78

1	20.0							
								imitl: — imit2: —
		~~~*	<u>م</u>					
	-	·						
	70		(					
			× ÷	\ .				
				·			- 16	
2	0.0	7.00 2464.0	0 2481.00	2198.00 2	515.00 253	2.00 2549.0	00 2566.00	2500.00 MHz
	2130.0002117	.00 2404.0		2430.00 2	515.00 255	2.00 2013.0	50 2558.00	2800.00 MHz
No.	Frequency (MHz)	Reading ()	Correction factor()	Result ()	Limit ()	Margin (dB)	Rer	nark
1	2464.935	92.68	-4.05	88.63	54.00	34.63	A	VG
2	2483.500	54.85	-4.00	50.85	54.00	-3.15		VG
3	2486.185	54.77	-4.00	50.77	54.00	-3.23	A	VG
4	2500.000	41.26	-3.96	37.30	54.00	-16.70	A	VG

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High





Report No.: KSEM200800098001 Page: 49 of 78

# 7.7 Radiated Spurious Emissions

 Test Requirement
 47 CFR Part 15, Subpart C 15.209 & 15.247(d)

 Test Method:
 ANSI C63.10 (2013) Section 6.4,6.5,6.6

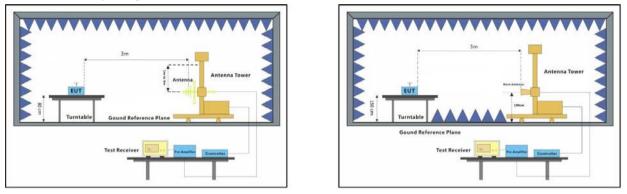
 Limit:
 Ansi C63.10 (2013) Section 6.4,6.5,6.6

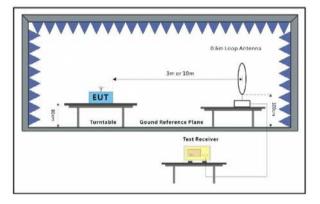
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300




Report No.: KSEM200800098001 Page: 50 of 78


## 7.7.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with all modulation<br/>types. All data rates for each modulation type have been tested and found the<br/>data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the<br/>worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE<br/>802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).<br/>Only the data of worst case is recorded in the report.

### 7.7.2 Test Setup Diagram







Report No.: KSEM200800098001 Page: 51 of 78

## 7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

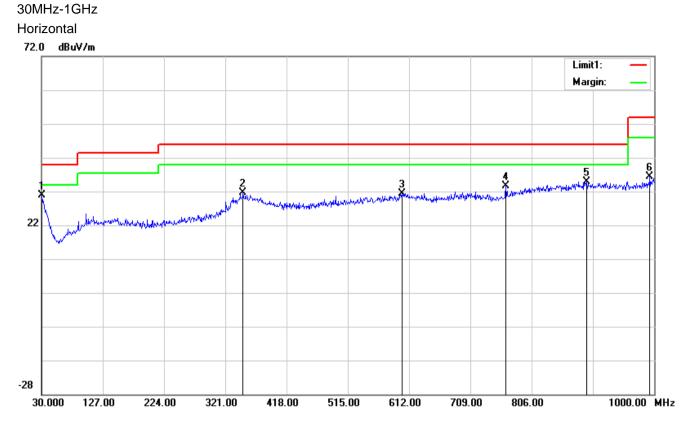
j. Repeat above procedures until all frequencies measured was complete.

#### Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

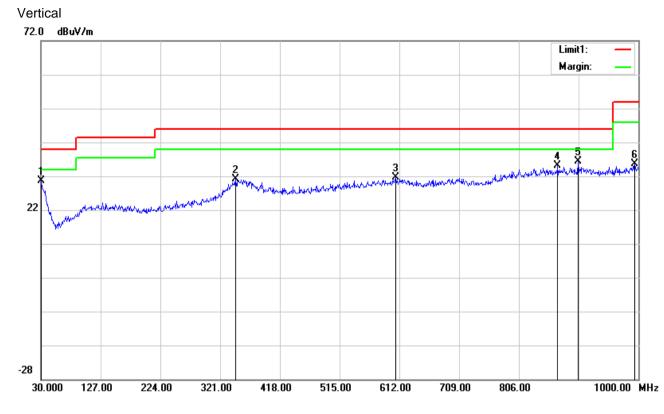
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300



Report No.: KSEM200800098001 Page: 52 of 78




No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.9700	5.77	25.09	30.86	40.00	-9.14	301	114	peak
2	349.1300	5.41	26.19	31.60	46.00	-14.40	301	290	peak
3	600.3600	5.51	25.95	31.46	46.00	-14.54	400	64	peak
4	765.2600	7.53	26.04	33.57	46.00	-12.43	201	0	peak
5	893.3000	6.08	28.90	34.98	46.00	-11.02	137	0	peak
6	993.2100	6.52	29.78	36.30	54.00	-17.70	339	0	peak

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300



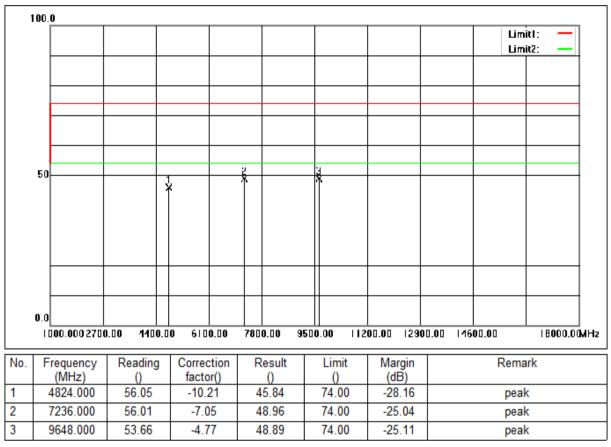
 Report No.:
 KSEM200800098001

 Page:
 53 of 78



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.0000	4.91	25.76	30.67	40.00	-9.33	400	347	peak
2	346.2200	5.30	25.84	31.14	46.00	-14.86	291	360	peak
3	606.1800	5.69	25.83	31.52	46.00	-14.48	100	165	peak
4	869.0500	6.42	28.67	35.09	46.00	-10.91	300	52	peak
5	902.0300	7.45	28.96	36.41	46.00	-9.59	100	325	peak
6	994.1800	5.74	29.81	35.55	54.00	-18.45	183	0	peak

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国 • 江苏 • 昆山市留学生创业园伟业路10号 邮编 215300




 Report No.:
 KSEM200800098001

 Page:
 54 of 78

#### Above 1GHz

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low





 Report No.:
 KSEM200800098001

 Page:
 55 of 78

1	00.(	0																					
																				imit imit			
	50					1		2			3	L											
											Ì	ζ											
	0.0																						
		100.0002700	0.00	140	0.0	0 610	10.00	780	0.00	950	0	.00	20	0.00	1290	0.00	146	00.00	]		1800	0.00	<b>/</b>  -
0.	F	requency (MHz)	F	Readin	g	Corre fact		F	Result ()			Limit ()		Mar (dE	gin 3)				Rei	mar	k		
	4	4824.000		59.93		-10.		4	19.72			74.00	1	-24.					pe	eak			_
	ī	7236.000		57.01		-7.	05	4	19.96			74.00	1	-24.	04				ре	eak			_
	9	9648.000		52.48		-4.	77	4	17.71			74.00	1	-26.	29				pe	eak			_

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low



 Report No.:
 KSEM200800098001

 Page:
 56 of 78

1	00.	D																				
																			imiti imita		_	
																			+			
														_					+			
	50				;	k		2 1			3	3										
	0.0																					
	10	00.0002700	).00	110	0.0	0 610	0.00	780	0.00	950	0.	00  12	00.00	1290	00.00	146	00.00			180	00.00	м⊦
0.	F	requency (MHz)	R	eadin ()	g	Correct facto		R	Result ()			Limit ()		rgin B)				Rer	marl	k		
	4	4874.000	!	57.58		-10.		4	17.57			74.00		6.43				ре	eak			
	1	7311.000	!	56.44		-6.9	)3	4	9.51			74.00	-24	.49				ре	eak			
	9	9748.000	4	49.68		-4.3	80	4	5.38			74.00	-28	8.62				ре	eak			

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:middle



 Report No.:
 KSEM200800098001

 Page:
 57 of 78

1	00.	0																				_
																				mitl: mit2:		
															_							-
															+							
	50							ł				,			+							1
	0.0																					
	10	100.0002700	0.00	110	0.00	0 610	0.00	780	0.00	950	0.	.00	200.0	0 12	900	.00	146	00.00			18000.0	0MHz
No.	F	requency (MHz)	Re	adino ()	9	Correct facto		F	lesult ()			Limit ()	N	/argin (dB)					Rem	nark		
1	4	4874.000	6	0.62		-10.	01	5	50.61			74.00		-23.39					pea	ak		
2	1	7311.000	5	5.66		-6.9	3	4	8.73			74.00		-25.27	'				pea	ak		
3		9748.000	5	0.98		-4.3	80	4	6.68			74.00		-27.32	2				pea	ak		

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:middle



 Report No.:
 KSEM200800098001

 Page:
 58 of 78

1	00.	D									_										_
																			nitl: nit2:	_	
	50							ŝ				3									
	50				ł			Î			Γ,	ĸ.									
								+											$\top$		l
	0.0												+						+		ł
		100.0002700	).00	110	0.00	610	0.00	780	0.00	950	0.0	 D0	200.0	0 129	300.00	146	500.00			8000.0	i Mł
D.	F	requency	Re	ading	,	Correc		R	Result		I	Limit	N	largin				Rem	ark		
_	4	(MHz) 4924.000	56	0 5.55	+	facto -9.8		4	0 6.73	+	7	<u>()</u> 74.00		(dB) 27.27	+			pea	ak		
_		7386.000		6.95	+	-6.8			50.15			74.00		23.85				pea			
	9	9848.000	53	3.26		-3.8	34	4	9.42		7	74.00	-	24.58				pea	ak		

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High



 Report No.:
 KSEM200800098001

 Page:
 59 of 78

1	<b>00</b> .	0															
															Limitl: Limit2:		
	50			*		2		3									ł
						Ŷ											
	0.0																
	IČ	100.0002700	).00 <u>11</u> 0	0.00 611	]0.00	7800.00	950	0.0	D   2	00.00	1290	0.00	1460	0.00		18000.00	MHz
No.	F	requency (MHz)	Reading	g Corre fact		Result		L	imit ()	Mar (dE	gin 3)			Re	mark		
1	4	4924.000	59.93	-9.		50.11	+	74	4.00	-23				р	eak		
2	1	7386.000	53.83	-6.	80	47.03		74	4.00	-26	.97			p	eak		-
3	(	9848.000	53.44	-3.	84	49.60		74	4.00	-24	.40			р	eak		

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High



Report No.: KSEM200800098001 Page: 60 of 78

1	<b>00</b> .	0																					
																				imit imit			
																				+		_	
															-					+		_	
	50				F,	K		2 A			E	<u> </u>			$\vdash$					+		_	
					'																		
					-			+							-					+		_	
								_												_		_	
	0.0																						
	10	100.0002700	).00	110	0.0	0 610	0.00	780	0.00	950	0.	.00  12	:00.0	0 12:	<b>30</b> 0.	00	146	00.00	]		1800	0.00	<b>i</b> Hz
No.	F	requency (MHz)	R	eadin ()	g	Corre facto		F	()			Limit ()	I	Margin (dB)					Rer	mar	k		
1	4	4824.000		56.48		-10.		4	16.27			74.00		-27.73					ре	eak			
2	1	7236.000		56.28		-7.(	)5	4	9.23			74.00		-24.77					pe	eak			
3		9648.000		54.19		-4.1	77	4	9.42			74.00		-24.58					pe	eak			

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low



Report No.: KSEM200800098001 Page: 61 of 78

1	00.	0																				
																			imit imit			
																			_			
																			+			
	50				1	r K		<u>}</u>			1								+			
	0.0																					
		100.0002700	0.00	110	0.0	0 610	0.00	780	0.00	950	0.	.00  12	00.00	129	00.00	146	00.00	]		180	00.00	MHz
No.	F	requency (MHz)	R	eading ()	g	Correct facto		R	lesult ()			Limit ()	Ma (d	rgin B)				Rei	mar	k		
1		4824.000	!	54.77		-10.3	21	4	4.56			74.00		9.44				pe	eak			
2		7236.000	!	56.85		-7.0	)5	4	9.80			74.00	-24	1.20				pe	eak			
3	9	9648.000	{	54.61		-4.7	7	4	9.84			74.00	-24	1.16				pe	eak			

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low



 Report No.:
 KSEM200800098001

 Page:
 62 of 78

1	I OO.	0																		
																	Lim Lim		_	
				_																
				+																
	50				1 *		ž													
				1																
	0.0																			
	1[	100.0002700	0.00 14	00.0	0 610	0.00	780	0.00	950	0.	00  12	00.00	1290	0.00	146	00.00		18	000.00	MHz
No.	F	requency (MHz)	Readi ()	ng	Correct facto		R	Result ()			Limit ()	Ma (d	rgin B)			F	Rema	ark		
1	4	4874.000	57.1	5	-10.	01	4	17.14			74.00	-26	6.86				pea	k		
2		7311.000	57.3	0	-6.9	93	5	50.37			74.00	-23	.63				pea	k		
3	9	9748.000	54.9	7	-4.3	30	5	50.67			74.00	-23	.33				pea	k		

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:middle

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300



 Report No.:
 KSEM200800098001

 Page:
 63 of 78

1	00.0	0																			
																			nitl: nit2:		
												+		_					-		
												+		+					+		
	50						2			3	ł			+							
	0.0																				
	10	100.0002700	).00 110	0.00	610	0.00	780	0.00	950	0.	00	200.	00	1290	0.00	146	00.00		16	3 <b>000.0</b> 0	MHz
No.	F	requency (MHz)	Reading ()	9	Correct facto		R	Result ()			Limit ()		Marg (dB	jin )			I	Rem	ark		
1	4	4874.000	60.37		-10.		5	0.36			74.00		-23.					pea	ık		
2	ī	7311.000	55.95		-6.9	3	4	9.02			74.00		-24.	98				pea	ik		
3	9	9748.000	50.85	$\neg$	-4.3	0	4	6.55			74.00	$\top$	-27.4	45				pea	k		

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:middle



Report No.: KSEM200800098001 Page: 64 of 78

1	00.	D																		
																	Lim Lim			
	50			- 1						Ž	j									
				Ì	(		Ŷ													
							_													
	0.0																			
		00.0002700	.00 110	0.00	610	0.00	780	0.00	950	0.0	00  12	00.00	1290	0.00	146	00.00			00.00	мHz
lo.	F	requency	Reading	)	Correc		R	Result		I	Limit	Ma (d	rgin			F	Rema	ark		
	4	(MHz) 4924.000	57.07	+	facto -9.8		4	17.25		7	<u>0</u> 74.00		<u>D)</u> 5.75				pea	k		
		7386.000	52.76	$\neg$	-6.8		4	5.96		7	74.00		.04				peal			
	9	9848.000	55.16		-3.8	34	5	51.32		7	74.00	-22	.68				pea	k		

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High



Report No.: KSEM200800098001 Page: 65 of 78

1	00.0	0																		
																	Limi Limi			
				+																
	50			1	ř		Ŷ				Į									
	0.0																			
		100.0002700	).00 11	00.0	0 610	0.00	780	0.00	950	0.0	10   12	:00.00	1290	0.00	146	00.00		181	000.00	MHz
No.	F	requency (MHz)	Readir ()	ng	Correct facto		R	lesult ()		l	_imit ()	Ma (d	rgin B)			R	lema	ırk		
1	4	4924.000	56.48	}	-9.8		4	6.66		7	4.00		.34				peak	K		
2	1	7386.000	54.21	I	-6.8	30	4	7.41		7	4.00	-26	.59				peak	¢		
3	9	9848.000	52.96	6	-3.8	34	4	9.12		7	4.00	-24	.88				peak	< .		

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High



Report No.: KSEM200800098001 Page: 66 of 78

1	00.9	D				-											_				_
																			nitl: nit2:	_	
	50			1	,		2			ş											
				1	n		2 X			ſ	•										
							_												-		
							_												-		
	0.0																				
	10	00.0002700	140 140	0.0	0 610	0.00	780	0.00	950	0.	00  12	:00.0	0 12:	<b>90</b> D	.00	146	00.00		II	3 <b>000.0</b> 0	MH:
lo.	F	requency (MHz)	Reading	9	Correct facto		R	lesult			Limit	N	/largin (dB)				F	Rema	ark		
	4	4824.000	57.61		-10.3		4	17.40	+		74.00		26.60	+				pea	k		
	1	7236.000	52.57		-7.0	)5	4	5.52			74.00	-	28.48					pea	k		
	9	9648.000	52.70		-4.7	7	4	7.93			74.00	-	26.07					pea	k		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low



Report No.: KSEM200800098001 Page: 67 of 78

1	00.	0																		
																		imit l imit2		
																				-
	50			1	,		*			J										1
				1	•					ľ	•									
							+			╟										1
										$\parallel$								_		-
	0.0																			
	10	00.0002700	.00 440	0.0	0 610	0.00	780	0.00	950	0.	.00  12	00.00	129	00.00	146	500.00			18000.0	0MHz
No.	F	requency	Reading	9	Correc		R	lesult			Limit	Ma	argin				Ren	nark	(	
1		(MHz) 4824.000	58.73		facto -10.3		4	0	+		74.00	-	dB) 5.48	+			pe	ak		
2		7236.000	59.16		-7.0			52.11	-		74.00		1.89	+			-	ak		
3		9648.000	53.58		-4.7			8.81		_	74.00		5.19	+				ak		

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low



 Report No.:
 KSEM200800098001

 Page:
 68 of 78

1	00.	0		-		_										_				_
																		nitl: nit2:	Ξ	
	50			ł	-		<u>ک</u>			Š	,									
							_													
	0.0																			
	10	100.000 2700	.00 110	0.00	) 610	0.00	780	0.00	950(	0.	00   2	00.00	1290	0.00	146	00.00			3000.00	мн
0.	F	requency	Reading	9	Correc		R	lesult	Τ		Limit	Mar	gin				Rem	ark		
		(MHz)	()	_	facto			0	_	_	0	(dE								
		4874.000	60.11		-10.			50.10	_		74.00		.90				pea			
		7311.000	56.57		-6.9			9.64		_	74.00		.36				pea			
	9	9748.000	54.77		-4.3	30	5	50.47			74.00	-23	.53				pea	ık		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle



Report No.: KSEM200800098001 Page: 69 of 78

1	00.9	D																		_
																		nitl: nit2:	Ξ	
																				-
																				1
							,													
	50			ł	:		÷.			1	Į									1
	0.0																			
	10	00.0002700	).00 <b>11</b> 0)	0.00	) 610	0.00	<b>78</b> 0	0.00	950(	0.	00  12	00.00	1290	0.00	146	00.00		I	8000.0	ΟMH:
0.	F	requency (MHz)	Reading ()	9	Correct facto		R	lesult ()			Limit ()	Ma (d	rgin B)			l	Rem	nark		
	4	4874.000	57.29		-10.		4	7.28			74.00		6.72				pea	ak		
	7	7311.000	57.26		-6.9	)3	5	50.33			74.00	-23	3.67				pea	ak		
	9	9748.000	53.30		-4.3	30	4	9.00			74.00	-25	5.00				pea	ak		

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle



 Report No.:
 KSEM200800098001

 Page:
 70 of 78

1	00.	0																			
																		Lim Lim			
																				_	
	50				¥			ž			3	<u>}</u>								_	
								+												-	
	0.0							+													
		100.000 2700	).00	110	0.00	610	0.00	780	0.00	950	<b>0</b> .0	)0	200.00	129	00.00	146	00.00		18	000.00	MHz
No.	F	requency (MHz)	Rea	ading ()	9	Correct facto		R	lesult		l	Limit	Ma	argin IB)			F	Rema	ırk		
1	4	4824.000	61	.10		-10.3		5	0.89		7	4.00		3.11	1			peal	<b>K</b>		
2	1	7386.000	53	.05		-6.8	0	4	6.25		7	4.00	-2	7.75	1			peal	<b>(</b>		
3	(	9848.000	51	.06		-3.8	4	4	7.22		7	4.00	-2	6.78	1			peal	<b>(</b>		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High



 Report No.:
 KSEM200800098001

 Page:
 71 of 78

1	00.0	D					-		_		_						_				_
																			nitl: nit2:	_	
	50				;	ř		ł			ż	s K									
	0.0																				
		100.0002700	0.00	110	0.00	0 610	0.00	780	0.00	950	0.0	00  12	:00.00	1290	0.00	146	00.00		I	8000.0	мн
0.	F	requency (MHz)	R	eading ()	g	Correct facto		F	Result ()		I	Limit ()		rgin B)				Rem	ark		
	4	1924.000	5	5.55		-9.8	32	4	15.73		1	74.00	-28	3.27				pea	ık		
	7	7386.000	5	6.47		-6.8	80	4	19.67		7	74.00	-24	.33				pea	ık		
	9	9848.000	5	60.23		-3.8	34	4	16.39		7	74.00	-27	7.61				pea	k		

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High



 Report No.:
 KSEM200800098001

 Page:
 72 of 78

1	00.0	D																	
																	Limi Limi		
																			4
													_						+
	50			Ţ			2 1			3									-
				Î															
																			1
	0.0																		1
	10	00.000 2700	.00 440	0.00	) 610	0.00	780	0.00	950	0.00	112	00.00	1290	0.00	146	00.00		18 <b>0</b> 00.	OOMHz
No.	F	requency (MHz)	Reading	3	Correct facto		R	Result	T	Limi	t	Mar (dE	gin			R	ema	rk	
1	4	1844.000	56.68		-10.1		4	46.55	+	74.0	0	-27.					peak	:	
2	1	7266.000	56.51		-7.0	0	4	9.51		74.0	0	-24.	.49				peak		
3	9	9688.000	54.13		-4.5	8	4	9.55		74.0	0	-24	45				peak		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low



 Report No.:
 KSEM200800098001

 Page:
 73 of 78

1	00.	D																			
																			nitl: nit2:	_	
																			-		-
														_							-
											3										
	50				}	K		¥			*										
								-											-		-
	0.0																				-
		100.000 2700	0.00	110	0.0	0 610	0.00	780	0.00	950	0.00	112	00.00	1290	0.00	146	00.00			8000.00	j JMHz
No.	F	requency (MHz)	R	eadin ()	g	Correct facto		R	lesult ()		Limi ()	it	Mar (dE	gin 3)				Rem	ark		
1	4	4844.000	1	55.10		-10.		4	4.97		74.0	0	-29	.03				pea	ık		
2	1	7266.000	!	53. <b>0</b> 8		-7.0	00	4	6.08		74.0	0	-27	.92				pea	ık		
3	9	9688.000	1	54.15		-4.5	68	4	9.57		74.0	0	-24	.43				pea	ık		

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low



 Report No.:
 KSEM200800098001

 Page:
 74 of 78

1	00.0	0																			
																			nitl: nit2:	_	
																					1
																					-
												_							-		+
	50			1			ž			3	3	+									1
							ľ														
							_					+		_							+
							+					+		+					+		+
	0.0 10	100.000 2700	.00 110	0.00	610	0.00	780	0.00	950	<b>0</b> .	.00	120	0.00	1290	0.00	146	 00.00			8000.0	_ 0MHz
No.	F	requency (MHz)	Reading	,	Correct facto		R	Result			Limit		Mar (dE	gin				Rem	ark		
1	4	4874.000	59.38	+	-10.		4	0 19.37	+		74.00	+	-24.					pea	ak		
2	1	7311.000	52.18	$\neg$	-6.9	)3	4	5.25	+		74.00	+	-28					pea			
3	9	9748.000	53.66		-4.3	30	4	9.36	+		74.00	╈	-24.	64				pea	ak		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:middle



 Report No.:
 KSEM200800098001

 Page:
 75 of 78

1	00.0	0																
																Limi Limi		
																		4
												_						_
	50			*		¥			ł			_						-
				_		-			+			_						-
				_		+			+			+						-
	0.0 10	100.000 2700	.00 1100	0.00 610	0.00	780	 0.00 9	9500	).0	0  12	00.00	1290	0.00	146	00.00		1800	0.00MH
No.	F	requency (MHz)	Reading	Corre		R	lesult		L	imit ()	Mai (dl	gin 3)			R	ema	rk	
1	4	4874.000	59.96	-10.		4	9.95	$\top$	7	4.00		.05				peak	(	
2	1	7311.000	56.73	-6.	93	4	9.80	1	7	4.00	-24	.20				peak	(	
3	9	9748.000	52.10	-4.3	30	4	7.80		7	4.00	-26	.20				peak	(	

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:middle



 Report No.:
 KSEM200800098001

 Page:
 76 of 78

1	00.0	0																	
																Lim Lim			
												_						_	
	50			ł		2 Ж			Ϋ́										
				×		Ť.													
					<b> </b>														
	ł				+	+						$\rightarrow$							
	0.0																		
	10	00.0002700	).00 <u>44</u> 0)	0.00 611	0.00	780	0.00	950	0.00	112	00.00	1290	0.00	146	00.00		180	000.00	MH
lo.	F	requency	Reading			F	lesult		Limi	t	Mar	gin			F	Rema	ark		
		(MHz)	0	fact			0		0		(dE								
		1904.000	58.38	-9.			48.49		74.0		-25.					pea			
	1	7356.000	55.38	-6.	85	4	48.53		74.0	0	-25.	47				pea	k		
	9	9808.000	55.18	-4.	02	5	51.16		74.0	0	-22.	84				pea	k		

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High



Report No.: KSEM200800098001 77 of 78 Page:

1	00.0																		
																	nitl: nit2:		
	50						2			3									
	50			:	1×		Ť												
	F												╈						
	0.0												1						
		0.0002700	0.00 1	100.0	0 610	0.00	780	0.00	950	0.00	112	00.00 li	2900	.00 1	1600.0	0	18	000.00	MHz
No.	Fre	quency	Read	ing	Correct facto		R	Result	Τ	Limit	t	Margi (dB)	n			Rem	ark		
1		0Hz) 04.000	55.2	4	-9.8		4	U 15.35	+	74.00	)	-28.6	5			pea	ak		
2		56.000	55.4		-6.8			8.63		74.00		-25.3				pea			
3	98	08.000	54.5	8	-4.0	2	5	60.56		74.00	)	-23.4	4			pea			

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High



 Report No.:
 KSEM200800098001

 Page:
 78 of 78

# 8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

# 9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300