

FCC SAR TEST REPORT

FCC ID	: RF41539B
Equipment	: Handheld Terminal
Brand Name	: KEYENCE
Model Name	: DX-A600
Applicant	: KEYENCE CORPORATION 1-3-14 HIGASHI-NAKAJIMA, HIGASHI-YODOGAWA-KU, OSAKA, JAPAN
Manufacturer	: KEYENCE CORPORATION 1-3-14 HIGASHI-NAKAJIMA, HIGASHI-YODOGAWA-KU, OSAKA, JAPAN
Standard	: FCC 47 CFR Part 2 (2.1093)

The product was received on Oct. 04, 2023 and testing was started from Oct. 05, 2023 and completed on Oct. 05, 2023. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Cua Unan

Approved by: Cona Huang / Deputy Manager

Sporton International Inc. EMC & Wireless Communications Laboratory No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan

Table of Contents

1. Statement of Compliance	
2. Guidance Applied	4
3. Equipment Under Test (EUT) Information	
3.1 General Information	5
3.2 General LTE SAR Test and Reporting Considerations	6
4. RF Exposure Limits	7
4.1 Uncontrolled Environment	7
4.2 Controlled Environment	
5. Specific Absorption Rate (SAR)	
5.1 Introduction	
5.2 SAR Definition	
6. System Description and Setup	
6.1 Test Site Location	
6.2 E-Field Probe	
6.3 Data Acquisition Electronics (DAE)	
6.4 Phantom	10
6.5 Device Holder	12
7. Measurement Procedures	
7.1 Spatial Peak SAR Evaluation 7.2 Power Reference Measurement	13
7.3 Area Scan	
7.4 Zoom Scan	
7.5 Volume Scan Procedures	15
7.6 Power Drift Monitoring.	15
8. Test Equipment List	
9. System Verification	
9.1 Tissue Verification	
9.2 System Performance Check Results	
10. RF Exposure Positions	
10.1 Ear and handset reference point	
10.2 Definition of the cheek position	
10.3 Definition of the tilt position	20
10.4 Body Worn Accessory	20
10.5 Product Specific Exposure	21
10.6 Wireless Router	21
11. Antenna Location	22
12. SAR Test Results	23
12.1 Head SAR	23
12.2 Hotspot SAR	
12.3 Repeated SAR Measurement	
13. Simultaneous Transmission Analysis	
13.1 Head Exposure Conditions	
13.2 Hotspot Exposure Conditions	
13.3 Body-Worn Accessory Exposure Conditions	
13.4 Product Specific Exposure Conditions	27
14. Uncertainty Assessment	
15. References	
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	
Appendix D. Test Setup Filotos	

History of this test report

Report No.	Version	Description	Issued Date
FA182304-02	01	Initial issue of report	Nov. 02, 2023

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for KEYENCE CORPORATION, Handheld Terminal, DX-A600, are as follows.

	Equipment Frequency Class Band		Highest SA	Highest Simultaneous	
			Head (Separation 0mm)	Hotspot (Separation 10mm)	Transmission 1g SAR (W/kg)
			1g SAR	: (W/kg)	IS SAIL (W/Kg)
	WCDMA	WCDMA II		1.18	
Licensed	VVCDIVIA	WCDMA V	0.39		1.18
Licenseu	LTE	LTE Band 2		1.09	1.10
	LIC	LTE Band 5	0.17		
	Date of Testing	j :		2023/10/5	

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No.TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Daisy Peng</u>

2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation.

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01
- FCC KDB 941225 D07 UMPC Mini Tablet v01r02

3. Equipment Under Test (EUT) Information

3.1 General Information

	Product Feature & Specification
Equipment Name	Handheld Terminal
Brand Name	KEYENCE
Model Name	DX-A600
FCC ID	RF41539B
Wireless Technology and Frequency Range	WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 5: 824 MHz ~ 849 MHz UTE Band 4: 2555 MHz ~ 2655 MHz WLAN 2.4 GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5.2 GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.3 GHz Band: 5250 MHz ~ 5350 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC : 13.56 MHz
Mode	RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink) LTE: QPSK, 16QAM WLAN: 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC: ASK
HW Version	R002
SW Version(Wi-Fi & BT)	2020-12-18-161203
SW Version(WWAN)	MOLY.LR12A.R3.MP.V163.5
SW Version(NFC MW)	NFC_AR_00_18c0_10.04.00
EUT Stage	Identical Prototype
Remark: 1. Variant report includes veri	fication worst case found in original report, Sporton SAR Report, Report No. FA182304, the other RF

 Variant report includes verification worst case found in original report, Sporton SAR Report, Report No. FA182304, the other RF Exposure was refer to original SAR Report, Report No. FA182304 and additional evaluation Sim-Tx analysis in section 13.

3.2 General LTE SAR Test and Reporting Considerations

			Sur	nmarizor	1 nocos	eary it	ome addr	assad in K	DB 0/12	25 D05 v02r	05		
FC			Jui		RF4153		ems addr	esseu in K	00 3412	25 005 1021	00		
	uipment Na	me			Handheld Terminal								
Operating Frequency Range of each LTE				LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz									
tra	Insmission b	band					24 MHz ~ 2555 MHz	849 MHZ : ~ 2655 MH	lz				
Channel Bandwidth				1	LTE Bar	nd 4:1.4	4MHz, 3M		10MHz, 1	15MHz, 20M 15MHz, 20M			
								MHz, 15MH	z, 20MH:	Z			
-	link modulat E Voice / Da				QPSK / Voice ar								
		ata require	ements					mum Powe	r Reduc	tion (MPR) f	or Power C	lass 1,	2 and 3
				[Modu	lation				ansmission t			MPR (dB
							1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
1.7		nononthe	huilt in hud	ooian	QP	SK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
LI	E MPR perr	nanentiy	built-in by de	esign	16 Q		≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤1
					16 Q		> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
					64 Q		≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
					64 Q		> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
					256 0	QAM		-		≥ 1			≤ 5
LTE A-MPR Spectrum plots for RB configuration			ر ۱ ۱	A-MPR (<u>Maximu</u> A prope measure	during um TTI) erly co ement;	SAR tes	ting and th base stat spectrum p	ion simu	AR tests wa	as transmit	ting on the SA	S_01 to disat all TTI fram R and pow	
			Transm						mencies	in each I TE	band		
			Transmission (H, M, L) channel numbers and frequencies in each LTE band										
	Bandwidth	Bandwidth 1.4 MHz Bandwidth 3 MHz					LTE Ba		lacitores				
		1.4 MHz	Bandwid	th 3 MHz	Bar	ndwidth	LTE Ba n 5 MHz				Ith 15 MHz	Band	lwidth 20 MH:
-	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch	. #	n 5 MHz Freq. (MHz)	and 2 Bandwidt Ch. #	h 10 MHz Freq. (MHz)	z Bandwid Ch. #	lth 15 MHz Freq. (MHz)	Ch.	# Freq. (MHz)
L	18607	Freq. (MHz) 1850.7	Ch. # 18615	Freq. (MHz) 1851.5	Ch	. # 625	n 5 MHz Freq. (MHz) 1852.5	and 2 Bandwidt Ch. # 18650	h 10 MHz Freq. (MHz) 1855	z Bandwid Ch. # 18675	lth 15 MHz Freq. (MHz) 1857.5	Ch.	# Freq. (MHz) 00 1860
L M H	18607 18900	Freq. (MHz) 1850.7 1880	Ch. # 18615 18900	Freq. (MHz) 1851.5 1880	Ch 186	. # 625 900	n 5 MHz Freq. (MHz) 1852.5 1880	and 2 Bandwidt Ch. # 18650 18900	h 10 MH; Freq. (MHz) 1855 1880	z Bandwid Ch. # 18675 18900	Ith 15 MHz Freq. (MHz) 1857.5 1880	Ch. 187 189	# Freq. (MHz) 00 1860 00 1880
L M H	18607	Freq. (MHz) 1850.7	Ch. # 18615	Freq. (MHz) 1851.5	Ch 186	. # 625 900	n 5 MHz Freq. (MHz) 1852.5	and 2 Bandwidt Ch. # 18650 18900 19150	h 10 MHz Freq. (MHz) 1855	z Bandwid Ch. # 18675	lth 15 MHz Freq. (MHz) 1857.5	Ch.	# Freq. (MHz) 00 1860 00 1880
_	18607 18900	Freq. (MHz) 1850.7 1880 1909.3	Ch. # 18615 18900 19185	Freq. (MHz) 1851.5 1880	Ch 186 189 191	. # 625 900 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5	and 2 Bandwidt Ch. # 18650 18900 19150	h 10 MH; Freq. (MHz) 1855 1880 1905	z Bandwid Ch. # 18675 18900 19125	Ith 15 MHz Freq. (MHz) 1857.5 1880	Ch. 187 189 191	# Freq. (MHz) 00 1860 00 1880
H	18607 18900 19193 Bandwidth Ch. #	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz)	Ch. # 18615 18900 19185 Bandwid Ch. #	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz)	Ch 186 189 191 Bar Ch	. # 625 000 175 0 ndwidth . #	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz)	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. #	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz)	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. #	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 tth 15 MHz Freq. (MHz)	Ch. 187 189 191 Banc Ch.	# Freq. (MHz) 00 1860 00 1880 00 1900 Hwidth 20 MH: # Freq. (MHz)
H	18607 18900 19193 Bandwidth Ch. # 19957	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7	Ch. # 18615 18900 19185 Bandwid Ch. # 19965	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5	Ch 186 189 191 Bar Ch 199	. # 325 900 175 ndwidth . # 975	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz) 1712.5	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025	th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5	Ch. 187 189 191 Banc Ch. 200	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MHz dwidth 20 MHz 50 1720
H L M	18607 18900 19193 Bandwidth Ch. # 19957 20175	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5	Ch 186 189 191 Bar Ch 199 201	. # 225 200 175 175 175 175 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1732.5	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715 1732.5	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175	th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5	Ch. 187 189 191 Banc Ch. 200 201	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MH:
H L M	18607 18900 19193 Bandwidth Ch. # 19957	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7	Ch. # 18615 18900 19185 Bandwid Ch. # 19965	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5	Ch 186 189 191 Bar Ch 199 201	. # 225 200 175 175 175 175 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025	th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5	Ch. 187 189 191 Banc Ch. 200	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MH:
H L M	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5	Ch 186 189 191 Bar Ch 199 201 203	. # 325 300 175 adwidth . # 375 375	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715 1732.5 1750	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175 20325	th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5	Ch. 187 189 191 Banc Ch. 200 201 201	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MHz dwidth 20 MHz 50 1720 75 1732.5 00 1745
H L M	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5	Ch 186 189 191 Bar Ch 199 201 203 Bandwidt	. # 225 200 175 175 175 175 175 175 175 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba Hz	and 2 Bandwidti Ch. # 18650 18900 19150 and 4 Bandwidti Ch. # 20000 20175 20350 and 5 Ban	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715 1732.5 1750	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175 20325	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba	Ch. 187/ 189/ 191/ Banc Ch. 2000 2011 2030	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MHz HHz 50 1720 75 1732.5 00 1745
H L M H	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Band Ch. #	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz)	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 E Ch.	Ch 186 189 191 Bar Ch 199 201 203 Bandwidt	. # 225 2 200 2 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1752.5 LTE Ba Hz q. (MHz)	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. #	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715 1732.5 1750 ndwidth 5	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175 20325	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 tth 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch.	Ch. 187/ 189/ 1910 Banc Ch. 2000 2011 2030 Indwidth	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MH: Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz)
H L H	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 20393 Band Ch. # 20407	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 E Ch. 204	Ch 186 189 191 Bar Ch 199 201 203 Bandwidt # 15	. # 325 900 1 175 9 175 9 1	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba Hz A. (MHz) 125.5	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425	h 10 MH; Freq. (MHz) 1855 1880 1905 h 10 MH; Freq. (MHz) 1715 1732.5 1750 ndwidth 5	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 20175 20325 5 MHz Freq. (MHz) 826.5	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 tth 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ andwidth # 50	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MHz # Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 829
H L M L L	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 20393 Eand Ch. # 20407 20525	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7 836.5	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 1753.5 E Ch. 204 205	Ch 186 189 191 Bar Ch 199 201 203 3andwidt # 15 25	. # 325 300 175 175 375 375 475 375 575 575 575 575 575 575 5	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba Hz (MHz) 25.5 36.5	and 2 Bandwidt Ch. # 18650 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525	h 10 MH: Freq. (MHz) 1855 1880 1905 h 10 MH: Freq. (MHz) 1715 1732.5 1750 ndwidth 5	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 20175 20325 5 MHz Freq. (MHz) 826.5 836.5	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 tth 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045 2052	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 203/ 100/ 203/ 20	# Freq. (MHz) 00 1860 00 1880 00 1900 Jwidth 20 MHz Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 836.5
H L M L L	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 20393 Band Ch. # 20407	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 E Ch. 204	Ch 186 189 191 Bar Ch 199 201 203 3andwidt # 15 25	. # 325 300 175 175 375 375 475 375 575 575 575 575 575 575 5	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1732.5 LTE Ba 1752.5 LTE Ba 	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525 20525 20625	h 10 MH: Freq. (MHz) 1855 1880 1905 h 10 MH: Freq. (MHz) 1715 1732.5 1750 ndwidth 5	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 20175 20325 5 MHz Freq. (MHz) 826.5	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 tth 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 203/ 100/ 203/ 20	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MHz # Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 829
H L M H	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Ch. # 20393 Ch. # 20407 20525 20643	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4 Fre	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7 836.5 848.3	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 E Ch. 204 205 206	Ch 186 189 191 Bar Ch 199 201 203 Bandwidt # 15 25 35	. # 325 300 175 175 375 375 4 75 375 4 75 375 4 75 8 75 8 8 8 8 8 8 8	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba 447.5 LTE Ba	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525 20525 20525 20525 20525	h 10 MH2 Freq. (MH2) 1855 1880 1905 h 10 MH2 Freq. (MH2) 1715 1732.5 1750 ndwidth 5 i i i i	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175 20325 5 MHz Freq. (MHz) 826.5 836.5 846.5	Ith 15 MHz Freq. (MHz) 1857.5 1880 1902.5 Ith 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045 2052 2060	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 20	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MH: Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 836.5 844
H L M H	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Ch. # 20393 Ch. # 20407 20525 20643	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7 836.5 848.3	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 E Ch. 204 205 206	Ch 186 189 191 Bar Ch 199 201 203 3andwidt # 15 25	. # 325 300 175 175 375 375 4 75 375 4 75 375 4 75 8 75 8 8 8 8 8 8 8	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba 447.5 LTE Ba	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525 20525 20525 20525 20525	h 10 MH: Freq. (MHz) 1855 1880 1905 h 10 MH: Freq. (MHz) 1715 1732.5 1750 ndwidth 5	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175 20325 5 MHz Freq. (MHz) 826.5 836.5 846.5	Ith 15 MHz Freq. (MHz) 1857.5 1880 1902.5 Ith 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045 2052 2060	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 20	# Freq. (MHz) 00 1860 00 1880 00 1900 Jwidth 20 MHz Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 836.5
H L H	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Ch. # 20393 Ch. # 20407 20525 20643	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4 Free width 1.4	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7 836.5 848.3	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 E Ch. 204 205 206	Ch 189 191 Bar Ch 199 201 203 Bandwidt # 15 25 35 andwidtt	. # 525 500 175 175 175 175 175 175 175 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba 447.5 LTE Ba	and 2 Bandwidt Ch. # 18650 18900 19150 and 4 Bandwidt Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525 20525 20525 20525 20525	h 10 MH2 Freq. (MH2) 1855 1880 1905 h 10 MH2 Freq. (MH2) 1715 1732.5 1750 ndwidth 5 5 5 6	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 5 20175 20325 5 MHz Freq. (MHz) 826.5 836.5 846.5	Ith 15 MHz Freq. (MHz) 1857.5 1880 1902.5 Ith 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045 2052 2060	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 1203/	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MH: Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 836.5 844
H L M H	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Ch. # 20393 Ch. # 20407 20525 20643	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4 Fre dwidth 5 M	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7 836.5 848.3 WHz	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 1753.5 E Ch. 204 205 206	Ch 186 189 191 Bar Ch 199 201 203 Bandwidtt # 15 25 35 andwidtt #	. # 225 200 175 175 175 175 175 175 175 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba n 5 MHz Freq. (MHz) 1712.5 1732.5 1752.5 LTE Ba Hz Hz Hz	and 2 Bandwidti Ch. # 18650 18900 19150 and 4 Bandwidti Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525 20625 nd 41 Ban	h 10 MH2 Freq. (MH2) 1855 1880 1905 h 10 MH2 1705 1732.5 1750 1732.5 1750 ndwidth 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 20175 20325 5 MHz Freq. (MHz) 826.5 836.5 846.5	th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch. 2045 2052 2060	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 203/ 100/ 10	# [req. (MHz) 00 1860 00 1880 00 1900 4width 20 MH2 # Freq. (MHz) 50 1720 75 1732.5 00 1745 50 1745 50 1745 50 1745 829 836.5 844 20 MHz
	18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 20393 Ch. # 20407 20525 20643 20643	Freq. (MHz) 1850.7 1880 1909.3 1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3 width 1.4 Fre dwidth 5 M	Ch. # 18615 18900 19185 Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz) 824.7 836.5 848.3 MHz eq. (MHz)	Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 1753.5 E Ch. 204 205 206 Ba Ch.	Ch 186 189 191 Bar Ch 199 201 203 Bandwidtt # 15 25 35 andwidtt # 90	. # 325 300 175 175 175 175 175 175 175 175	n 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Ba 5 MHz Freq. (MHz) 1712.5 1752.5 LTE Ba Hz LTE Ba Hz 1 (MHz)	and 2 Bandwidti Ch. # 18650 18900 19150 and 4 Bandwidti Ch. # 20000 20175 20350 and 5 Ban Ch. # 20425 20525 20625 2075 2075 2075 2075 2075 2075 2075 20	h 10 MH2 Freq. (MH2) 1855 1880 1905 h 10 MH2 Freq. (MH2) 1715 1732.5 1750 hdwidth 5 Freq. (MH2) 1715 1732.5 1750	z Bandwid Ch. # 18675 18900 19125 z Bandwid Ch. # 20025 20175 20325 5 MHz Freq. (MHz) 826.5 836.5 846.5	tth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 tth 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 8a Ch. 2045 2052 2060 Ba Ch.	Ch. 187/ 189/ 191/ Banc Ch. 200/ 201/ 203/ 203/ 100/ 10	# Freq. (MHz) 00 1860 00 1880 00 1900 dwidth 20 MHz Freq. (MHz) 50 1720 75 1732.5 00 1745 10 MHz Freq. (MHz) 829 836.5 844 20 MHz Freq. (MHz) Freq. (MHz)

4. <u>RF Exposure Limits</u>

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

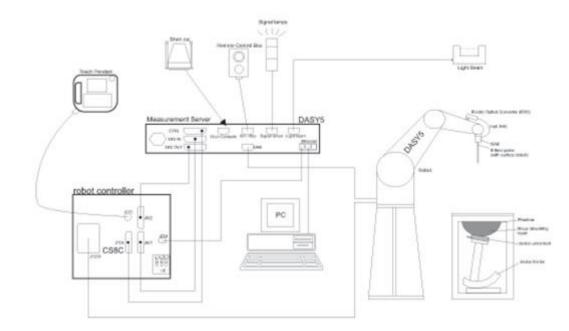
5. Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:


$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.1 Test Site Location

The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No.TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	EMC & Wireless Comr	N	ensan Laborato	ry	
Test Site Location	TW [/] No.52, Huaya 1st Rd., City 333	TW3786 No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan			
	SAR01-HY	SAR03-HY	SAR08-HY	SAR09-HY	SAR15-HY
Test Site No.	SAR04-HY	SAR05-HY	SAR11-HY	SAR12-HY	
	SAR06-HY	SAR10-HY	SAR13-HY	SAR14-HY	

6.2 <u>E-Field Probe</u>

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – 4 GHz; Linearity: ±0.2 dB (30 MHz – 4 GHz)	
Directivity	\pm 0.2 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g – >100 mW/g; Linearity: ±0.2 dB	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm	

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)	and the second second
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

6.3 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

6.4 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7.5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report No. : FA182304-02

6.5 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

7. <u>Measurement Procedures</u>

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

7.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

7.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

7.3 <u>Area Scan</u>

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

7.4 <u>Zoom Scan</u>

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	plution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	∆z _{Zoom} (n>1): between subsequent points	≤1.5·∆z	Zoom(n-1)
Minimum zoom scan volume	X V Z		≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

7.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

8. <u>Test Equipment List</u>

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration	
Manufacturer	Name of Equipment	i ype/wodei	Serial Number	Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit ⁽²⁾	D835V2	4d060	Mar. 24, 2022	Mar. 22, 2024	
SPEAG	1900MHz System Validation Kit ⁽²⁾	D1900V2	5d041	Aug. 19, 2021	Aug. 16, 2024	
SPEAG	Data Acquisition Electronics	DAE4	1512	Mar. 20, 2023	Mar. 19, 2024	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7439	Feb. 21, 2023	Feb. 20, 2024	
RCPTWN	Thermometer	HTC-1	TM685-1	Mar. 21, 2023	Mar. 20, 2024	
Anritsu	Radio Communication Analyzer	MT8821C	6201341950	Oct. 31, 2022	Oct. 30, 2023	
SPEAG	Device Holder	N/A	N/A	N/A	N/A	
Anritsu	Signal Generator	MG3710A	6201502524	Sep. 27, 2023	Sep. 26, 2024	
Keysight	ENA Network Analyzer	E5071C	MY46316648	Sep. 07, 2023	Sep. 06, 2024	
SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Sep. 19, 2023	Sep. 18, 2024	
LINE SEIKI	Digital Thermometer	DTM3000-spezial	3690	Aug. 09, 2023	Aug. 08, 2024	
Anritsu	Power Meter	ML2495A	1419002	Aug. 17, 2023	Aug. 16, 2024	
Anritsu	Power Sensor	MA2411B	1911176	Aug. 18, 2023	Aug. 17, 2024	
Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jul. 10, 2023	Jul. 09, 2024	
Mini-Circuits	Power Amplifier	ZVE-8G+	479102029	Sep. 14, 2023	Sep. 13, 2024	
ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1	
Warison	Directional Coupler	WCOU-10-50S-10	WR889BMC4B1	No	te 1	
Woken	Attenuator 1	WK0602-XX	N/A	Note 1		
PE	Attenuator 2	PE7005-10	N/A	No	te 1	
PE	Attenuator 3	PE7005- 3	N/A	No	te 1	

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.</p>

9. System Verification

9.1 Tissue Verification

The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	22.5	0.918	41.819	0.90	41.50	2.00	0.77	±5	2023/10/5
1900	22.5	1.385	40.252	1.40	40.00	-1.07	0.63	±5	2023/10/5

9.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)	Test Site
2023/10/5	835	50	D835V2-4d060	EX3DV4 - SN7439	DAE4 Sn1512	0.484	9.730	9.68	-0.51	SAR-05
2023/10/5	1900	50	D1900V2-5d041	EX3DV4 - SN7439	DAE4 Sn1512	2.010	40.600	40.2	-0.99	SAR-05

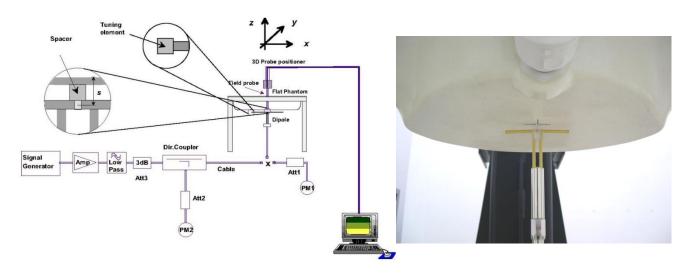


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

10. <u>RF Exposure Positions</u>

10.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

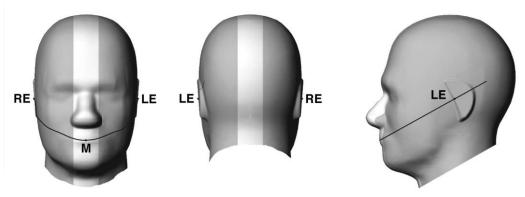


Fig 9.1.1 Front, back, and side views of SAM twin phantom

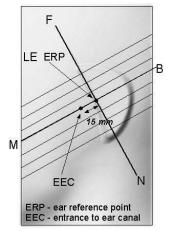


Fig 9.1.2 Close-up side view of phantom showing the ear region.

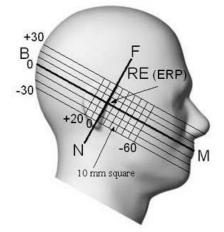


Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

10.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the 1. cover. If the handset can transmit with the cover closed, both configurations must be tested.
- Define two imaginary lines on the handset-the vertical centerline and the horizontal line. The vertical centerline 2. passes through two points on the front side of the handset-the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line 3. passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches 4 the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and 7 LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

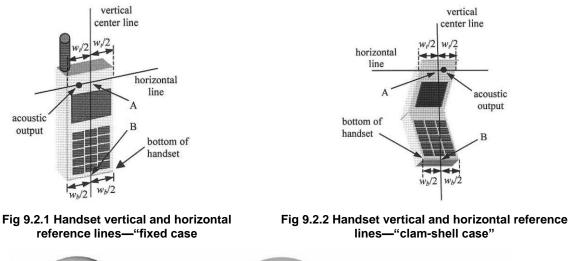


Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

acoustic output

10.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

10.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.

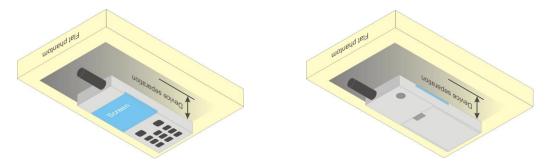


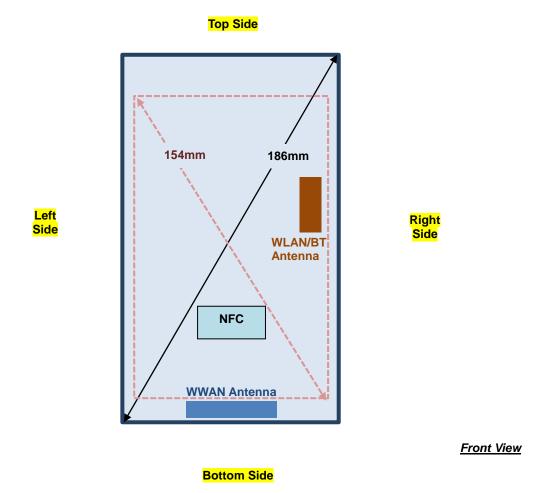
Fig 9.4 Body Worn Position

10.5 Product Specific Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.

2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.


10.6 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

11. <u>Antenna Location</u>

12. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

12.1 <u>Head SAR</u>

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	4182	836.4	23.53	24.00	1.114	-0.06	0.354	0.394

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
02	LTE Band 5	10M	QPSK	1	25	Left Cheek	0mm	20525	836.5	23.05	23.50	1.109	-0.05	0.153	0.170

12.2 <u>Hotspot SAR</u>

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9262	1852.4	19.37	19.50	1.030	0.01	1.140	1.175
	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9400	1880	19.29	19.50	1.050	0.14	1.050	1.102
	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9538	1907.6	19.40	19.50	1.023	0.06	0.986	1.009

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
04	LTE Band 2	20M	QPSK	1	49	Bottom Side	10mm	18700	1860	18.35	19.50	1.303	-0.1	0.835	1.088
	LTE Band 2	20M	QPSK	1	49	Bottom Side	10mm	18900	1880	18.39	19.50	1.291	-0.18	0.821	1.060
	LTE Band 2	20M	QPSK	1	49	Bottom Side	10mm	19100	1900	18.46	19.50	1.271	0.16	0.795	1.010

12.3 Repeated SAR Measurement

General Note:

No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9262	1852.4	19.37	19.50	1.030	0.01	1.140	-	1.175
2nd	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9262	1852.4	19.37	19.50	1.030	-0.02	1.130	1.01	1.164
1st	LTE Band 2	20M_QPSK_1_49	Bottom Side	10mm	18700	1860	18.35	19.50	1.303	-0.1	0.835	-	1.088
2nd	LTE Band 2	20M_QPSK_1_49	Bottom Side	10mm	18700	1860	18.35	19.50	1.303	-0.18	0.825	1.01	1.075

1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.

3. The ratio is the difference in percentage between original and repeated measured SAR.

4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

13. <u>Simultaneous Transmission Analysis</u>

		Portable Handset									
NO.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot	Product Specific						
1.	WWAN + WLAN2.4GHz	Yes	Yes	Yes	Yes						
2.	WWAN + WLAN5GHz	Yes	Yes	No	Yes						
3.	WWAN + Bluetooth	Yes	Yes	Yes	Yes						

General Note:

1. This device WLAN 2.4GHz supports Hotspot operation and Bluetooth support tethering applications.

2. The worst case WLAN reported SAR for each configuration was used for SAR summation. Therefore, the following summations represent the absolute worst cases for simultaneous transmission with WLAN.

- 3. The Scaled SAR summation is calculated based on the same configuration and test position.
- 4. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.

13.1 Head Exposure Conditions

WWAN Band	Exposure Position	1	2	3	4	1+2	1+3 Summed 1g SAR (W/kg)	1+4 Summed 1g SAR (W/kg)
		WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed		
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)		
WCDMA II	Right Cheek	0.001	0.061	0.152	0.022	0.062	0.153	0.023
	Right Tilted	0.001	0.001	0.079	0.001	0.002	0.080	0.002
	Left Cheek	0.060	0.001	0.070	0.001	0.061	0.130	0.061
	Left Tilted	0.001	0.001	0.034	0.001	0.002	0.035	0.002
	Right Cheek	0.329	0.061	0.152	0.022	0.390	0.481	0.351
WCDMA V	Right Tilted	0.173	0.001	0.079	0.001	0.174	0.252	0.174
WCDMA V	Left Cheek	0.394	0.001	0.070	0.001	0.395	0.464	0.395
	Left Tilted	0.199	0.001	0.034	0.001	0.200	0.233	0.200
	Right Cheek	0.001	0.061	0.152	0.022	0.062	0.153	0.023
LTE Band 2	Right Tilted	0.001	0.001	0.079	0.001	0.002	0.080	0.002
	Left Cheek	0.041	0.001	0.070	0.001	0.042	0.111	0.042
	Left Tilted	0.001	0.001	0.034	0.001	0.002	0.035	0.002
	Right Cheek	0.186	0.061	0.152	0.022	0.247	0.338	0.208
LTE Band 4	Right Tilted	0.151	0.001	0.079	0.001	0.152	0.230	0.152
LIE Banu 4	Left Cheek	0.292	0.001	0.070	0.001	0.293	0.362	0.293
	Left Tilted	0.181	0.001	0.034	0.001	0.182	0.215	0.182
	Right Cheek	0.274	0.061	0.152	0.022	0.335	0.426	0.296
LTE Band 5	Right Tilted	0.153	0.001	0.079	0.001	0.154	0.232	0.154
	Left Cheek	0.283	0.001	0.070	0.001	0.284	0.353	0.284
	Left Tilted	0.169	0.001	0.034	0.001	0.170	0.203	0.170
LTE Band 41	Right Cheek	0.001	0.061	0.152	0.022	0.062	0.153	0.023
	Right Tilted	0.001	0.001	0.079	0.001	0.002	0.080	0.002
	Left Cheek	0.013	0.001	0.070	0.001	0.014	0.083	0.014
	Left Tilted	0.001	0.001	0.034	0.001	0.002	0.035	0.002

Report No. : FA182304-02

13.2 Hotspot Exposure Conditions

WWAN Band	Exposure Position	1	2		4 Bluetooth		
		WWAN	2.4GHz WLAN			1+2 Summed	1+4 Summed
		1g SAR (W/kg)	1g SAR (W/kg)		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
	Front	0.527	0.029		0.010	0.556	0.537
WCDMA II	Back	0.094	0.025		0.008	0.119	0.102
	Left side	0.028				0.028	0.028
	Right side	0.043	0.069		0.022	0.112	0.065
	Top side					0.000	0.000
	Bottom side	1.175				1.175	1.175
	Front	0.518	0.029		0.010	0.547	0.528
	Back	0.261	0.025		0.008	0.286	0.269
WCDMA V	Left side	0.287				0.287	0.287
	Right side	0.392	0.069		0.022	0.461	0.414
	Top side					0.000	0.000
	Bottom side	0.378				0.378	0.378
	Front	0.544	0.029		0.010	0.573	0.554
	Back	0.090	0.025		0.008	0.115	0.098
LTE Band 2	Left side	0.028				0.028	0.028
	Right side	0.043	0.069		0.022	0.112	0.065
	Top side					0.000	0.000
	Bottom side	1.088		0.000		1.088	1.088
	Front	0.712	0.029		0.010	0.741	0.722
	Back	0.388	0.025		0.008	0.413	0.396
	Left side	0.196				0.196	0.196
LTE Band 4	Right side	0.117	0.069		0.022	0.186	0.139
	Top side					0.000	0.000
	Bottom side	1.173				1.173	1.173
	Front	0.395	0.029		0.010	0.424	0.405
	Back	0.244	0.025		0.008	0.269	0.252
	Left side	0.225				0.225	0.225
LTE Band 5	Right side	0.318	0.069		0.022	0.387	0.340
	Top side					0.000	0.000
	Bottom side	0.314				0.314	0.314
LTE Band 41	Front	0.379	0.029		0.010	0.408	0.389
	Back	0.070	0.025		0.008	0.095	0.078
	Left side	0.001				0.001	0.001
	Right side	0.001	0.069		0.022	0.070	0.023
	Top side					0.000	0.000
	Bottom side	1.089				1.089	1.089

Report No. : FA182304-02

13.3 Body-Worn Accessory Exposure Conditions

WWAN Band	Exposure Position	1	2	3	4	1+2 Summed	1+3 Summed 1g SAR (W/kg)	1+4 Summed 1g SAR (W/kg)
		WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth			
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)		
WCDMA II	Front	0.662	0.029	0.094	0.010	0.691	0.756	0.672
	Back	0.094	0.025	0.063	0.008	0.119	0.157	0.102
WCDMA V	Front	0.518	0.029	0.094	0.010	0.547	0.612	0.528
	Back	0.261	0.025	0.063	0.008	0.286	0.324	0.269
LTE Band 2	Front	0.663	0.029	0.094	0.010	0.692	0.757	0.673
	Back	0.090	0.025	0.063	0.008	0.115	0.153	0.098
LTE Band 4	Front	0.712	0.029	0.094	0.010	0.741	0.806	0.722
	Back	0.388	0.025	0.063	0.008	0.413	0.451	0.396
LTE Band 5	Front	0.395	0.029	0.094	0.010	0.424	0.489	0.405
	Back	0.244	0.025	0.063	0.008	0.269	0.307	0.252
LTE Band 41	Front	0.698	0.029	0.094	0.010	0.727	0.792	0.708
	Back	0.070	0.025	0.063	0.008	0.095	0.133	0.078

13.4 Product Specific Exposure Conditions

	1	2	3	4	1+2	1+3 Summed 10g SAR (W/kg)	1+4 Summed 10g SAR (W/kg)
Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed		
	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)		
Front			0.129		0.000	0.129	0.000
Back			0.044		0.000	0.044	0.000
Left side					0.000	0.000	0.000
Right side			0.432		0.000	0.432	0.000
Top side					0.000	0.000	0.000
Bottom side					0.000	0.000	0.000

Test Engineer : Bevis Chang

14. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report. Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

15. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [9] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [10] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [11] FCC KDB 941225 D07 v01r02, " SAR Evaluation Procedures for UMPC Mini-Tablet Devices", Oct 2015.
- [12] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [13] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.