

Date: ESPC	00 29.04.2013	Page: <u>1 (12)</u>	
		Appendices	
Number: 2 : No. 1 / 1	33027C	Date of handing in: 18.03.2013 Tested by:	
	Finnish Accreditation Service T017 (EN ISO/IEC 17025)	Timo Hietala, Test Engineer Reviewed by:	
		Timo Leismala, Test Manager	
SORT OF EQUIPMEN	IT: Heart beat mon	itor	
MARKETING NAME: TYPE: MANUFACTURER:	FirstBeat Bodyguard 2 Firstbeat Techr	nologies Oy, Finland	
CLIENT: ADDRESS: TELEPHONE:	Firstbeat Techn Yliopistonkatu 2 + 358 20 7631 6	Firstbeat Technologies Oy, Finland Yliopistonkatu 28 A, FI-40100 JYVÄSKYLÄ + 358 20 7631 660/Aku Kalajo	

TEST LABORATORY: FCC REG. NO. IC FILE NO.

Nemko Oy 359859 October 20, 2011 2040F-1 November 22, 2012

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 2 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Test report: 233027C

Summary of performed tests and test results

Section in CFR 47		Result
15.109	Radiated emissions	PASS
15.107	AC power line conducted emissions	PASS

Section in IC ES-003		Result
6.2	Radiated emissions	PASS
6.1	AC power line conducted emissions	PASS

Explanations:

PASS	The EUT passed that particular test.
FAIL	The EUT failed that particular test.
Х	The measurement was done, but there is no applicable performance criteria.
NA	The measurement is not applicable (battery powered device)

Contents

Su	Summary of performed tests and test results	2
1.	. EUT and Accessory Information	4
	1.1 EUT description	4
	1.2 EUT and accessories	4
2.	. Test setups	5
3.	Standards and measurement methods	6
4.	. Test results	6
	4.1 Radiated emission	6
	4.1.1 EUT operation mode	6
	4.1.2 Test method and limit	6
	4.1.3 Test results	7
	4.2 Conducted disturbance at mains ports emission test	9
	4.2.1 Test results	10
5.	List of test equipment	12

Page	3 (12)
Date	29.04.2013

1. EUT and Accessory Information

1.1 EUT description

The EUT is a heart beat monitor.

Operating Voltage: 3.7 VDC

The highest internal clock at any time is 8MHz at measuring mode and 32MHz at USB mode. The highest test frequency according to CISPR 22 Ed. 6.0 is 1000 MHz.

1.2 EUT and accessories

Equipment under test (EUT):

• Heart beat monitor, type Bodyguard 2, S/N: BG101300027

Peripheral devices:

- IBM HP5320m, S/N: CND0241M8M, laptop computer
- AC/DC adapter for laptop, type: PPP009H, S/N: F32921018044603
- USB Mouse, Logitech M100, S/N: -
- Headphones, Sennheiser CX215, S/N: -

Cables:

From	То	Туре	Length [m]
Electrode	EUT	Electrode cable, shielded	0.4
Mains supply network	AC/DC adapter	Mains cable, unshielded	1.0
AC/DC adapter	Laptop	DC cable, shielded	2.0
Mouse	EUT	shielded	1.8
Headphones	EUT	shielded	1.3

Operating voltage of the EUT during the tests:

• 3.7V DC (rechargeable battery)

Operating voltage of the peripheral devices during the tests:

115 V AC, 60 Hz (rated 100 – 240 V AC 50/60 Hz)

2. Test setups

Setup 1 (Radiated measurements)

The test was performed inside a semi anechoic shielded room. For the duration of the test the EUT was placed on a non-conductive support 0.8 m high standing on the turntable. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization and height. The measured signal was routed from the measuring antenna to the spectrum analyzer.

Frequency band	Quasi-peak	Quasi-peak
MHz	dB(µV/m) @ 3m	dB(µV/m) @ 10m
30 – 88	40.0@3m	29.5@10m
88 – 216	43.5@3m	33.0@10m
216 – 960	46.0@3m	35.5@10m
960 – 1000	54.0@3m	43.5@10m

3. Standards and measurement methods

The test were performed in guidance of the CFR 47 Part 15, SUBPART B, Paragraph 15.109 (2010), ANSI C63.4 (2003), CISPR 22 Ed. 6.0, ICES-003:2012.

4. Test results

4.1 Radiated emission

The test was performed as a compliance test. The test parameters concerned were as follows:

Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.109
IC	IC ES-003 6.2
Date of testing	18.03.2013, 26.04.2013
Test equipment	319, 544, 709, 350
Test conditions	22 °C, 30 % RH
Test result	PASS

4.1.1 EUT operation mode

EUT operation mode	Measuring mode

4.1.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable (see photographs 1 and 2). During the test in the frequency range 30-1000 MHz the distance from the EUT to the measuring antenna was 10 m. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed separately with the measuring antenna being both in horizontal and vertical polarizations.

The CFR 47 Part 15.109 limit of 200 μ V/m has been calculated to correspond 46 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

FCC Fait 15.109 Limit values			
Frequency band	Quasi-peak	Quasi-peak	
MHz	dB(µV/m) @ 3m	dB(µV/m) @ 10m	
30 - 88	40.0@3m	29.5@10m	
88 – 216	43.5@3m	33.0@10m	
216 – 960	46.0@3m	35.5@10m	
960 – 1000	54.0@3m	43.5@10m	

FCC Part 15.109 Lin	nit values
---------------------	------------

4.1.3 Test results

Figure 1. Radiated emissions, 30-1000 MHz.

			-		-		
Frequency	Level	Limit	Margin	Exceed	Height	Polarization	Azimuth
MHz	dBµV/m	dBµV/m	dB		cm	Hor/Ver	degrees
30.000	13.3	29.5	16.2	-	100	V	15
143.840	8.7	33.0	24.3	-	100	V	270
184.440	9.8	33.0	23.2	-	100	V	225
227.000	10.9	35.5	24.6	-	100	V	215
553.760	18.4	35.5	17.1	-	280	V	315
999.700	22.3	43.5	21.2	-	160	Н	90

Measurement results (Quasi-Peak):

The measurement results were obtained as described below.

$$E \left[dB(\mu V/m) \right] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$$

Where	
U _{RX}	receiver reading
A _{CABLE}	attenuation of the cable
AF	antenna factor
G _{PREAMP}	gain of the preamplifier

Test report: 233027C

Figure 2. Radiated emissions, 30-1000 MHz.

Frequency MHz	Level dBµV/m	Limit dBµV/m	Margin dB	Exceed	Height cm	Polarization Hor/Ver	Azimuth degrees
32.680	13.5	29.5	16.0	-	102	V	210
69.000	17.9	29.5	11.6	-	394	V	113
183.440	14.4	33.0	18.6	-	147	V	348
297.680	14.5	35.5	21.0	-	151	н	154
554.160	21.5	35.5	14.0	-	290	V	352
803.960	20.0	35.5	15.5	-	302	Н	259

Measurement	results	(Quasi-Peak)	:
		· · · · · · · · · · · · · · · · · · ·	

4.2 Conducted disturbance at mains ports emission test

The test was performed as a compliance test. The test parameters concerned were as follows:

Parameter	Specification		
Frequency range	0.150 – 30 MHz		
Site name	Nemko Oy / Perkkaa		
FCC rule part	§ 15.107		
IC	RSS Gen 7.25		
Date of testing	29.4.2013		
Test equipment	745, 694, 348		
Test uncertainty U95	±3.5dB		
Test conditions	24 °C, 30 % RH		

The test was performed inside a shielded room where the floor and one of the walls of the test site comprised the reference ground plane (RGP). For the duration of the test the EUT was placed on a non-conductive table 0.8 m high 0.4 m apart from the vertical RGP (see photograph 3). The excess lengths of the cables of the EUT were made into bundles 30-40 cm in length. The power input cable of the EUT was connected to an artificial mains network. The test was performed separately on each phase and also on the neutral wire.

The disturbances were first examined by performing a spectrum scan by using a peak detector. The general procedure in the conducted disturbance emission test is that no further measurements are necessary if the disturbance levels measured by using the peak detector are below the limit value defined for the measurement performed by using an average detector. If not, then at the test frequencies concerned the measurement is performed also by using a quasi-peak detector. If the disturbance levels measured by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector are below the limit value defined for the measurement performed by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector, then measurements by using the average detector are not necessary.

4.2.1 Test results

The graphs of the disturbances measured by using a peak and average detectors in the frequency range of 0.150 - 30 MHz.

Measurement results ((QP)):
		,

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Line	Conclusion Pass/Fail
0.15	49.9	65.7	15.8	Ν	Pass
0.48	35.9	56.2	20.3	Ν	Pass
0.97	29.7	56.0	26.3	Ν	Pass
20.56	41.0	60.0	19.0	Ν	Pass
21.98	36.5	60.0	23.5	Ν	Pass
24.61	28.3	60.0	31.7	Ν	Pass

Measurement results (Average):

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Line	Conclusion Pass/Fail
0.20	35.8	53.4	17.6	Ν	Pass
0.49	25.3	46.1	20.8	Ν	Pass
0.91	21.2	46.0	24.8	Ν	Pass
12.39	25.7	50.0	24.3	Ν	Pass
20.56	35.9	50.0	14.1	Ν	Pass
21.67	31.2	50.0	18.8	Ν	Pass

The graphs of the disturbances measured by using a peak and average detectors in the frequency range of 0.150 - 30 MHz.

Measurement results	(QP)):

Frequency MHz	Level dBµV	Limit dBµV	Margin dB	Line	Conclusion Pass/Fail
0.18	48.6	64.3	15.7	L	Pass
0.48	33.1	56.3	23.1	L	Pass
9.48	34.1	60.0	25.9	L	Pass
13.01	33.2	60.0	26.8	L	Pass
16.28	36.9	60.0	23.1	L	Pass
22.23	34.4	60.0	25.6	L	Pass

Measurement results (Average):

Frequency MHz	Level dBμV	Limit dBµV	Margin dB	Line	Conclusion Pass/Fail
0.20	35.7	53.6	17.9	L	Pass
0.55	21.4	46.0	24.6	L	Pass
6.66	23.3	50.0	26.7	L	Pass
9.53	25.6	50.0	24.4	L	Pass
16.53	32.4	50.0	17.6	L	Pass
22.15	28.9	50.0	21.1	L	Pass

5. List of test equipment

Each active test equipment is calibrated once a year, antennas every 18 months and other passive equipment every 24 months.

Nr.	Equipment	Туре	Manufacturer	Serial number	Cal date	Cal due
319	Antenna	CBL6112	Chase	2018	12.7.2012	1.2014
348	Shielded room	RFSD-100	Euroshield Oy	1320		
350	Semianechoic shielded room	RFD-F-100	Euroshield Oy	1327	26.10.2012	10.2014
525	Double-Ridged Horn	3115	Emco	6691	10.10.2012	4.2014
542	Double-Ridged Horn	3115	Emco	00023905	10.10.2012	4.2014
544	RF-amplifier	ZFL-1000VH2	Mini-Circuits	QA0749010	9.1.2013	1.2014
564	RF amplifier	CA018-4010	CIAO Wireless	132	9.1.2013	1.2014
566	Spectrum analyzer	E4448A	Agilent	US42510236	17.4.2013	4.2014
694	EMI Test Receiver	ESPC	Rohde & Schwarz	842888/023	11.12.2012	12.2013
709	EMI test receiver	ESU8	Rohde & Schwarz	100297	11.05.2012	5.2013
745	2-Line V-Network	ENV216	Rohde & Schwarz	101466	9.5.2012	5.2013