

GLOBAL TESTING & CERTIFICATION CENTRE LTD.

FCC
TEST REPORT

Application No. : 06101888 (49MHz, Tx)

Rm09, 5/F Wah Wai Ind Ctr, 38-40 Au Pui Wan Street, Fotan Shatin, N.T., Hong Kong
Tel: [852] 23200326 Fax: [852] 23206287

TABLE OF CONTENTS

Cover Sheet	-----	p. 1
Table of Contents	-----	p. 2
General Details	-----	p. 3 ~ p. 4
Summary of Test Results	-----	p. 5
Radiation Emission Test	-----	p. 6 ~ p. 8
Conducted Emission Test	-----	p. 9
Bandwidth Measurement	-----	p. 10 ~ p. 11
Appendix A List of Measurement Equipment	-----	p. 12
Appendix B Duty Cycle correction During 100msec	-----	p. 13 ~ p. 14
Appendix C Test Sample (Photos)	-----	p. 15 ~ p. 16

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

APPLICANT: Fun Maker Limited

ADDRESS: Units A & B, 21/F.,
World Trust Tower,
50 Stanley Street, Central, Hong Kong

DATE OF RECEIVED: 17 October, 2006

DATE OF TESTING: 17 October, 2006 to 21 October, 2006

DESCRIPTION OF SAMPLE:

Product: Shark/ Gator Submarine
Brand Name: NIL
Model No.: 13000
FCC ID: RE813000F49T
Input Voltage: DC9V (6F22 x 1)

Description of EUT
Operation

The Equipment Under Test (EUT) is a Fun Maker Limited, Shark/ Gator Submarine. The transmitter is a 6 button transmitter. The EUT continues to Transmit while button is being pressed, the Modulation signal is provided by IC. And type is pulse modulation.

INVESTIGATION
REQUESTED:

FCC PART 15 SUBPART C

TEST RESULTS:

See attached sheets

CONCLUSIONS:

The submitted product COMPLIED with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on page 5 in Test report.

GTC
CS Lin, EMC
for Chief Executive

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

General Details

Test Laboratory

GLOBAL TESTING & CERTIFICATION CENTRE LTD
EMC Laboratory
Rm09, 5/F Wah Wai Ind Ctr, 38-40 Au Pui Wan Street,
Fotan Shatin, N.T., Hong Kong

Tel ephone: 852 2320 0326
Fax: 852 2320 6287

Applicant Details
Applicant

Fun Maker Limited
Units A & B, 21/F.,
World Trust Tower,
50 Stanley Street, Central, Hong Kong

Manufacturer

Tai Nam Ind. Co., Limited
Units D-F, 26/F,
CDW Building,
388 Castle Peak Road, Tsuen Wan, Hong Kong

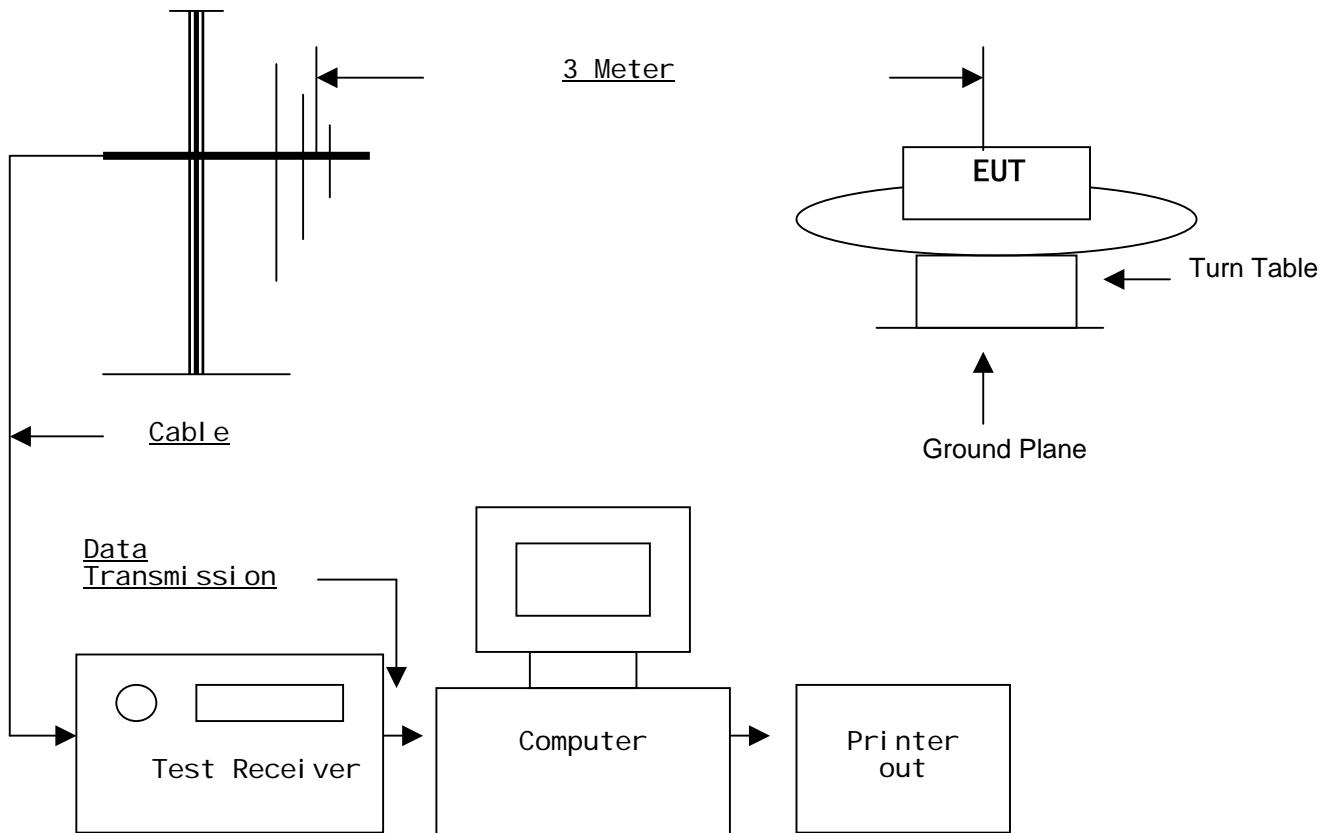
REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Technical Details

Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.4:2003 for FCC Certification.


Test Standards and Results Summary Tables

EMISSION Results Summary					
Test Condition	Test Requirement	Test Method	Test Result		
			Pass	Failed	N/A
Field Strength of Fundamental Emissions & Spurious Emissions	FCC 47CFR 15.235	ANSI C63.4:2003	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Radiated Emissions, 30MHz to 1GHz	FCC 47CFR 15.209	ANSI C63.4:2003	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Conducted Emissions on AC, 0.15MHz to 30MHz	FCC 47CFR 15.207	ANSI C63.4:2003	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>

Note: N/A – Not Applicable

Test Results

Emission

Radiation Emission Measurement (30MHz to 1GHz)Setup diagram:

Test Method:

The sample was placed 0.8m above the ground plane on the OATS*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

*. OATS [Open Area Test Site] located at GTC with a metal ground plane filled with the FCC pursuant to section 2.948 of the FCC rules. With Registration Number: 493655

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Radiation Emissions Measurement

Appl. : Fun Maker Limited

Model : 13000

Operation: TX mode

Test Requirement: FCC 47CFR 15.235

Test Method: ANSI C63.4: 2003

Test Date: 2006-10-19

Limits for Field Strength of Fundamental Emissions :

Frequency Range of Fundamental [MHz]	Field Strength of Fundamental Emission [Peak] [μ V/m]	Field Strength of Fundamental Emission [Average] [μ V/m]
49.82-49.90	100,000	10,000

Results:

Field Strength of Fundamental Emissions Peak Value						
Frequency MHz	Measured Level @3m dB μ V	Correction Factor dB/m	Field Strength dB μ V/m	Field Strength μ V/m	Limit @3m μ V/m	E-Field Polarity
49.86	57.0	11.7	68.7	2,722.7	100,000	Horizontal

Field Strength of Fundamental Emissions Average					
Frequency MHz	Adjusted by Duty Cycle dB	Field Strength dB μ V/m	Field Strength μ V/m	Limit @3m μ V/m	E-Field Polarity
49.86	-7.5	61.2	1,148.2	10,000	Horizontal

According to FCC 47CFR 15.35, the limit on the radio frequency emissions as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Remarks:

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz \pm 4.1dB

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Radiation Emissions Measurement

Appl. : Fun Maker Limited

Model : 13000

Operation: TX mode

Test Requirement: FCC 47CFR 15.209

Test Method: ANSI C63.4: 2003

Test Date: 2006-10-19

Results:

Frequency Range [MHz]	Quasi-Peak Limits [μ V/m]
30-88	100
88-216	150
216-960	200
Above 960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Radiated Emissions Quasi-Peak						
Frequency MHz	Measured Level @3m dB μ V	Correction Factor dB/m	Field Strength dB μ V/m	Field Strength μ V/m	Limit @3m μ V/m	E-Field Polarizy
99.7	< 16.0	10.3	< 26.3	< 20.7	150	Horizontal
149.6	< 16.0	15.1	< 31.1	< 35.9	150	Horizontal
199.4	20.0	16.5	36.5	66.8	150	Horizontal
249.3	16.0	17.7	33.7	48.4	200	Horizontal
299.2	< 16.0	19.5	< 35.5	< 59.6	200	Horizontal
349.0	< 16.0	17.5	< 33.5	< 47.3	200	Horizontal
398.9	< 16.0	18.3	< 34.3	< 51.9	200	Horizontal
448.7	< 16.0	19.2	< 35.2	< 57.5	200	Horizontal
498.6	< 16.0	20.1	< 36.1	< 63.8	200	Horizontal

Remarks:

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz ± 4.1 dB

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Conducted Emission on AC (0.15MHz to 30MHz)

Appl. : Fun Maker Limited

Model : 13000

Operation: N/A

Test Requirement: FCC 47CFR 15.207

Test Method: ANSI C63.4: 2003

Test Date: N/A

Results: N/A

The EUT is operated by a single source of internal battery power [located in the battery compartment], therefore power line conducted emission was deemed unnecessary.

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Occupied Bandwidth

Appl. : Fun Maker Limited
Model : 13000
Operation: On mode

Test Requirement: FCC Part15 C Section 15. 235

Test Method: ANSI C63. 4

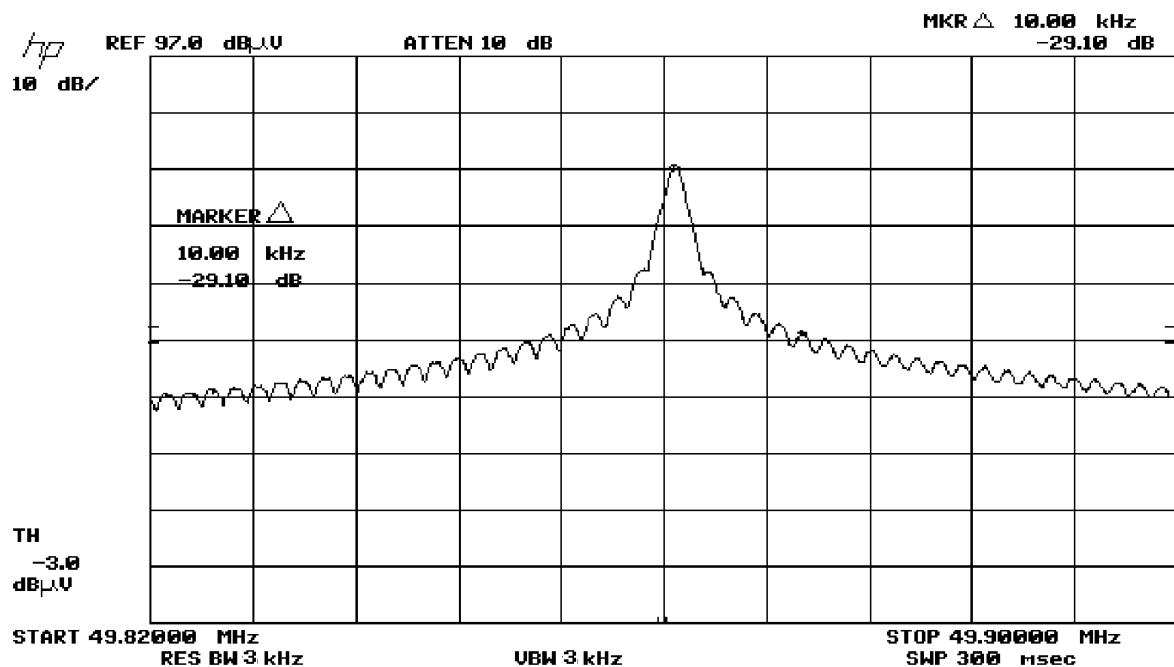
Operation within the band 49. 82-49. 90MHz

Test Date: 2006-10-19

Requirements: The field strength of any emissions appearing between the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 26dB below the level of the unmodulated carrier or to the general limits in Section 15. 209, whichever permits the higher emission levels. The field strength of any emissions removed by more than 10 kHz from the band edges shall not exceed the general radiated emission limits in Section 15. 209.

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.


Setup diagram:

As Test Setup of page 6 in this report

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

The graph as below, represents the emissions take for this device.

The results: The unit meets the FCC Part 15 C Section 15.235 requirements.

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

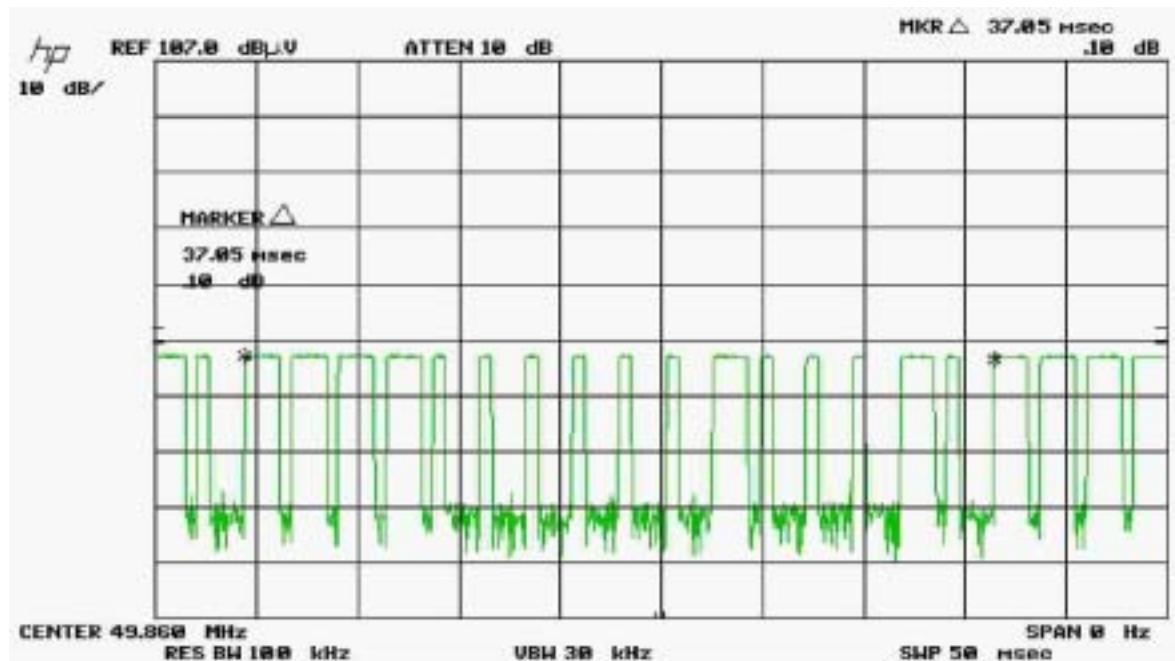
APPENDIX A

LIST OF MEASUREMENT EQUIPMENT

<u>Equip. No.</u>	<u>Equipment</u>	<u>Manufacturer</u>	<u>Model No.</u>	<u>Serial No.</u>	<u>Calibration Date</u>	<u>Due Date</u>
E005	EMI Test Receiver	Rohde & Schwarz	ESVP	893417/019	21 Aug 2006	20 Aug 2007
E003	Spectrum Analyzer With O/P	Tektronix	2712	B034039	21 Aug 2006	20 Aug 2007
E004	RF Presel ector	Tektronix	2706	B010649	21 Aug 2006	20 Aug 2007
E057	EMI Test Receiver	Rohde & Schwarz	ESVP	863112/007	18 Aug 2006	17 Aug 2007
E084	Spectrum Analyzer	Hewlett Packard	HP 8568B	3001A04930	07 Aug 2006	06 Aug 2007
E085	Di splayer of Spectrum Analyzer	Hewlett Packard	HP 85662A	2033A01841	07 Aug 2006	06 Aug 2007
E086	Quasi -Peak Adaptor	Hewlett Packard	HP 85650A	2527A00785	07 Aug 2006	06 Aug 2007
E090	RF Signal Generator	Rohde & Schwarz	SMX	832566/005	30 May 2006	29 May 2007
E001	Antenna System	Schwarzbeck	D-6917	UHALP9107	25 Apr 2006	26 Apr 2007
E002	Antenna System	Schwarzbeck	VHA9103	VHA91031253	28 Apr 2006	29 Apr 2007
E008	LISN	EMCO	3825/2	1115	24 Feb 2006	25 Feb 2007
E115	Li miter 50 Ohm DC~1800MHz	Hewlett Packard	11867A	-----	28 Aug 2006	29 Aug 2007
E100	Turntable	Chi oce Way	TB1200	51112	-----	-----
E006	RF Signal Generator	Fl uke	6060A	3880007	28 Apr 2006	29 Apr 2007
E092	Antenna Tri pole	I T&T	UH800100	A05011	30 May 2006	29 May 2007
E098	Pre-Ampli fier	Hewlett Packard	8447D	2944A09089	04 Mar 2006	03 Mar 2007
E099	Antenna Mast	Schwarzbeck	AM9014	-----	-----	-----
E101	Loop Antenna	EMCO	6502	9902-3269	07 Feb 2006	07 Feb 2007

APPENDIX B

Duty Cycle Correction During 100msec


Each function key sends a different series of characters, but each packet period (37.05msec) never exceeds a series of 6 long (1.7msec) and 10 short (0.55msec) pulses. Assuming any combination of short and long pulses may be obtained due to encoding the worst case transmit duty cycle would be considered $6 \times 1.7\text{msec} + 10 \times 0.55\text{msec}$ per 37.05msec = 42.0% duty cycle. Figure A through C show the characteristics of the pulse train for one of these functions.

Remarks:

Duty Cycle Correction = $20\log(0.42)$ = -7.5dB

The following figures [Figure A to Figure C] show the characteristics of the pulse train for one of these functions.

Figure A [Pulse Train]

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Figure B [Long Pulse]

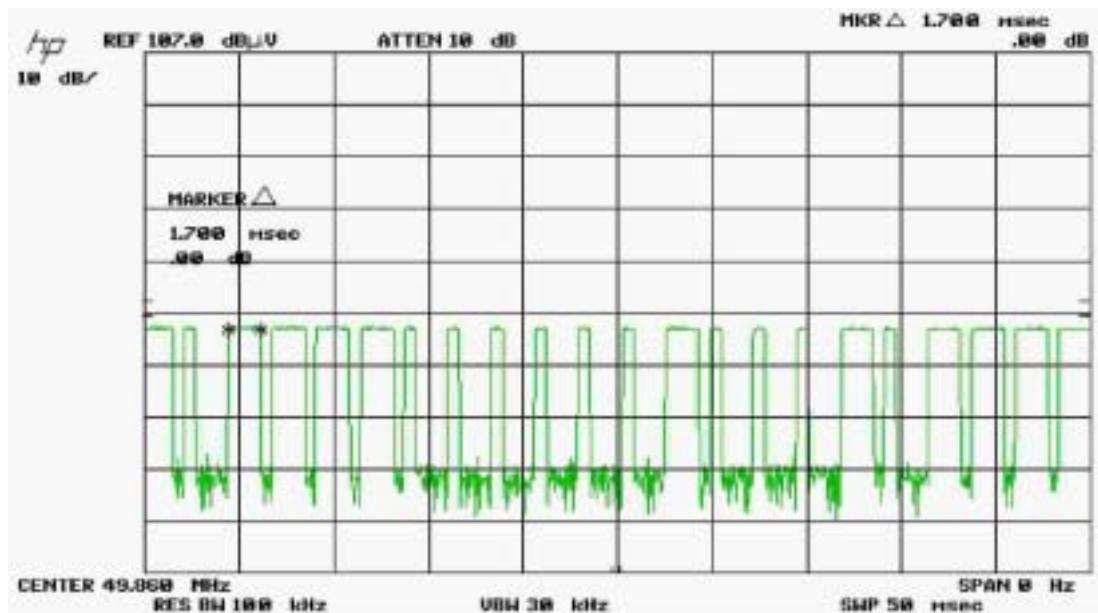
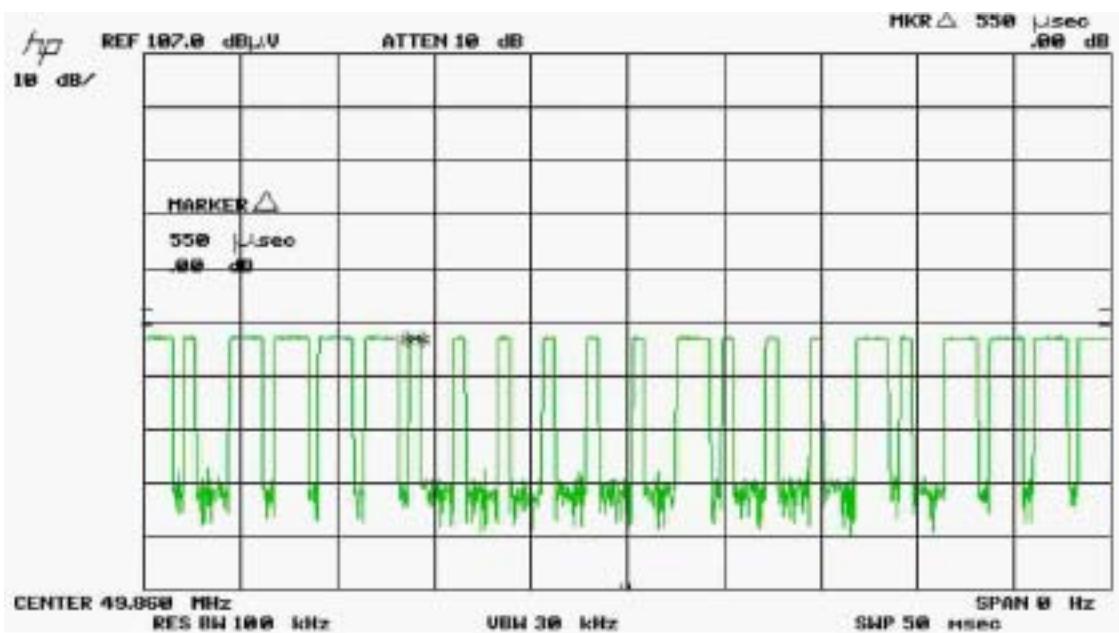



Figure C [Short Pulse]

REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

APPENDIX C

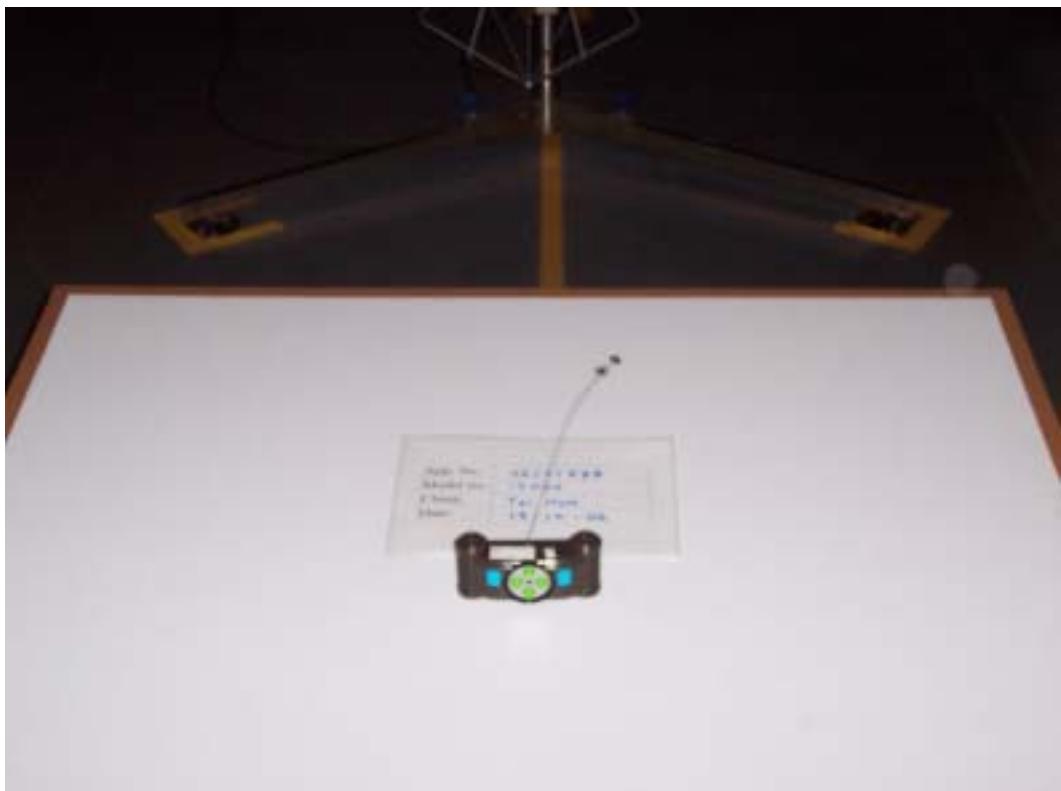
Photos of EUT

Front View of the product

Rear View of the product

Inner Circuit Top View

Inner Circuit Bottom View



REPORT NO.: 06101888 (Tx)

DATE: 21 October, 2006

Photos of EUT

Measurement of Radiated Emission Test Set up

End of Document