

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization Class II Permissive Change pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E on the Meru Networks Transmitter Model: RS-4000

> UPN: 6749A-RS4000 FCC ID: RE7-RS4000

GRANTEE: Meru Networks

1309 S. Mary Ave Sunnyvale, CA 94087

TEST SITE: Elliott Laboratories, Inc.

684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: January 2, 2007

FINAL TEST DATE: October 16, October 17, November 29

and December 7, 2007

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Test Report Report Date: January 2, 2007

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	January 10, 2008	Initial Release	David Guidotti

Page 2 of 21 pages File: R69780 Rev 1

TABLE OF CONTENTS

COVER PAGE	
REVISION HISTORY	
TABLE OF CONTENTS	
SCOPE	,
OBJECTIVE	
STATEMENT OF COMPLIANCE	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEMENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	10
EUT OPERATION	
PROPOSED MODIFICATION DETAILS	10
GENERAL	
TEST SITE	1
GENERAL INFORMATION	1.
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	17
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITSOUTPUT POWER AND SPURIOUS LIMITS –UNII DEVICES	19
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	i
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: Advertising Literature	
EXHIBIT 11: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Meru Networks model RS-4000 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" CC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Meru Networks model RS-4000 and therefore apply only to the tested sample. The sample was selected and prepared by John Dorsey of Meru Networks.

File: R69780 Rev 1 Page 5 of 21 pages

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Meru Networks model RS-4000 complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"
CC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R69780 Rev 1 Page 6 of 21 pages

TEST RESULTS SUMMARY

UNII/LELAN DEVICES

Operation in the 5.25 – 5.35 GHz Band

O P 01 00 01 01 01	perturbil in the cize cice disabund						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)		
15.407(a) (2)		26dB Bandwidth	26.0 MHz		N/A		
15.407(a) (2)	A9.2(2)	Output Power	11.6 dBm (0.014 W)	250mW or 10Log (26dB BW)	Complies		
15.407(a) (2))	A9.2(2)	Power Spectral Density	-1.24 dBm/MHz	11 dBm/MHz	Complies		
	A9.5b	Peak Spectral Density	-1.24 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies		
15.407(a) (2))	A9.4	Dynamic frequency selection / Transmit power control	Refer to separate test report		Complies		

Operation in the 5.47 – 5.725 GHz Band

operation in	Speciation in the 2447 24722 GHz Bund					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)	
15.407(a) (2)		26dB Bandwidth	26.2 MHz	•	N/A	
15.407(a) (2)	A9.2(2)	Output Power	12.4 dBm (0.017 W)	250mW or 10Log (26dB BW)	Complies	
15.407(a) (2))	A9.2(2)	Power Spectral Density	-0.28 dBm/MHz	11 dBm/MHz	Complies	
	A9.5b	Peak Spectral Density	-0.28 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies	
15.407(a) (2))	A9.4	Dynamic frequency selection / Transmit power control	Refer to separate test report		Complies	

General requirements for all bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	OFDM is used	Digital modulation is required	Complies
	RSP 100	99% bandwidth	17.3 MHz		
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No radio emissions detected below 1 GHz		Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	51.2dBμV/m (363.1μV/m) @ 5350.0MHz		Complies (- 2.8 dB)
15.407(a)(6)	-	Peak Excursion Ratio	12.53 dB	< 13dB	Complies (- 0.47 dB)
	A9.5c	Channel Selection	The device was tested at the highest, lowest and center channels in each operating range.	Device shall be tested on the top, bottom and center channels in each band	N/A
15.407 (c)	A9.5d	Operation in the absence of information to	Operation is discontinued in the absence of	Device shall automatically discontinue	Complies

File: R69780 Rev 1 Page 7 of 21 pages

Report Date: January 2, 2007

				•	J /
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
		transmit	information	operation in the absence of information to transmit	
15.407 (g)	A9.5e	Frequency Stability	Frequency stability is better than 18ppm (Operational Description)		Complies
	A9.7	User Manual information	Refer to Exhibit 6 for details		Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	EUT uses a unique connector type	1	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	49.3dBμV/m (291.7μV/m) @ 2645.2MHz		Complies (- 4.7 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions		Refer to standard	Note 1
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual statements	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	Complies

Note 1 – Testing not required for this permissive change.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

(MHZ)	(dB)
0.15 to 30	± 2.4
30 to 1000 1000 to 40000	$\begin{array}{c} \pm 3.0 \\ \pm 3.6 \\ \pm 6.0 \end{array}$
	0.015 to 30 30 to 1000

File: R69780 Rev 1 Page 8 of 21 pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Meru Networks model RS-4000 is a Dual Radio WLAN Access Point that is designed to provide wireless access. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is POE.

The sample was received on October 16, 2007 and tested on October 16 and October 17, 2007. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Meru Networks	RS 4000	Access Point	1506RS400000	RE7-RS4000
			CE600A085	

ANTENNA SYSTEM

The EUT antenna is a Omni with 5dBi gain. The antenna connects to the EUT via a non-standard reverse gender SMA antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT enclosure is primarily constructed of sheet metal. It measures approximately 18 cm wide by 22 cm deep by 10 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Acer	TravelMate 2300	Laptop	tlxt56053645080	MCLT60N871
			22acem13	
Netgear	5 Port	Switch	1FE1715X00471	-
	10/100/1000M			
	Switch GS605 v2			
3com	PW130	I.T.E Power	P/N# 61-0127-	-
		supply	001	

No remote support equipment was used during emissions testing.

File: R69780 Rev 1 Page 9 of 21 pages

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected	Cable(s)				
Poit	То	Description	Shielded or Unshielded	Length(m)		
EUT/Console	Laptop	Serial	Shielded	2.0		
EUT/ETH2	3Com/POE	RJ-45	Unshielded	2.0		
EUT/ETH1	Not Loaded	-	-	-		
Switch/Etherne	Laptop	RJ-45	Unshielded	2.0		
t						
3Com/Ethernet	Switch	RJ-45	Unshielded	2.0		
3Com PW130	AC Mains	2Wire	Unshielded	1.5		
Laptop	AC Mains	3Wire	Unshielded	1.5		
Switch	AC Mains	2Wire	Unshielded	1.5		

Note: The 5V DC port was not connected during testing. The manufacturer stated that they have the option of using POE, therefore, POE was used throughout all tests.

EUT OPERATION

During emissions testing the EUT was transmitting in the specified operating channels. The EUT was also tested for receive mode in the specified operating channels.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Meru Networks model RS-4000 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

File: R69780 Rev 1 Page 10 of 21 pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 16 and October 17, 2007 at the Elliott Laboratories Open Area Test Site #1 located at 684 West Maude Avenue, Sunnyvale, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R69780 Rev 1 Page 11 of 21 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

File: R69780 Rev 1 Page 12 of 21 pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

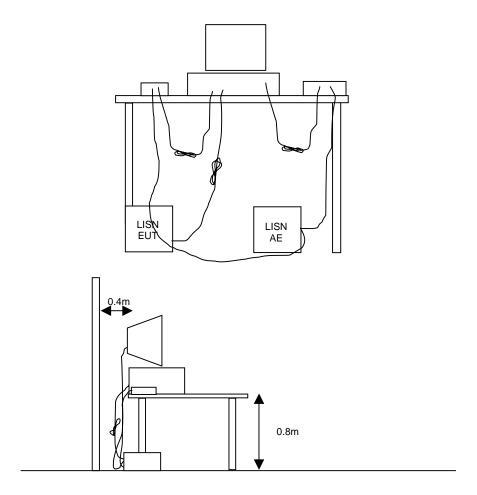
A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION


All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R69780 Rev 1 Page 13 of 21 pages

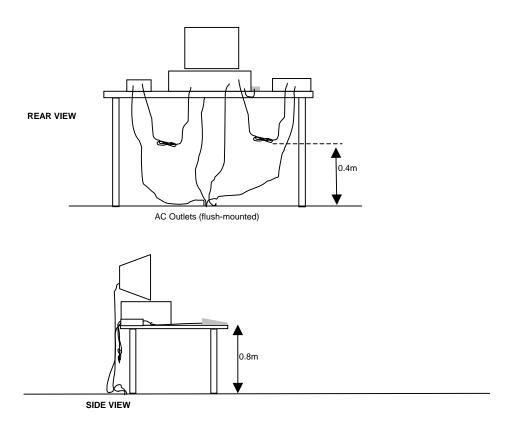
TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

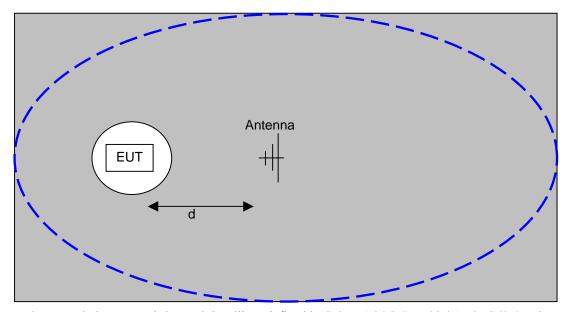
File: R69780 Rev 1 Page 14 of 21 pages

RADIATED EMISSIONS

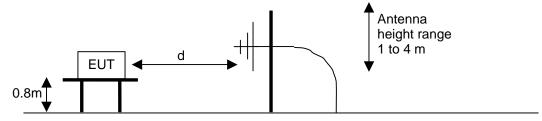

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R69780 Rev 1 Page 15 of 21 pages



Typical Test Configuration for Radiated Field Strength Measurements

File: R69780 Rev 1 Page 16 of 21 pages

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R69780 Rev 1 Page 17 of 21 pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

File: R69780 Rev 1 Page 18 of 21 pages

_

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS -UNII DEVICES

The table below shows the limits for output power and output power density defined by FCC Part 15 Subpart E. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	50mW (17 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R69780 Rev 1 Page 19 of 21 pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R69780 Rev 1 Page 20 of 21 pages

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R69780 Rev 1 Page 21 of 21 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R69780 Rev 1 Exhibit Page 1 of 11

Radiated Emissions, 30 - 40,000 MHz, 17-Oct-07 Engineer: Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 8.2 GHz (Blu System)	P/N 84300-80039 (84125C)	1392	29-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08

Radio Spurious Emissions, 29-Nov-07 Engineer: skhushzad

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08

Radiated Emissions, 30 - 18,000 MHz, 30-Nov-07 Engineer: Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Aug-08
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	15-Oct-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	21-Dec-07
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404	30-Mar-08
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497	03-Jul-08

Report Date: January 2, 2007

EXHIBIT 2: Test Measurement Data

71 Pages

File: R69780 Rev 1 Exhibit Page 2 of 11

Elliott EMC Test Date				
Client:	Meru Networks	Job Number:	J69452	
Model:	RS 4000	T-Log Number:	T69548	
		Account Manager:	Richard Gencev	
Contact:	John Dorsey			
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	-	
Immunity Standard(s):	-	Environment:	-	

EMC Test Data

For The

Meru Networks

Model

RS 4000

Date of Last Test: 1/10/2008

Elliott	EMC Test Data
Client: Meru Networks	Job Number: J69452
Model: RS 4000	T-Log Number: T69548
	Account Manger: Richard Gencev
Contact: John Dorsey	
Emissions Standard(s): FCC Part 15.247/RSS-210	Class: -
Immunity Standard(s): -	Environment: -

EUT INFORMATION

The following information was collected during the test session(s).

General Description

The EUT is a Dual Radio WLAN Access Point that is designed to provide wireless access. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is POE.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Meru Networks	RS 4000	Access Point	1506RS400000CE600A08 5	RE7-RS4000

EUT Antenna (Intentional Radiators Only)

The EUT antenna is a Omni with 3dBi gain.

The antenna connects to the EUT via a non-standard reverse gender SMA antenna connector, thereby meeting the requirements of FCC 15.203.

EUT Enclosure

The EUT enclosure is primarily constructed of sheet metal. It measures approximately 18 cm wide by 22 cm deep by 10 cm high.

	_				
E E	lliott			El	MC Test Data
	Client: Meru Networks			Job Number:	J69452
	Model: RS 4000			T-Log Number:	
				Account Manger:	Richard Gencev
	Contact: John Dorsey				
	andard(s): FCC Part 15.247	//RSS-210		Class:	
Immunity Sta	nndard(s): -			Environment:	-
		Modif	ication History		
Mod. #	Test	Date		Modification	
1					
2					
3					
MarallCarallana	P. d d. l. b			Secretated as a Configuration	PC P
Modifications a	pplied are assumed to be u	isea on subsequen	i tests uniess otnerw	ise stated as a turther mod	allication.

EMC Test Data

Client:	Meru Networks	Job Number:	J69452
Model:	RS 4000	T-Log Number:	T69548
		Account Manger:	Richard Gencev
Contact:	John Dorsey		
Emissions Standard(s):	FCC Part 15.247/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

Test Configuration #1

The following information was collected during the test session(s).

Local Support Equipment

======================================							
Manufacturer	Model	Description	Serial Number	FCC ID			
Acer	TravelMate 2300	Laptop	tlxt5605364508022acem1	MCLT60N871			
			3				
Netgear	5 Port 10/100/1000M	Switch	1FE1715X00471	-			
·	Switch GS605 v2						
3com	PW130	I.T.E Power supply	P/N# 61-0127-001	-			

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	_	-	-	-

Cabling and Ports

		J		
Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
EUT/Console	Laptop	Serial	Shielded	2.0
EUT/ETH2	3Com/POE	RJ-45	Unshielded	2.0
EUT/ETH1	Not Loaded	-	-	-
Switch/Ethernet	Laptop	RJ-45	Unshielded	2.0
3Com/Ethernet	Switch	RJ-45	Unshielded	2.0
3Com PW130	AC Mains	2Wire	Unshielded	1.5
Laptop	AC Mains	3Wire	Unshielded	1.5
Switch	AC Mains	2Wire	Unshielded	1.5

Note: The 5V DC port was not connected during testing. The manufacturer stated that they have the option of using POE, therefore, POE was used throughout all tests.

EUT Operation During Emissions Tests

During emissions testing the EUT was transmitting in the specified operating channels. The EUT was also tested for receive mode in the specified operating channels .

EMC Test Data

Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

FCC Part 15 Subpart E Tests

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/7/2007 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #2 EUT Voltage: POE

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 12 °C

Rel. Humidity: 68 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	11.6dBm
1	Power, 5470 - 5725MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	12.4dBm
1	PSD, 5250 - 5350MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	-1.24dBm/MHz
1	PSD, 5470 - 5725MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	-0.28dBm/MHz
1	26dB Bandwidth	15.407	Pass	> 20 MHz
1	99% Bandwidth	RSS 210	Pass	17.6MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.53dBm
3	Antenna Conducted Out of Band Spurious	15.407(b)	Pass	All emissions below the -27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

To the second	EI	lic	ott	·				EM	C Test	t Data
	Meru Net						J	ob Number:	J69452	
Madal	DC 4000						T-L	og Number:	T69548	
iviodei:	RS 4000						Accour	nt Manager:	Richard Gen	cev
Contact:	John Dors	sey						-		
Standard:	FCC Part	15.247/F	RSS-210					Class:	N/A	
Run #1: Ba		•	Power and 1	Power spec	tral Density	1				
Frequency	Software	Bar	ndwidth	Output Po	wer ¹ dBm	Power	F	SD ² dBm/M	lHz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Nesult
5260	19.0	26.0	17.5	9.9	24.0	0.010	-2.84	11.0	11.0	Pass
5300	19.0	26.5	17.5	11.6	24.0	0.014	-1.29	11.0	11.0	Pass
5320	19.0	26.0	17.5	11.5	24.0	0.014	-1.24	11.0	11.0	Pass
5500	19.0	26.8	17.3	11.9	24.0	0.015	-0.99	11.0	11.0	Pass
5600	19.0	26.2	17.5	12.4	24.0	0.017	-0.28	11.0	11.0	Pass

	Output power measured using a spectrum analyzer (see plots below):
Note 1:	RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power
	integration over 100 MHz
Note 2:	Measured using the same analyzer settings used for output power.
Note 3:	For RSS210 the measured value of the PSD (see note 3) must not exceed the average value (calculated from the
Note 3:	measured power divided by the measured 99% bandwidth) by more than 3dB.
Note 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

0.016

-0.84

11.0

11.0

24.0

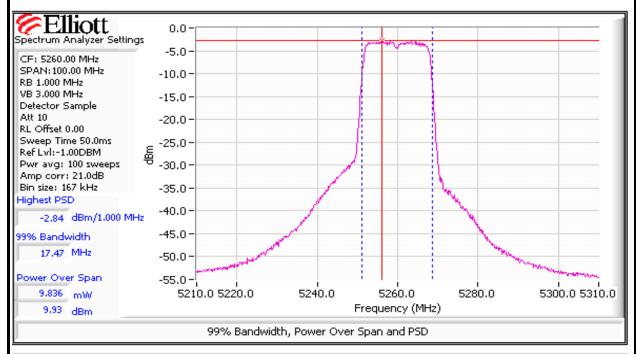
12.0

5700

31.5

19.0

17.6

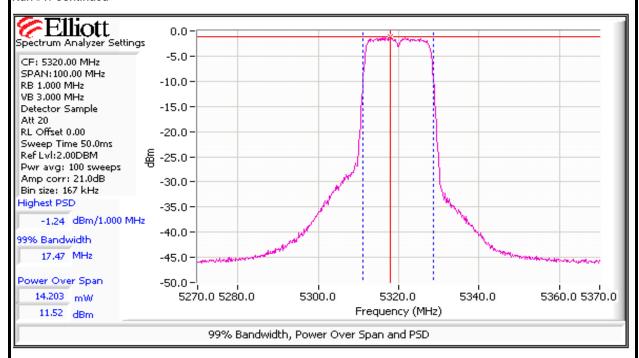

Pass

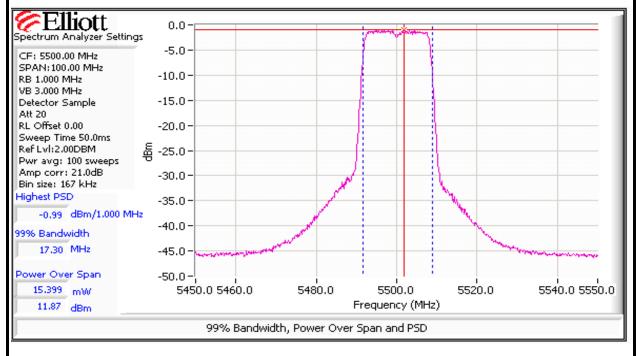
Elliott Client More Notworks

EMC Test Data

~			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
woden.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1: Continued

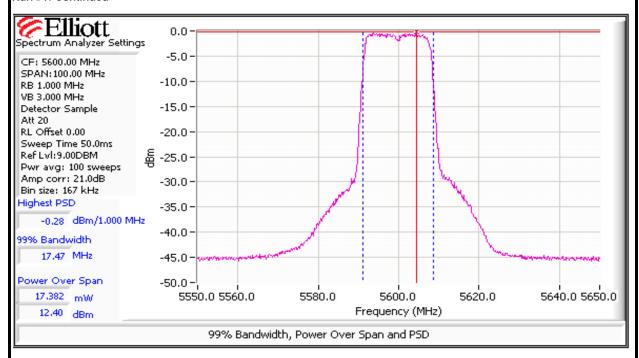


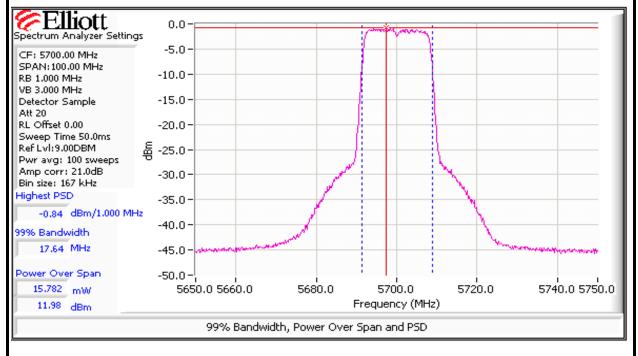

Elliott

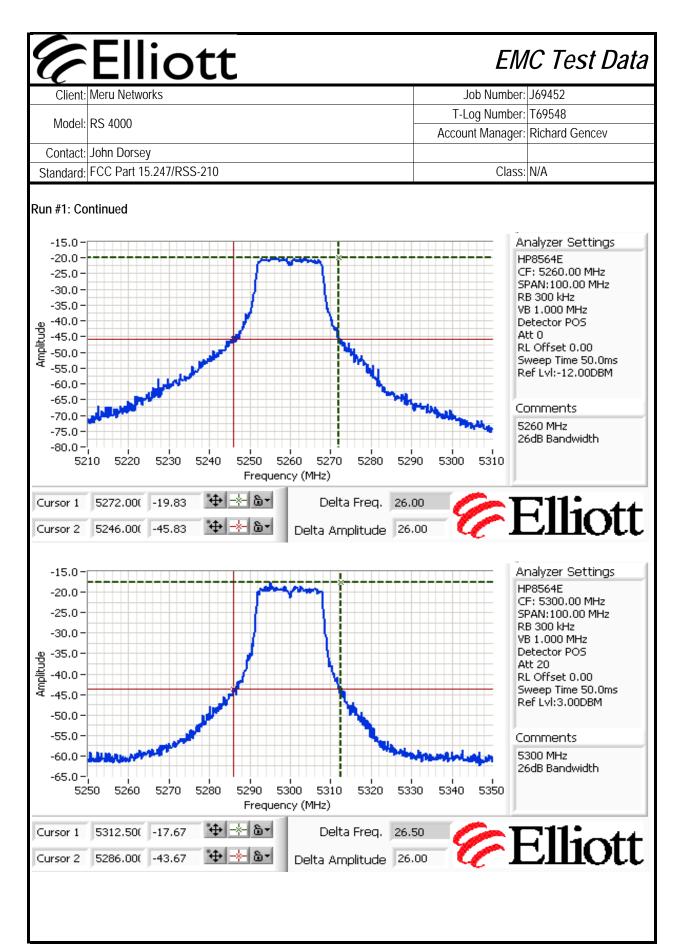
EMC Test Data

~			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
woden.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

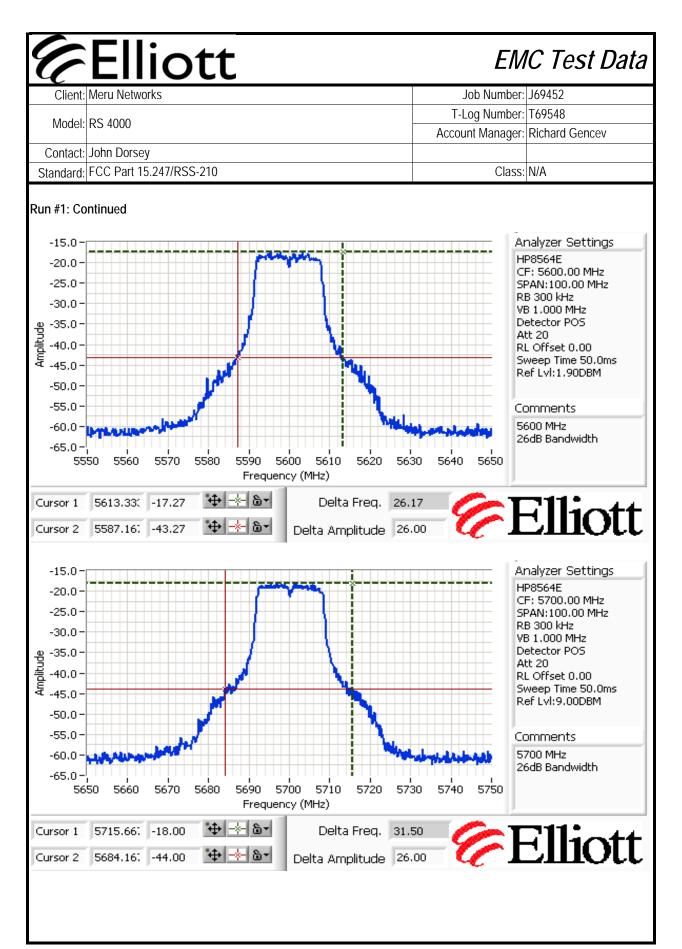
Run #1: Continued




Elliott


EMC Test Data

~			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
woden.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A


Run #1: Continued

Elliott EMC Test Data Job Number: J69452 T-Log Number: T69548 Model: RS 4000 Account Manager: Richard Gencev Contact: John Dorsey Standard: FCC Part 15.247/RSS-210 Class: N/A Run #2: Peak Excursion Measurement Plots Showing Peak Excursion Trace A: RBW = VBW = 1MHz Sampled (Plot 0) and Peak (Plot 1) Traces **Elliott** 10.0 8.0 Plot 0 6.0 Plot 1 4.0 Settings for plot 0 2.0 CF: 5260.00 MHz Amplitude 0.0 SPAN:100.00 MHz RB 1,000 MHz -2.0 VB 3,000 MHz Detector Sample -4.0 Att 10 RL Offset 0.00 -6.0 Sweep Time 50.0ms Ref Lvl:-1.00DBM -8.0 Pwr avg: 100 sweeps -10.0 Amp corr: 21.0dB -12.0 = Settings for plot 1 5260 5262 5270 5254 5256 5258 5264 5266 5268 5252 CF: 5260.00 MHz Frequency (MHz) SPAN:100.00 MHz RB 1,000 MHz Peak Excursion (Plot 1 - Plot 0) VB 3.000 MHz Detector POS Att 10 RL Offset 0.00 Sweep Time 50.0ms Ref Lvl:-1.00DBM 10.0 Amp corr: 21.0dB Max Hold 20 sweeps 8.0 Amplitude 6.0 Peak PSD (Plot 0) -2.8 dBm/1.000 4.0 Peak PSD (Plot 1) 2.0 8.3 dBm/1.000 0.0 Maximum Peak -2.0

-4.0

-5.0 - | | | 5252

5254

5256

5258

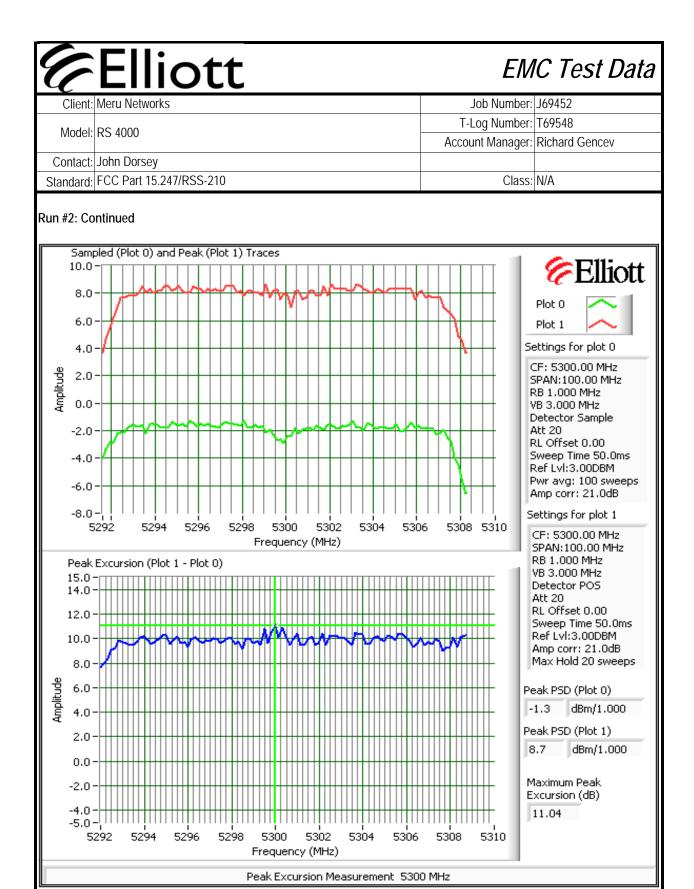
5260

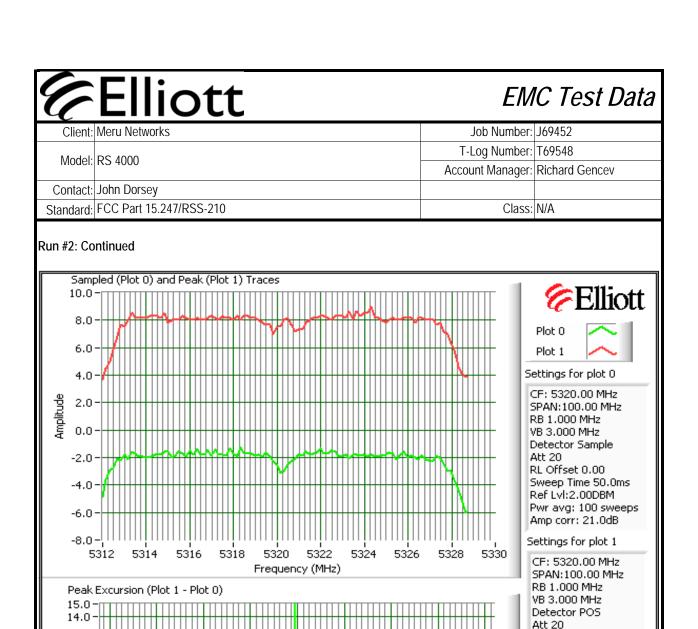
Frequency (MHz)

5262

5264

Peak Excursion Measurement 5260 MHz


5266


5268

5270

Excursion (dB)

12.53

10.0

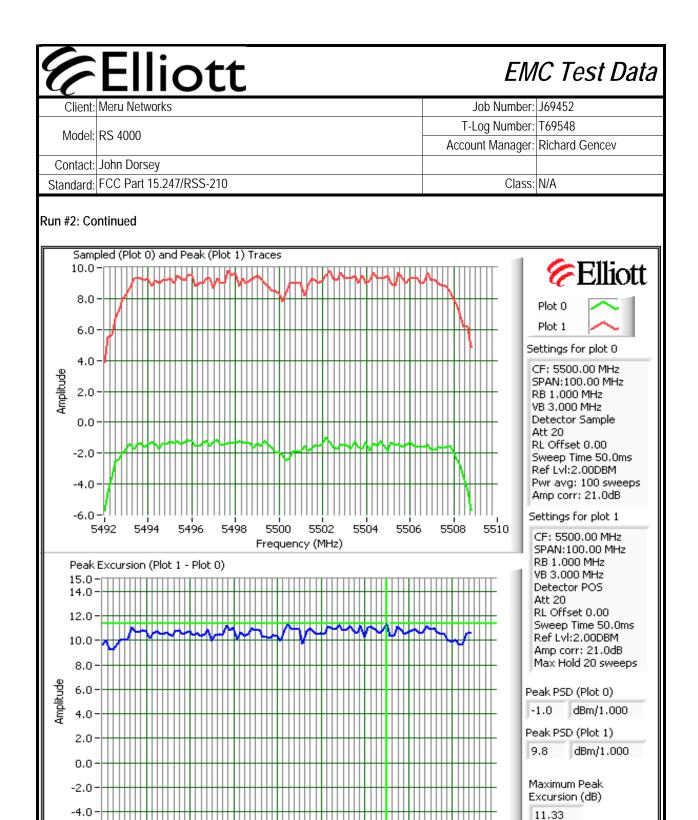
8.0 6.0

4.0

2.0

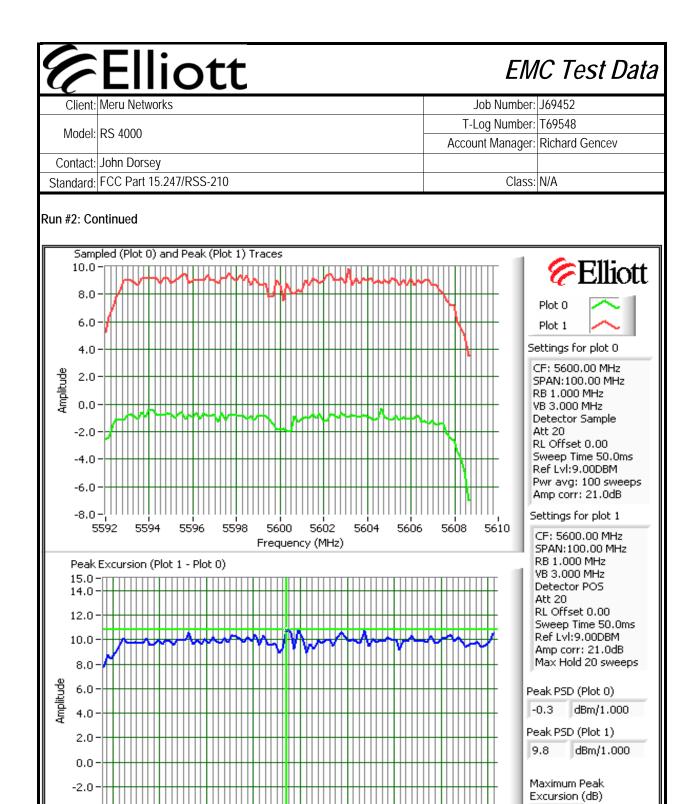
0.0

RL Offset 0.00 Sweep Time 50.0ms Ref Lvl:2.00DBM


Amp corr: 21.0dB Max Hold 20 sweeps

Peak PSD (Plot 0) -1.2 dBm/1.000

Peak PSD (Plot 1)


dBm/1.000

9.0

Frequency (MHz)

Peak Excursion Measurement 5500 MHz

-4.0 -

5592

-5.0-||||||||||| 5594

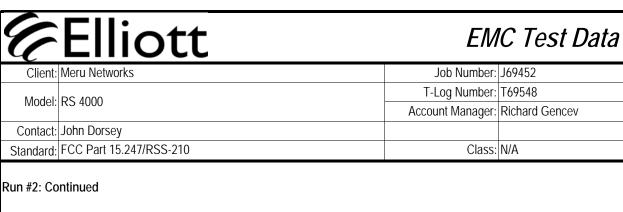
5596

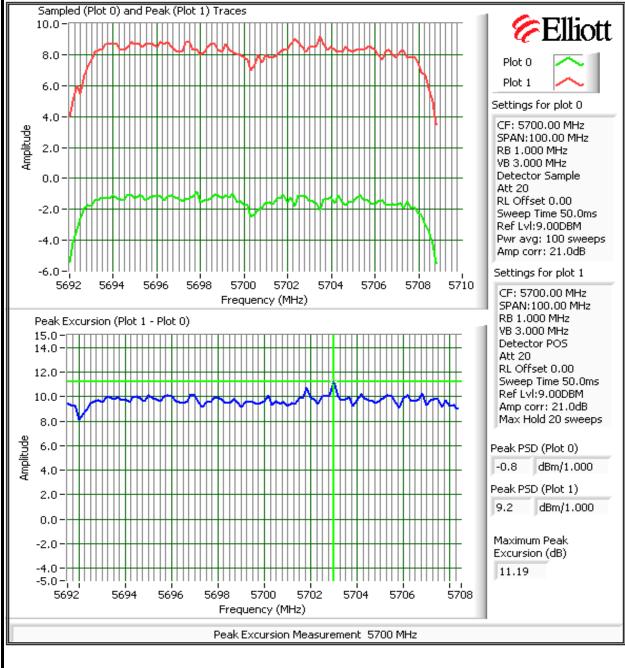
5598

5600

Frequency (MHz)

5602


Peak Excursion Measurement 5600 MHz


5604

5606

5608

10.79

Elliot	ct
---------------	----

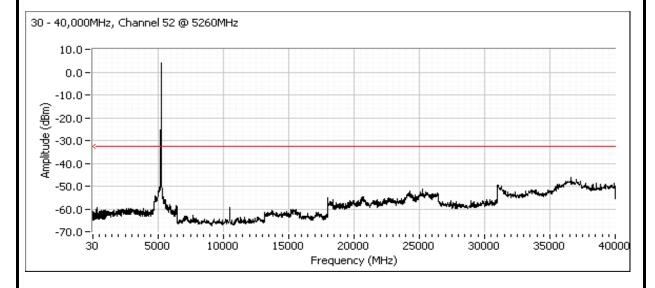
V			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

Maximum Antenna Gain: 5.5 dBi

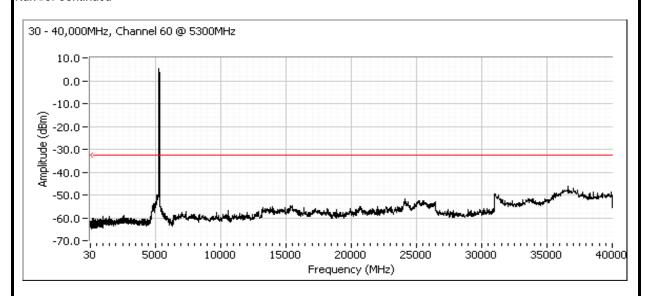
Spurious Limit: $-27 \, dBm/MHz \, eirp$ Limit Used On Plots $^{Note \, 1}$: $-32.5 \, dBm/MHz$

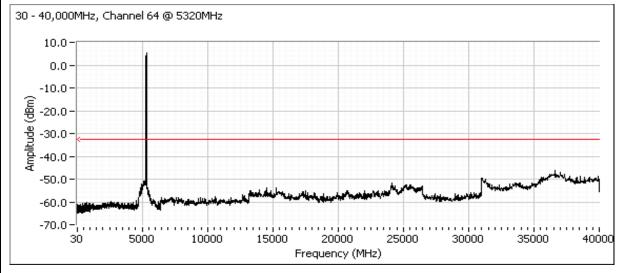
Note 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

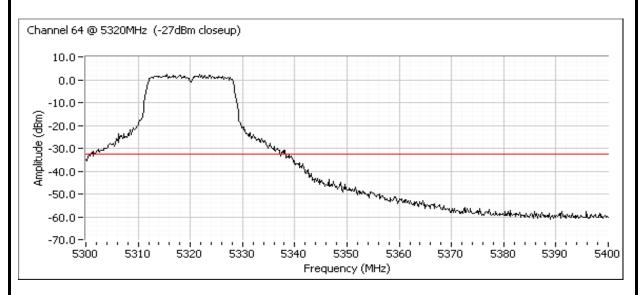

Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test.

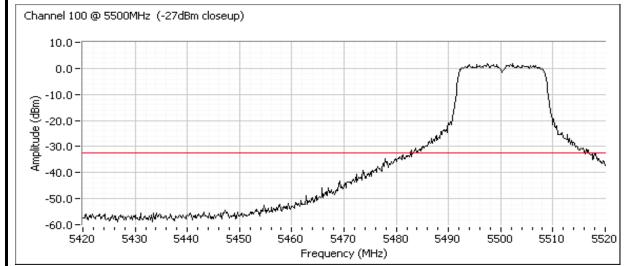
Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP

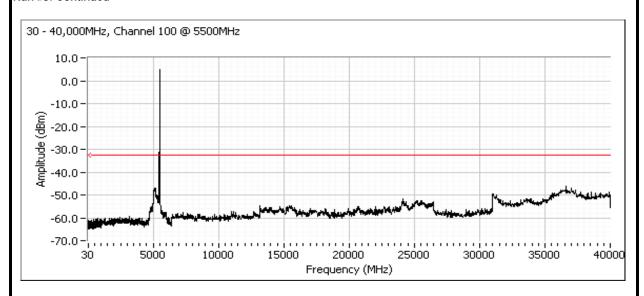
Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.

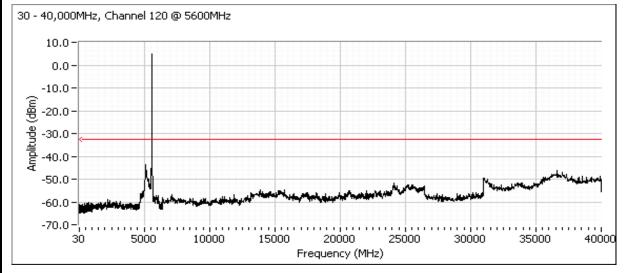

Note 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

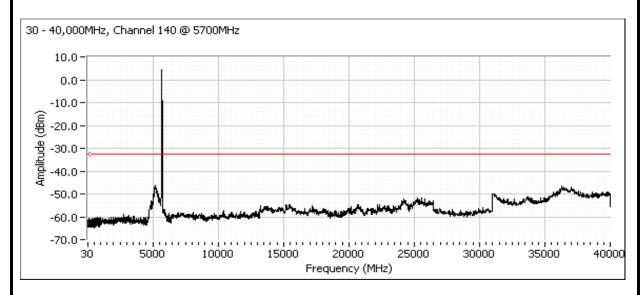

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

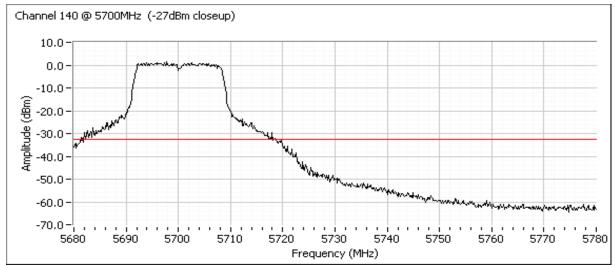

\sim			
Client:	Meru Networks	Job Number:	J69452
Madal	RS 4000	T-Log Number:	T69548
Model.	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A




~			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A




~			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A



V			
Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Antenna Port Tests - FCC Part 15.E and RSS-210 A9

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/17/2007 0:00 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 12 °C

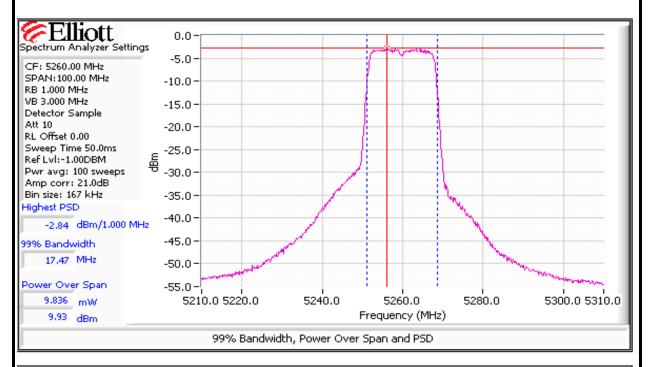
Rel. Humidity: 74 %

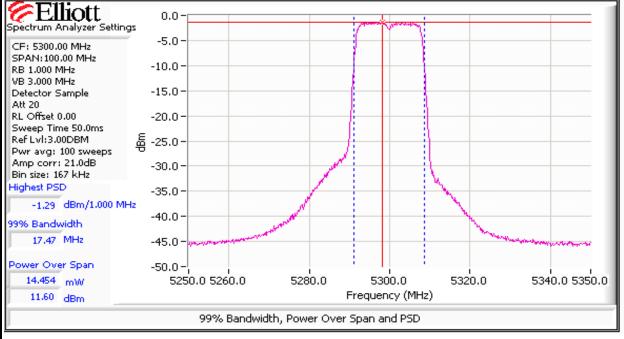
Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	11.6dBm
1	Power, 5470 - 5725MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	12.4dBm
1	PSD, 5250 - 5350MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	-1.24dBm/MHz
1	PSD, 5470 - 5725MHz	15.407(a) (2) RSS 210 A9.2(2)	Pass	-0.28dBm/MHz
1	26dB Bandwidth	15.407	Pass	> 20 MHz
1	99% Bandwidth	RSS 210	Pass	17.6MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.53dBm
3	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the -27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:	Meru Netv	vorks	ott				l _i	ob Number:	169452	
Oliciti	Wicha Hote	VOINS						og Number:		
Model:	RS 4000							0	Richard Gen	CEV
Contact	John Dors	:01					Accoun	it iviariager.	Michard Och	
		,	CC 210					Class:	NI/A	
	FCC Part							Class:	IV/A	
un #1: Ba	ndwidth, (Jutput P	ower and	Power spect	iral Density	1				
	Antone	ao Coin	7	۹D:						
	Anteni	ia Gain:	7	an						
requency	Software	Ban	dwidth	Output Po	wer ¹ dBm	Power	P	SD ² dBm/M	1H7	
(MHz)	Setting	26dB	99%4	Measured	Limit	(Watts)			RSS Limit ³	Result
5260	19.0	26.0	17.5	9.9	23.0	0.010	-2.84	10.0	11.0	Pass
5300	19.0	26.5	17.5	11.6	23.0	0.014	-1.29	10.0	11.0	Pass
5320	19.0	26.0	17.5	11.5	23.0	0.014	-1.24	10.0	11.0	Pass
5500	19.0	26.8	17.3	11.9	23.0	0.015	-0.99	10.0	11.0	Pass
5600	19.0	26.2	17.5	12.4	23.0	0.017	-0.28	10.0	11.0	Pass
5700	19.0	31.5	17.6	12.0	23.0	0.016	-0.84	10.0	11.0	Pass
	1									
	Output po	wer meas	sured using	a spectrum	analyzer (se	ee plots belo	w):			
Note 1:	RBW=1M	Hz, VB=3	BMHz, sam	ple detector,	power aver	aging on (tra	ınsmitted sig	nal was cor	ntinuous) and	power
	integration	over 100	0 MHz							
NI I O	Measured	using the	e same ana	alyzer setting	s used for o	utput power.				
Note 2:										
Note 2:		10 the me	easured va	lue of the PS	SD (see note	e 3) must not	exceed the	average val	ue (calculatec	I from the

Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
iviouei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Elliott EMC Test Data Job Number: J69452 Client: Meru Networks T-Log Number: T69548 Model: RS 4000 Account Manager: Richard Gencev Contact: John Dorsey Standard: FCC Part 15.247/RSS-210 Class: N/A Run #1: Continued **Æ**Elliott 0.0 Spectrum Analyzer Settings -5.0 CF: 5320,00 MHz SPAN: 100.00 MHz -10.0 RB 1,000 MHz VB 3,000 MHz -15.0-Detector Sample Att 20 RL Offset 0.00 -20.0 Sweep Time 50.0ms Ref Lvl:2.00DBM 튥 -25.0 Pwr avg: 100 sweeps Amp corr: 21.0dB -30.0 Bin size: 167 kHz Highest PSD -35.0 -1.24 dBm/1.000 MHz -40.0 99% Bandwidth 17.47 MHz -45.0 Power Over Span -50.0 -14.203 mW 5270.0 5280.0 5300.0 5320.0 5340.0 5360.0 5370.0 Frequency (MHz) 11.52 dBm 99% Bandwidth, Power Over Span and PSD **Æ**Elliott 0.0 Spectrum Analyzer Settings -5.0 CF: 5500,00 MHz SPAN: 100.00 MHz -10.0 RB 1,000 MHz VB 3,000 MHz -15.0 Detector Sample Att 20 RL Offset 0.00 -20.0 Sweep Time 50.0ms Ref Lvl:2.00DBM 튥 -25.0 Pwr avg: 100 sweeps Amp corr: 21.0dB -30.0 Bin size: 167 kHz Highest PSD -35.0 -0.99 dBm/1.000 MHz -40.0 99% Bandwidth 17.30 MHz -45.0

Power Over Span

15,399 mW

11.87 dBm

-50.0-

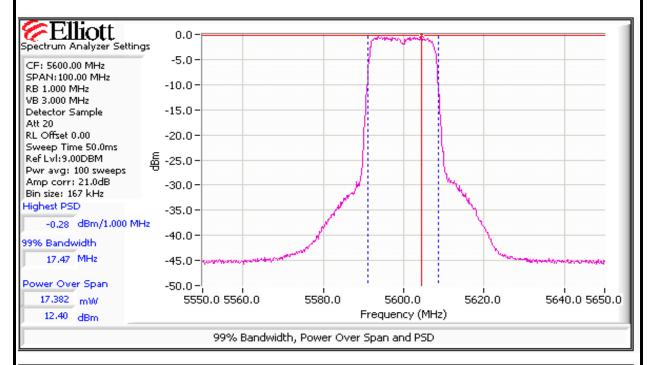
5450.0 5460.0

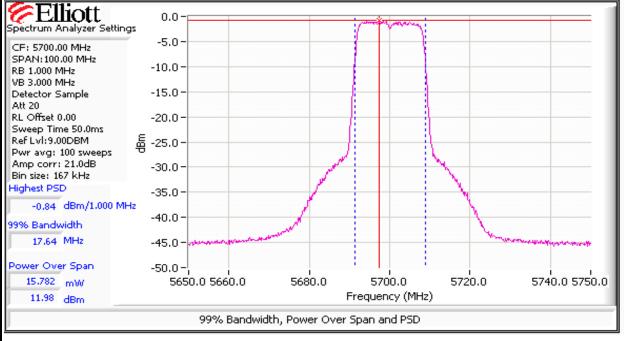
5500.0

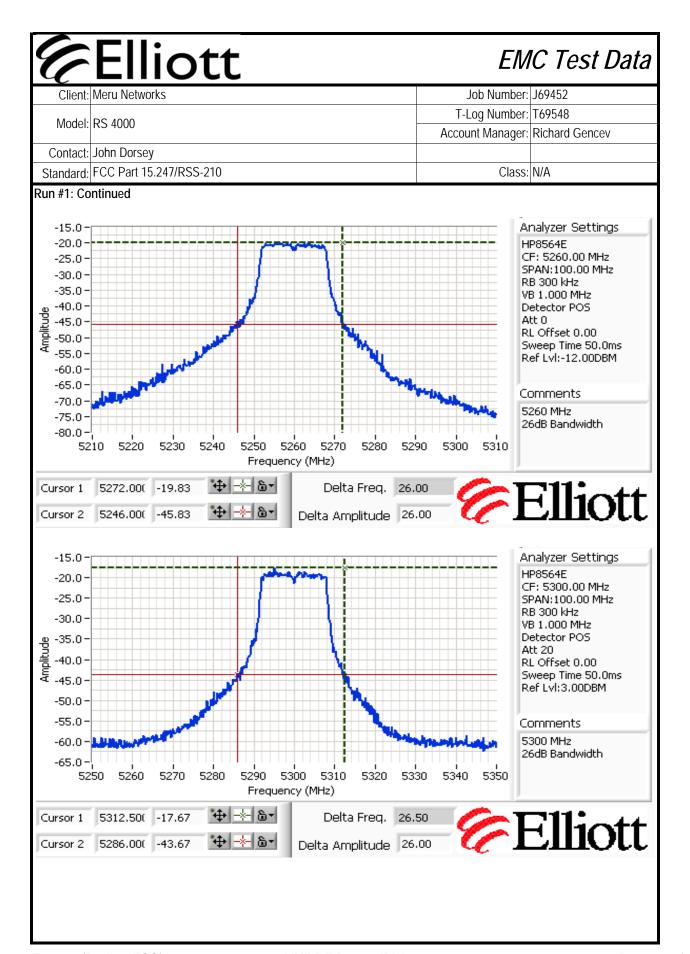
Frequency (MHz)

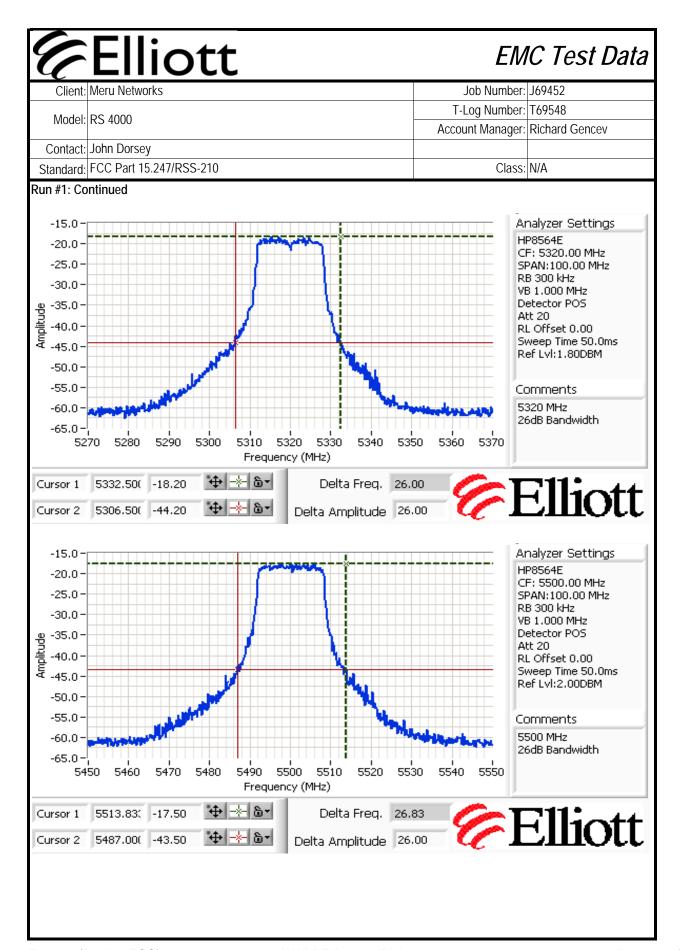
5520.0

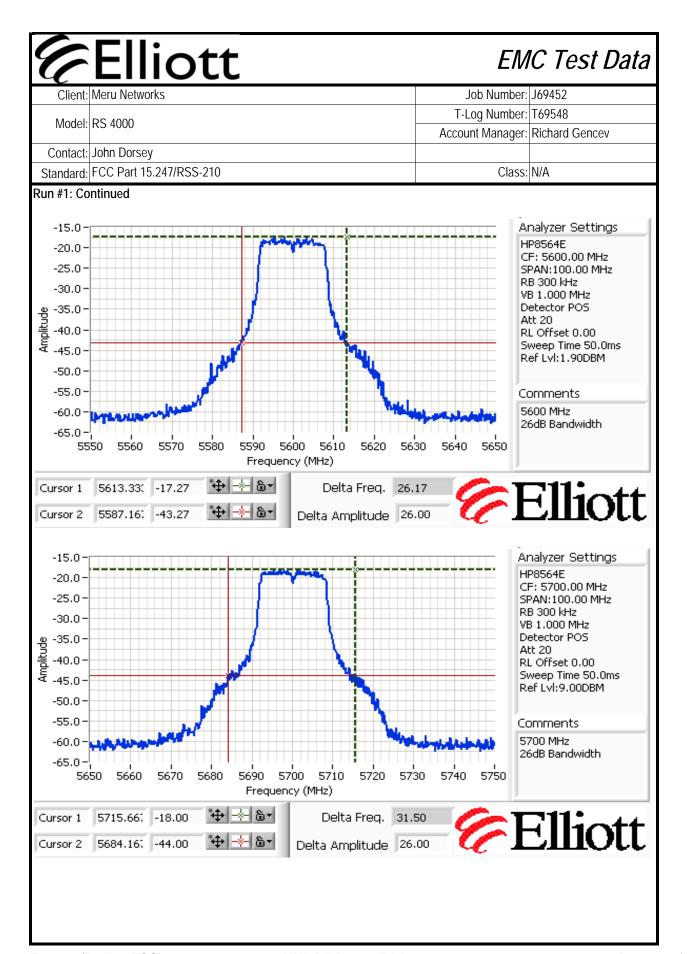
5480.0

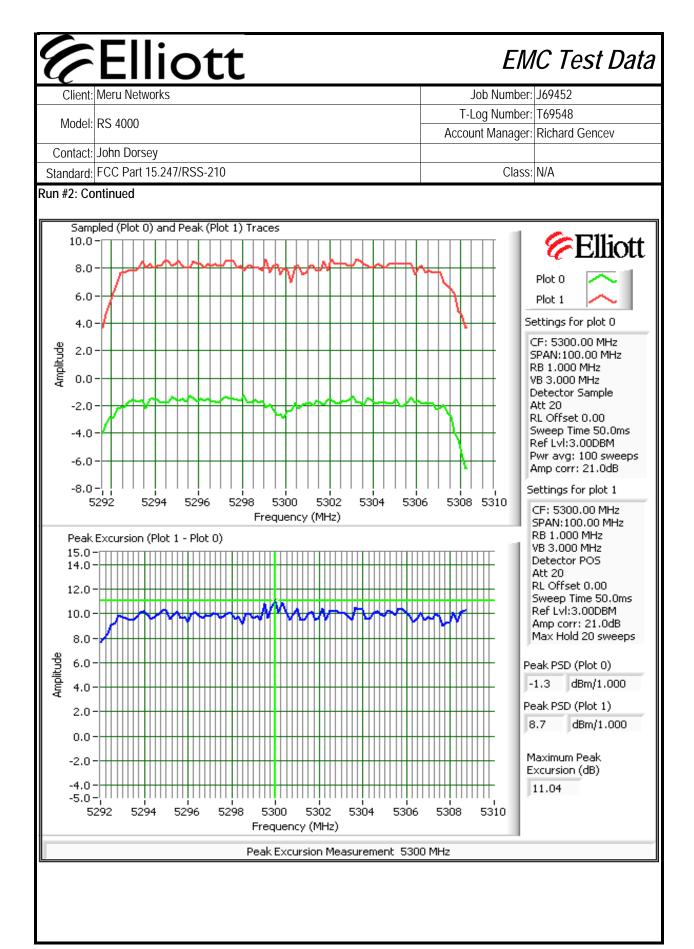

99% Bandwidth, Power Over Span and PSD

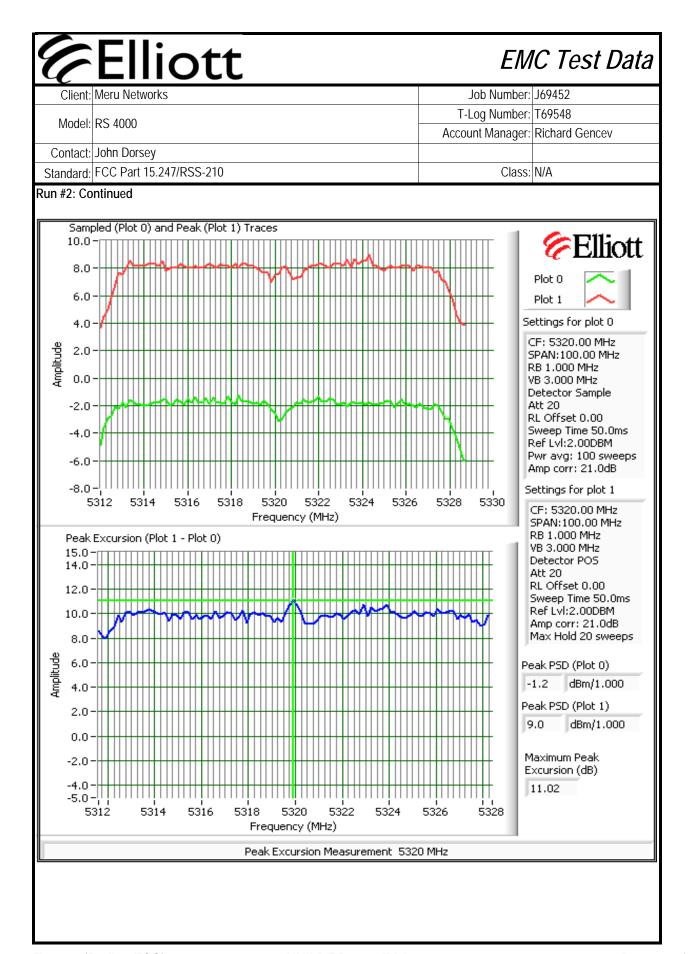

5540.0 5550.0

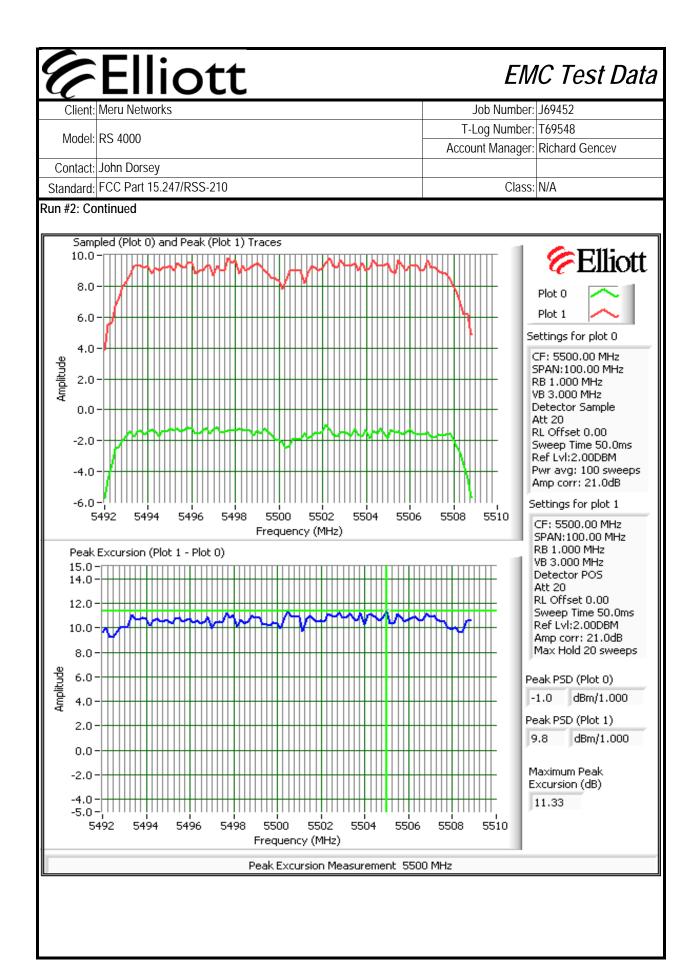

Elliott

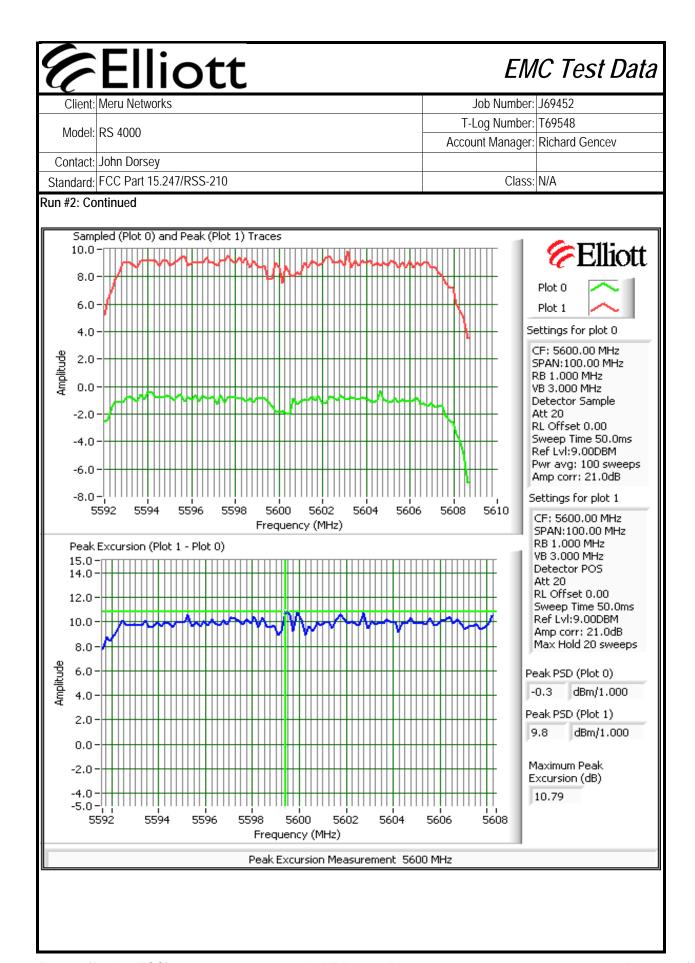

EMC Test Data

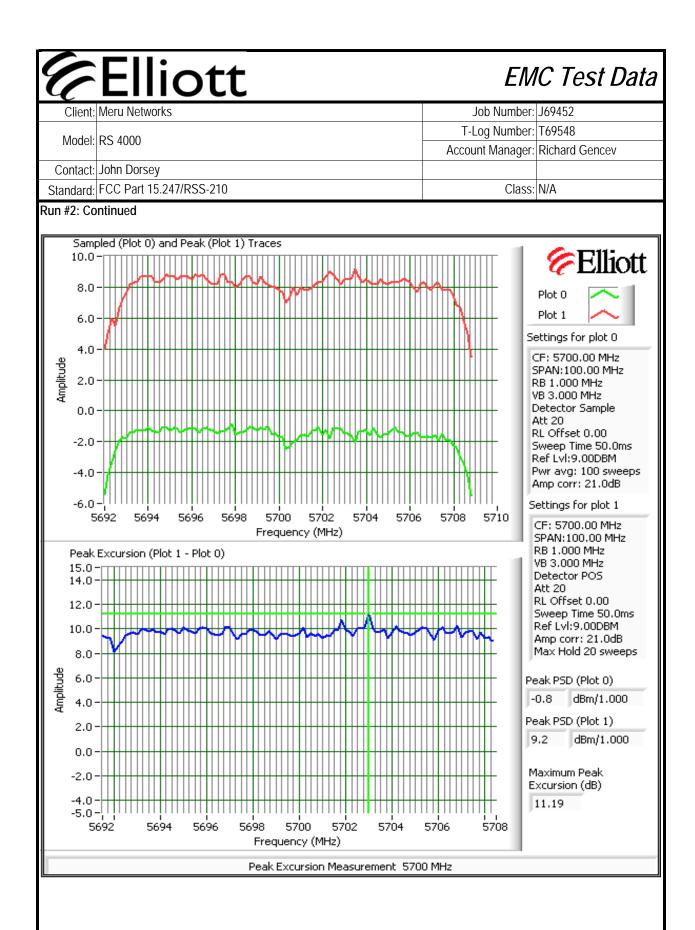

Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A








Elliott EMC Test Data Job Number: J69452 T-Log Number: T69548 Model: RS 4000 Account Manager: Richard Gencev Contact: John Dorsey Standard: FCC Part 15.247/RSS-210 Class: N/A Run #2: Peak Excursion Measurement Plots Showing Peak Excursion Trace A: RBW = VBW = 1MHz Sampled (Plot 0) and Peak (Plot 1) Traces **Elliott** 10.0 8.0 Plot 0 6.0 Plot 1 Settings for plot 0 2.0 CF: 5260.00 MHz Amplitude 0.0 SPAN:100.00 MHz RB 1.000 MHz -2.0 VB 3,000 MHz Detector Sample -4.0Att 10 RL Offset 0.00 -6.0 Sweep Time 50.0ms Ref Lvl:-1.00DBM -8.0 Pwr avg: 100 sweeps -10.0Amp corr: 21.0dB -12.0 -Settings for plot 1 5268 5270 5256 5258 5260 5262 5264 5266 CF: 5260.00 MHz Frequency (MHz) SPAN:100.00 MHz RB 1.000 MHz Peak Excursion (Plot 1 - Plot 0) VB 3.000 MHz 15.0 Detector POS 14.0 Att 10 RL Offset 0.00 12.0 Sweep Time 50.0ms Ref Lvl:-1.00DBM 10.0 Amp corr: 21.0dB Max Hold 20 sweeps 8.0 6.0 Peak PSD (Plot 0) -2.8 dBm/1.000 4.0 Peak PSD (Plot 1) 2.0 dBm/1.000 0.0 Maximum Peak -2.0 Excursion (dB) -4.012.53 -5.0-||| 5254 5256 5258 5260 5266 5268 5270 5252 5262 5264 Frequency (MHz)


Peak Excursion Measurement 5260 MHz

Elliott

V			
Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei:	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

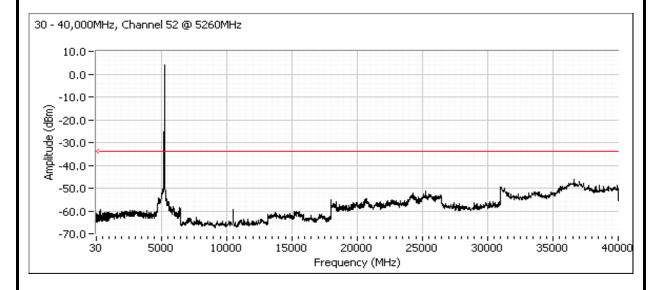
Run #3: Out Of Band Spurious Emissions - Antenna Conducted

Maximum Antenna Gain:

7 dBi

Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

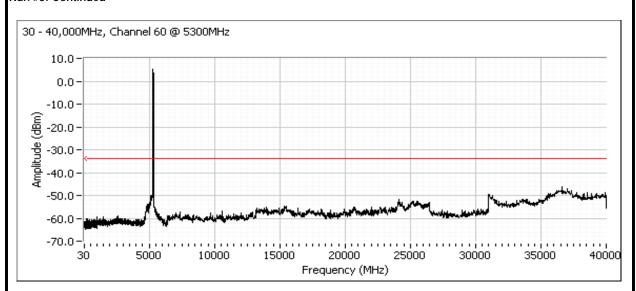
Spurious Limit:

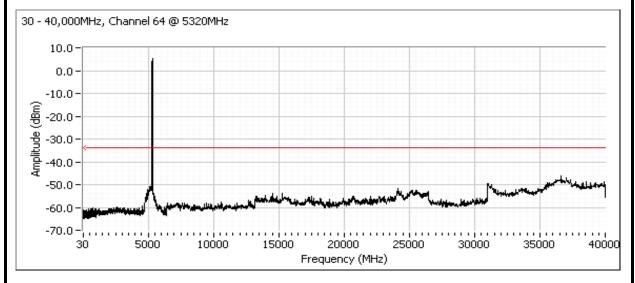

-27 dBm/MHz eirp

Limit Used On Plots Note 1:

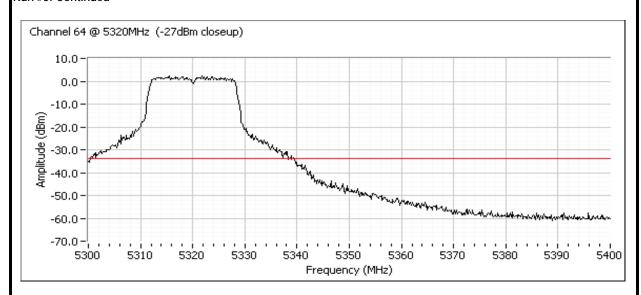
-34 dBm/MHz

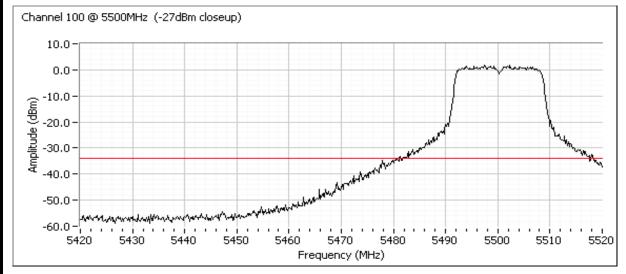
	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into
Note 1:	consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for
Note 1.	signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the
	antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eiro limit also applies in the 5150 - 5250 MHz band.

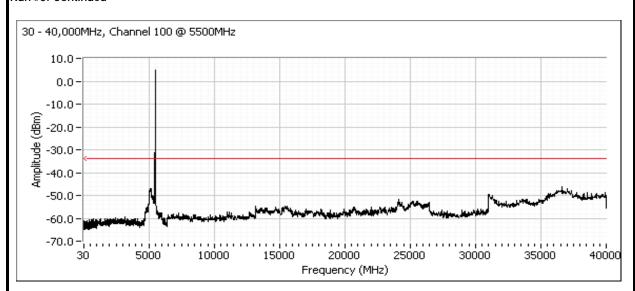

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

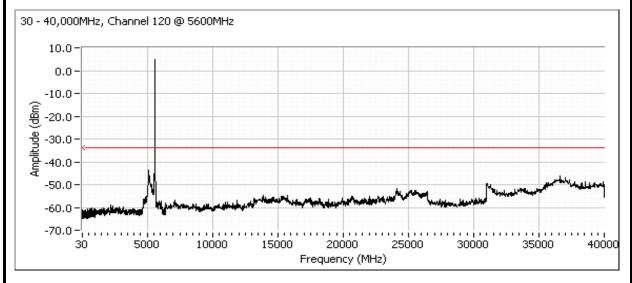


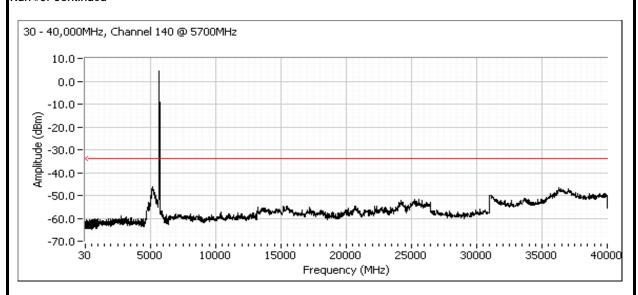
Note 5:

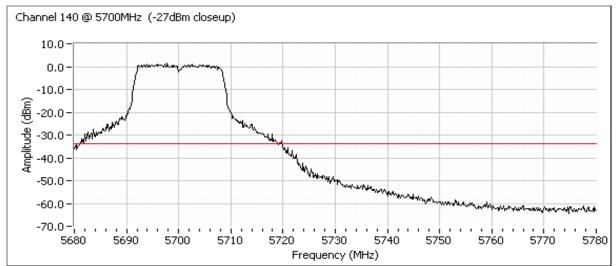

V			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei:	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A




\sim			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number: T69548	
iviodei:	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A




~			
Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
woden:	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A



\sim			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number: T69548	
iviodei:	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Client:	Meru Networks	Job Number:	J69452	
Madalı	RS 4000	T-Log Number: T69548		
wodei:	K3 4000	Account Manager:	Richard Gencev	
Contact:	John Dorsey			
Standard:	FCC Part 15.247/RSS-210	Class:	N/A	

Radiated Spurious Emissions - FCC Part 15.E and RSS-210 A9

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

Run #	Freq MHz	Mode	Antenna	Power Setting	Limit	Margin/Result
1	5260	а	Omni Directional with	19	15.209/15.407(b)/	84.2dBµV/m @ 10527.0MHz
			5.5dBi Gain		RSS-210 A9 and 2.6	(-4.1dB)
1	5300	а	Omni Directional with	19	15.209/15.407(b)/	42.7dBµV/m @ 10595.2MHz
	3300	a	5.5dBi Gain	17	RSS-210 A9 and 2.6	(-11.3dB)
1	E220		Omni Directional with	19	15.209/15.407(b)/	52.6dBµV/m @ 5350.3MHz
ı	5320	а	5.5dBi Gain	19	RSS-210 A9 and 2.6	(-1.4dB)
2	FF00	_	Omni Directional with	10	15.209/15.407(b)/	51.3dBμV/m (367.3μV/m) @
2	5500	а	5.5dBi Gain	19	RSS-210 A9 and 2.6	5457.9MHz (-2.7dB)
2	F/00	_	Omni Directional with	10	15.209/15.407(b)/	40.952.5 (110.9.5) @
2	5600	а	5.5dBi Gain	19	RSS-210 A9 and 2.6	16799.711199.3 (-13.1dB)
2	F700	_	Omni Directional with	10	15.209/15.407(b)/	42.549.9 (133.4.9) @
2	5700	а	5.5dBi Gain	19	RSS-210 A9 and 2.6	17098.611398.6 (-11.5dB)
	5000	D) (Omni Directional with		D00 0EN 440	41.7dBμV/m (121.6μV/m) @
3	5300	RX	5.5dBi Gain	-	RSS-GEN 4.10	125.018MHz (-1.8dB)
2	EEOO	DV	Omni Directional with		RSS-GEN 4.10	41.7dBµV/m (121.6µV/m) @
3	5500	RX	5.5dBi Gain	•	KSS-GEN 4.10	125.018MHz (-1.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number: T69548	
woder.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1: TX Radiated Spurious Emissions for 5250-5350 MHz band, 30 - 40000 MHz

Date of Test: 11/29/2007 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: SVOATS # 2 EUT Voltage: POE

Ambient Conditions: Temperature: 12.2 °C

Rel. Humidity: 44 %

Run #1a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5260 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	7 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10527.00	84.2	Н	88.3	-4.1	PK	88	2.1	
10527.17	77.2	V	88.3	-11.1	PK	36	1.0	
10519.44	60.7	Н	74.0	-13.3	PK	69	1.5	
10519.44	40.6	Н	54.0	-13.4	AVG	69	1.5	
10519.20	38.1	V	54.0	-15.9	AVG	36	1.0	
15784.00	38.1	V	54.0	-15.9	AVG	242	1.0	
15778.33	38.0	Н	54.0	-16.0	AVG	336	1.0	
10519.20	52.9	V	74.0	-21.1	PK	36	1.0	
15784.00	50.4	V	74.0	-23.6	PK	242	1.0	
15778.33	49.7	Н	74.0	-24.3	PK	336	1.0	
10527.00	38.7	Н	68.3	-29.6	AVG	88	2.1	
10527.17	38.6	V	68.3	-29.7	AVG	36	1.0	

Run #1b: TX Radiated Spurious Emissions, 30 - 40000 MHz. Center Channel @ 5300 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

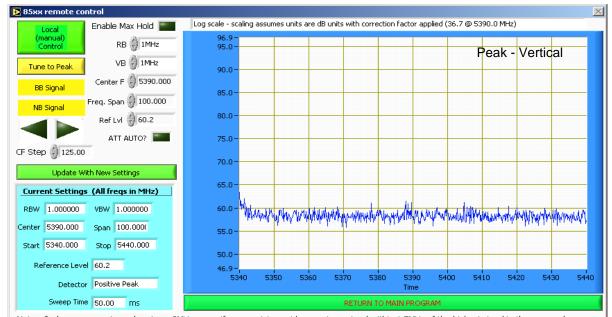
Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10595.17	42.7	V	54.0	-11.3	AVG	140	1.0	
10594.67	39.9	Н	54.0	-14.1	AVG	138	1.0	
15938.50	38.9	V	54.0	-15.1	AVG	29	1.0	
15935.83	38.7	Н	54.0	-15.3	AVG	323	1.0	
10595.17	54.5	V	74.0	-19.5	PK	140	1.0	
10594.67	52.2	Н	74.0	-21.8	PK	138	1.0	
15938.50	50.8	V	74.0	-23.2	PK	29	1.0	
15935.83	49.9	Н	74.0	-24.1	PK	323	1.0	
								•

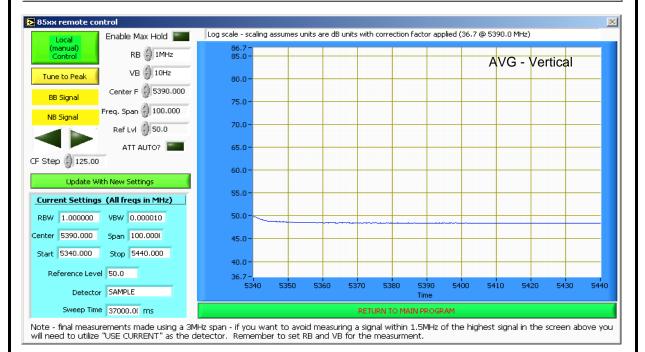
C	Elliott	EM	C Test Data			
Client:	Meru Networks	Job Number:	J69452			
Madali	RS 4000	T-Log Number:	T69548			
wouei.		Account Manager:	Richard Gencev			
Contact:	John Dorsey					
Standard:	FCC Part 15.247/RSS-210	Class:	N/A			
Run #1c: TX Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz						

Power Setting: 19
Antenna: Omni Directional with 5.5dBi Gain

requency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5313.080	91.1	V	-	-	AVG	96	1.0	Fundamental
5313.080	99.4	V	-	-	PK	96	1.0	Fundamental
5315.080	101.1	Н	-	-	AVG	263	1.2	Fundamental
5315.080	109.8	Н	-	-	PK	263	1.2	Fundamental
Other Spuri	ous Radiat	ed Emis						
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10645.17	40.1	V	54.0	-13.9	AVG	56	1.0	
10641.00	40.0	Н	54.0	-14.0	AVG	64	1.0	
15995.67	38.7	V	54.0	-15.3	AVG	13	1.0	
15931.67	38.5	Н	54.0	-15.5	AVG	139	1.0	
10645.17	52.1	V	74.0	-21.9	PK	56	1.0	
10641.00	52.0	Н	74.0	-22.0	PK	64	1.0	
15995.67	50.5	V	74.0	-23.5	PK	13	1.0	
15931.67	50.2	Н	74.0	-23.8	PK	139	1.0	
			eld Strength					To .
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.330	52.6	Н	54.0	-1.4	AVG	263	1.2	
5350.330	65.5	Н	74.0	-8.5	PK	263	1.2	
5352.220 5352.220	49.8	V	54.0	-4.2	AVG	96	1.0	
	61.6	V	74.0	-12.4	PK	96	1.0	



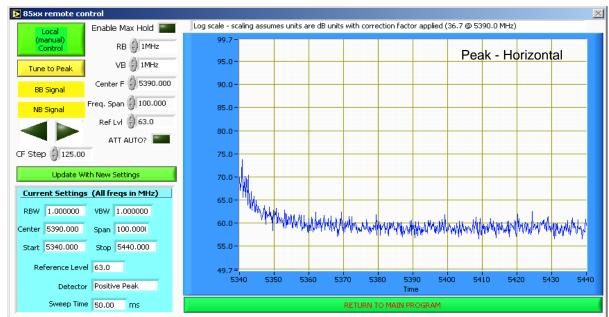
Client:	Meru Networks	Job Number:	J69452
Madal	RS 4000	T-Log Number:	T69548
wodel.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A


Run #1c: TX Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz

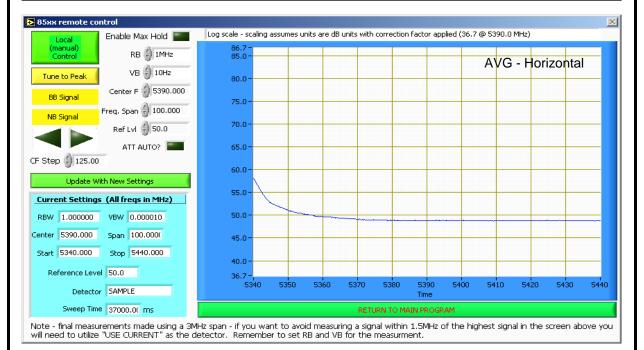
Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.



V			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A


Run #1c: TX Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2: TX Radiated Spurious Emissions for 5470 to 5725 MHz band, 30 - 40000 MHz

Date of Test: 11/29/2007 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: SVOATS #2 EUT Voltage: POE

Ambient Conditions: Temperature: 12.2 °C

Rel. Humidity: 44 %

Run #2a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5500 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

Fundamental Radiated Field Strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5500.980	100.5	Н	-	-	AVG	264	1.3	Fundamental	
5500.980	109.1	Н	-	-	PK	264	1.3	Fundamental	
5493.670	89.7	V	-	-	AVG	303	1.9	Fundamental	
5493.670	98.3	V	-	-	PK	303	1.9	Fundamental	

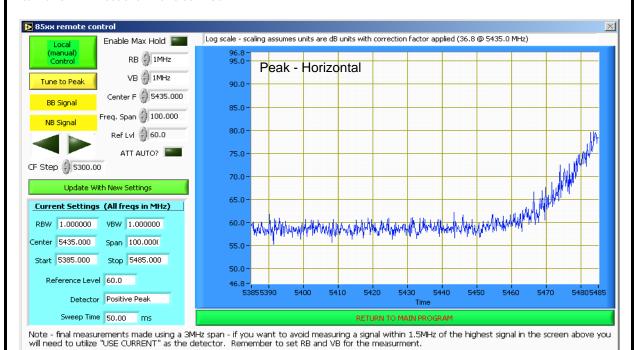
Band Edge Signal Radiated Field Strength - Restricted Band at 5.46 GHz

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5457.890	51.3	Н	54.0	-2.7	AVG	264	1.3	
5457.890	63.8	Н	74.0	-10.2	PK	264	1.3	
5458.880	49.9	V	54.0	-4.1	AVG	303	1.9	
5458.880	61.5	٧	74.0	-12.5	PK	303	1.9	

Band Edge Signal Radiated Field Strength - 27dBm/MHz at 5470 MHz

ı	Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
ı	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
ı	5469.680	55.8	Η	68.3	-12.5	AVG	264	1.3	
ı	5469.680	72.6	Η	88.3	-15.7	PK	264	1.3	
ı	5469.530	50.6	V	68.3	-17.7	AVG	303	1.9	
ı	5469.530	64.4	V	88.3	-23.9	PK	303	1.9	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm/MHz (~68dBuV/m).



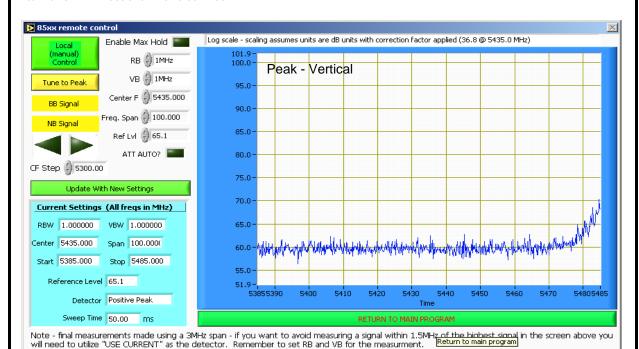
~			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

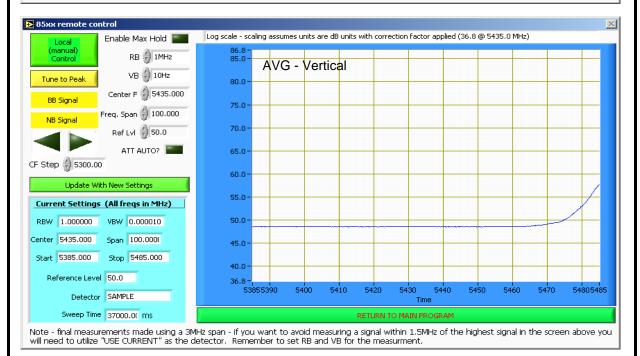
Run #2a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5500 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

85xx remote control Log scale - scaling assumes units are dB units with correction factor applied (36.8 @ 5435.0 MHz) Enable Max Hold RB 🗐 1MHz AVG - Horizontal VB 🖨 10Hz Tune to Peak Center F 🖨 5435.000 75.0 Freq. Span 💮 100.000 NB Signal 70.0 Ref Lvl 🔵 50.0 ATT AUTO? CF Step 🖨 5300.00 60.0 Update With New Settings 55.0 Current Settings (All freqs in MHz) RBW 1.000000 VBW 0.000010 Center 5435.000 Span 100.0000 45.0 Start 5385.000 Stop 5485.000 Reference Level 50.0 5450 5460 5470 54805485 Detector SAMPLE Sweep Time 37000.00 ms RETURN TO MAIN PROGRAM Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.




~			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5500 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

V			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5500 MHz

Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11000.78	42.4	Н	54.0	-11.6	AVG	352	1.0	
11000.78	54.4	Н	74.0	-19.6	PK	352	1.0	
16499.69	40.4	Н	54.0	-13.6	AVG	155	1.0	
16499.69	52.2	Н	74.0	-21.8	PK	155	1.0	
10999.12	41.6	V	54.0	-12.4	AVG	86	1.0	
10999.12	52.9	V	74.0	-21.1	PK	86	1.0	
16499.05	40.4	V	54.0	-13.6	AVG	170	1.0	
16499.05	52.2	V	74.0	-21.8	PK	170	1.0	

Run #2b: TX Radiated Spurious Emissions, 30 - 40000 MHz. Center Channel @ 5600 MHz

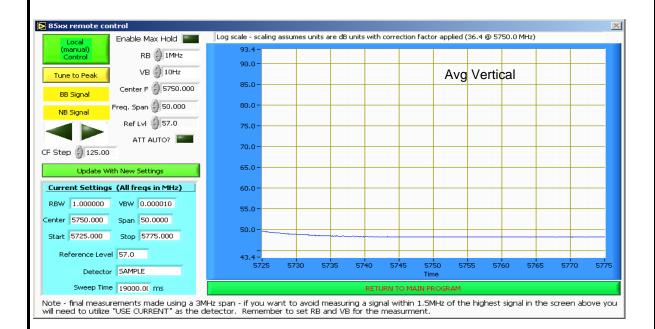
Power Setting: 19

Antenna: Omni Directional with 5.5dBi Gain

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11200.53	40.1	V	54.0	-13.9	AVG	79	1.0	
11200.53	52.3	V	74.0	-21.7	PK	79	1.0	
16799.46	40.1	V	54.0	-13.9	AVG	0	1.0	
16799.46	51.4	V	74.0	-22.6	PK	0	1.0	
11199.30	40.7	Н	54.0	-13.3	AVG	175	1.0	
11199.30	52.5	Н	74.0	-21.5	PK	175	1.0	
16799.72	40.9	Н	54.0	-13.1	AVG	136	1.0	
16799.72	52.5	Н	74.0	-21.5	PK	136	1.0	
	•			•		•	•	

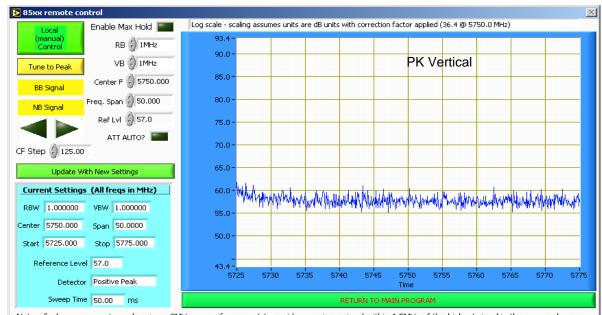
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m).

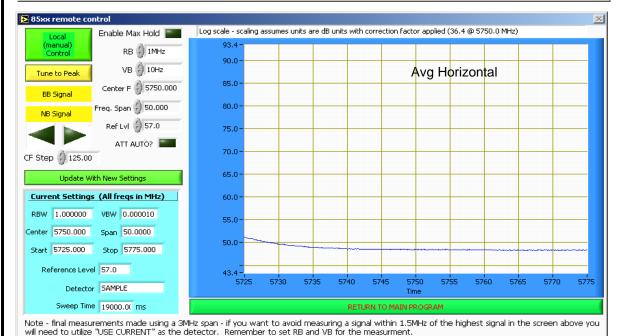

Client:	Meru Networks	Job Number:	J69452
Model:	PS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2c: TX Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5700 MHz

Power Setting: 19

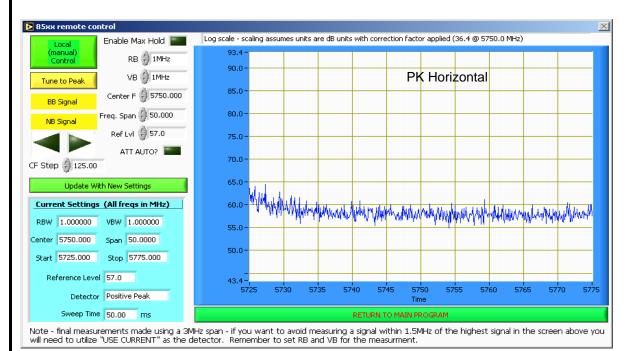
Antenna: Omni Directional with 5.5dBi Gain


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5698.870	93.4	V	-	-	AVG	156	1.0	Fundamental
5698.870	101.7	V	-	-	PK	156	1.0	Fundamental
5700.940	97.4	Н	-	-	AVG	190	1.4	Fundamental
5700.940	106.9	Н	-	-	PK	190	1.4	Fundamental



V			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2c: Continued


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

V			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2c: Continued

Band Edge Signal Radiated Field Strength - 27dBm/MHz at 5725 MHz

Frequency	Level	Pol	15.209	7 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5726.090	51.0	V	68.3	-17.3	AVG	156	1.0	Note 1
5726.090	64.1	V	88.3	-24.2	PK	156	1.0	Note 1
5725.120	53.8	Н	68.3	-14.5	AVG	190	1.4	Note 1
5725.120	69.7	Н	88.3	-18.6	PK	190	1.4	Note 1

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11398.74	37.7	Н	54.0	-16.3	AVG	292	1.9	
11398.74	49.0	Н	74.0	-25.0	PK	292	1.9	
17098.94	41.9	Н	54.0	-12.1	AVG	287	1.0	
17098.94	53.2	Н	74.0	-20.8	PK	287	1.0	
11398.60	37.9	V	54.0	-16.1	AVG	88	1.0	
11398.60	49.9	V	74.0	-24.1	PK	88	1.0	
17098.62	42.5	V	54.0	-11.5	AVG	152	1.0	
17098.62	54.4	V	74.0	-19.6	PK	152	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m).

C		
Client: Meru Networks	Job Number:	J69452
Model: RS 4000	T-Log Number:	T69548
Model. RS 4000	Account Manager:	Richard Gencev
Contact: John Dorsey		
Standard: FCC Part 15.247/RSS-210	Class:	N/A

Run #3: RX Radiated Spurious Emissions, 30 - 18000 MHz

Antenna: Omni Directional with 5.5dBi Gain

Date of Test: 11/29/2007 Test Engineer: Rafael Varelas Test Location: SVOATS #2 Config. Used: 1 Config Change: None EUT Voltage: POE

Ambient Conditions:

Temperature: 6 °C

Rel. Humidity: 73 %

Run #3a: RX Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5300 MHz

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
125.02	41.7	V	43.5	-1.8	QP	76	1.3	
907.41	43.9	Н	46.0	-2.1	QP	114	1.0	
85.61	36.8	V	40.0	-3.2	QP	242	1.0	
750.07	42.6	Н	46.0	-3.4	QP	60	1.0	
36.16	35.6	V	40.0	-4.4	QP	178	1.0	
2500.150	48.7	Н	54.0	-5.3	AVG	213	1.0	
2624.580	48.2	Н	54.0	-5.8	AVG	299	1.0	
453.29	40.1	Н	46.0	-5.9	QP	171	1.9	
110.02	37.6	V	43.5	-5.9	QP	333	1.0	
777.22	39.5	Н	46.0	-6.5	QP	95	1.0	Signal Sub.
2624.580	65.4	Н	74.0	-8.6	PK	299	1.0	
550.00	37.3	Н	46.0	-8.7	QP	100	1.0	Signal Sub.
250.02	36.0	Н	46.0	-10.0	QP	143	1.2	
2375.090	40.8	Н	54.0	-13.2	AVG	108	1.0	
1039.208	57.3	Н	74.0	-16.7	PK	300	1.0	
1039.208	35.0	Н	54.0	-19.0	AVG	300	1.0	
2500.150	52.1	Н	74.0	-21.9	PK	213	1.0	
2375.090	47.2	Н	74.0	-26.8	PK	108	1.0	
1361.600	24.3	V	54.0	-29.7	AVG	3	1.0	
1361.600	36.7	V	74.0	-37.3	PK	3	1.0	

V			
Client:	Meru Networks	Job Number:	J69452
Madal	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #3b: RX Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5600 MHz

Frequency	Level	Pol	RSS-	GEN	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
125.02	41.7	V	43.5	-1.8	QP	76	1.3	
907.41	43.9	Н	46.0	-2.1	QP	114	1.0	
85.61	36.8	V	40.0	-3.2	QP	242	1.0	
750.07	42.6	Н	46.0	-3.4	QP	60	1.0	
36.16	35.6	V	40.0	-4.4	QP	178	1.0	
2617.560	49.1	Н	54.0	-4.9	AVG	302	1.0	
453.29	40.1	Н	46.0	-5.9	QP	171	1.9	
110.02	37.6	V	43.5	-5.9	QP	333	1.0	
777.22	39.5	Н	46.0	-6.5	QP	95	1.0	Signal Sub.
550.00	37.3	Н	46.0	-8.7	QP	100	1.0	Signal Sub.
250.02	36.0	Н	46.0	-10.0	QP	143	1.2	
2500.260	41.3	Н	54.0	-12.7	AVG	155	1.1	
2617.560	58.9	Н	74.0	-15.1	PK	302	1.0	
2375.010	37.6	Н	54.0	-16.4	AVG	100	1.8	
1358.600	34.6	Н	54.0	-19.4	AVG	93	2.0	
2375.010	54.4	Н	74.0	-19.6	PK	100	1.8	
2500.260	53.3	Н	74.0	-20.7	PK	155	1.1	
1168.060	29.1	Н	54.0	-24.9	AVG	258	1.8	
1358.600	47.2	Н	74.0	-26.8	PK	93	2.0	
1168.060	45.2	Н	74.0	-28.8	PK	258	1.8	

\sim			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wouei.	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Radiated Spurious Emissions - FCC Part 15.E and RSS-210 A9

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

Run #	Freq MHz	Mode	Antenna	Power Setting	Limit	Margin/Result
1	5260	а	7dBi Sector Antenna	19	15.209/15.407(b)/	50.8dBμV/m (346.7μV/m) @
'	3200	u	7 d Di Occioi 7 interina	17	RSS-210 A9 and 2.6	10518.8MHz (-3.2dB)
1	5300	а	7dBi Sector Antenna	19	15.209/15.407(b)/	49.0dBµV/m (281.8µV/m) @
1	3300	а	70DI Secioi Afficilia	19	RSS-210 A9 and 2.6	10600.2MHz (-5.0dB)
1	E220	а	7dBi Sector Antenna	19	15.209/15.407(b)/	51.2dBμV/m (363.1μV/m) @
Į	5320	a	7udi Seciul Alilelilia	19	RSS-210 A9 and 2.6	5350.0MHz (-2.8dB)
2	FF00		7dDi Cootor Antonno	10	15.209/15.407(b)/	50.2107.9 (323.67.9) @
2	5500	а	7dBi Sector Antenna	19	RSS-210 A9 and 2.6	10998.65498.08 (-3.8dB)
2	5600	0	7dBi Sector Antenna	19	15.209/15.407(b)/	44.5dBμV/m (167.9μV/m) @
2	2000	а	7udi Seciul Alilelilia	19	RSS-210 A9 and 2.6	11200.9MHz (-9.5dB)
2	F700		7dDi Cootor Antonno	10	15.209/15.407(b)/	43.6dBμV/m (151.4μV/m) @
2	5700	а	7dBi Sector Antenna	19	RSS-210 A9 and 2.6	17100.0MHz (-10.4dB)
0	5000	RX	7.10.0		D00 0EN 440	48.5dBμV/m (266.1μV/m) @
3	3 5300 F		7dBi Sector Antenna	-	RSS-GEN 4.10	2621.2MHz (-5.5dB)
3	5500	RX	7dBi Sector Antenna	-	RSS-GEN 4.10	49.3dBμV/m (291.7μV/m) @ 2645.2MHz (-4.7dB)
						2045.2NHZ (-4.7QB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

V			
Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1: TX Radiated Spurious Emissions for 5250-5350 MHz band, 30 - 40000 MHz

Date of Test: 10/16/2007 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

Ambient Conditions: Temperature: 16.1 °C

Rel. Humidity: 49 %

Run #1a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5260 MHz

Power Setting: 19

Antenna:

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10518.81	50.8	Н	54.0	-3.2	AVG	1	1.3	
10518.83	49.4	V	54.0	-4.6	AVG	126	1.3	
10518.81	62.7	Н	74.0	-11.3	PK	1	1.3	
10518.83	61.6	V	74.0	-12.4	PK	126	1.3	
15778.73	37.9	V	54.0	-16.1	AVG	136	1.0	
15780.14	37.8	Н	54.0	-16.2	AVG	124	1.0	
15780.14	49.7	Н	74.0	-24.3	PK	124	1.0	
15778.73	49.5	V	74.0	-24.5	PK	136	1.0	

Run #1b: TX Radiated Spurious Emissions, 30 - 40000 MHz. Center Channel @ 5300 MHz

Power Setting: 19

Antenna:

Other Spurious Radiated Emissions:

Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
49.0	V	54.0	-5.0	AVG	44	1.0			
48.2	Н	54.0	-5.8	AVG	0	1.7			
60.8	V	74.0	-13.2	PK	44	1.0			
60.7	Н	74.0	-13.3	PK	0	1.7			
37.5	Н	54.0	-16.5	AVG	360	2.0			
37.5	V	54.0	-16.5	AVG	260	1.0			
49.2	Н	74.0	-24.8	PK	360	2.0			
49.0	V	74.0	-25.0	PK	260	1.0			
	dBμV/m 49.0 48.2 60.8 60.7 37.5 37.5 49.2	dBμV/m v/h 49.0 V 48.2 H 60.8 V 60.7 H 37.5 H 37.5 V 49.2 H	dBμV/m v/h Limit 49.0 V 54.0 48.2 H 54.0 60.8 V 74.0 60.7 H 74.0 37.5 H 54.0 37.5 V 54.0 49.2 H 74.0	dBμV/m v/h Limit Margin 49.0 V 54.0 -5.0 48.2 H 54.0 -5.8 60.8 V 74.0 -13.2 60.7 H 74.0 -13.3 37.5 H 54.0 -16.5 37.5 V 54.0 -16.5 49.2 H 74.0 -24.8	dBμV/m v/h Limit Margin Pk/QP/Avg 49.0 V 54.0 -5.0 AVG 48.2 H 54.0 -5.8 AVG 60.8 V 74.0 -13.2 PK 60.7 H 74.0 -13.3 PK 37.5 H 54.0 -16.5 AVG 37.5 V 54.0 -16.5 AVG 49.2 H 74.0 -24.8 PK	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 49.0 V 54.0 -5.0 AVG 44 48.2 H 54.0 -5.8 AVG 0 60.8 V 74.0 -13.2 PK 44 60.7 H 74.0 -13.3 PK 0 37.5 H 54.0 -16.5 AVG 360 37.5 V 54.0 -16.5 AVG 260 49.2 H 74.0 -24.8 PK 360	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 49.0 V 54.0 -5.0 AVG 44 1.0 48.2 H 54.0 -5.8 AVG 0 1.7 60.8 V 74.0 -13.2 PK 44 1.0 60.7 H 74.0 -13.3 PK 0 1.7 37.5 H 54.0 -16.5 AVG 360 2.0 37.5 V 54.0 -16.5 AVG 260 1.0 49.2 H 74.0 -24.8 PK 360 2.0		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm/MHz (~68dBuV/m).

Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

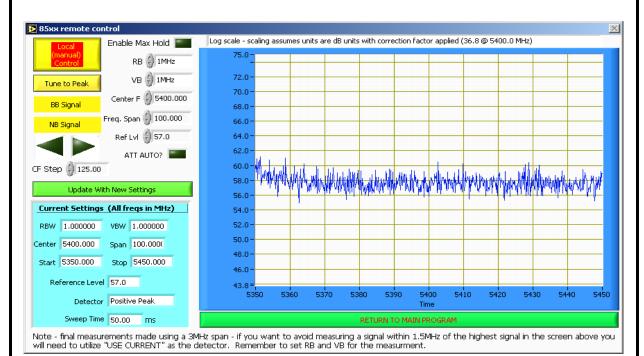
Run #1c: TX Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz

Power Setting: 19

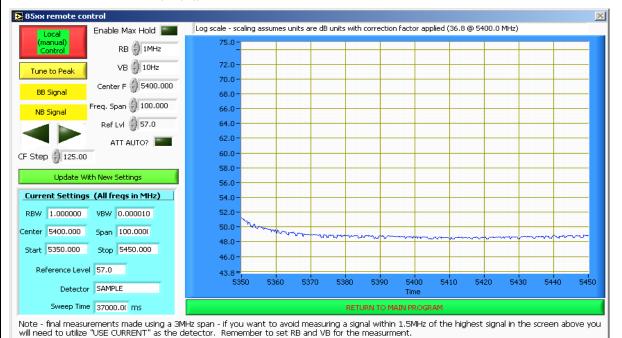
Antenna:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5319.020	99.2	Н	-	-	AVG	113	1.3	Fundamental
5319.020	107.8	Н	-	-	PK	113	1.3	Fundamental
5318.750	94.9	V	-	-	AVG	123	1.0	Fundamental
5318.750	103.5	V	-	-	PK	123	1.0	Fundamental

Vertical

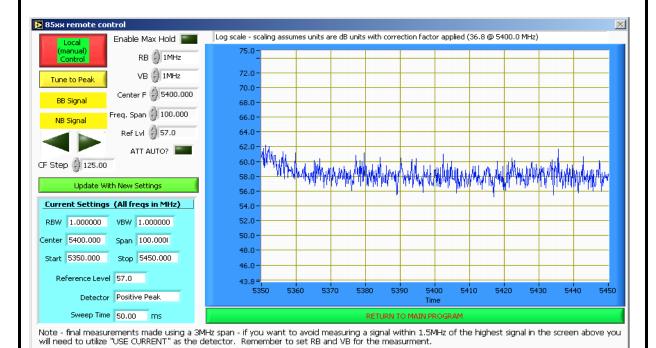


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.



Client: Meru Networks	Job Number:	J69452
Model: RS 4000	T-Log Number:	T69548
iviouei. RS 4000	Account Manager:	Richard Gencev
Contact: John Dorsey		
Standard: FCC Part 15.247/RSS-210	Class:	N/A

Run #1c: Continued


Horizontal

V			
Client:	Meru Networks	Job Number:	J69452
Madal	RS 4000	T-Log Number:	T69548
wodei.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #1c: Continued

Band Edge Signal Radiated Field Strength

Frequ	iency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MH	Ηz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350	.020	51.2	Н	54.0	-2.8	AVG	113	1.3	
5350	.500	64.2	Н	74.0	-9.8	Pk	113	1.3	
5350	.140	49.8	V	54.0	-4.2	AVG	123	1.0	
5351	.670	63.7	V	74.0	-10.3	Pk	123	1.0	

Other Spurious Radiated Emissions:

Frequency	Level	,						
rrequency	Level	Pol	15.209 <i>i</i>	15.247	Detector	Azimuth	Height	Comments
MHz c	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10639.46	49.1	V	54.0	-4.9	AVG	150	1.5	
10639.41	46.6	Н	54.0	-7.4	AVG	226	1.0	
10639.46	61.2	V	74.0	-12.8	PK	150	1.5	
10639.41	58.3	Н	74.0	-15.7	PK	226	1.0	
15960.71	38.2	V	54.0	-15.8	AVG	345	1.9	
15958.64	37.9	Н	54.0	-16.1	AVG	15	1.5	
15960.71	49.8	V	74.0	-24.2	PK	345	1.9	
15958.64	49.4	Н	74.0	-24.6	PK	15	1.5	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m).

V			
Client:	Meru Networks	Job Number:	J69452
Madal	RS 4000	T-Log Number:	T69548
wodei.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2: TX Radiated Spurious Emissions for 5470 to 5725 MHz band, 30 - 40000 MHz

Date of Test: 10/16/2007 Test Engineer: Rafael Varelas Test Location: SVOATS #1 Config. Used: 1 Config Change: None EUT Voltage: POE

Ambient Conditions:

Temperature:

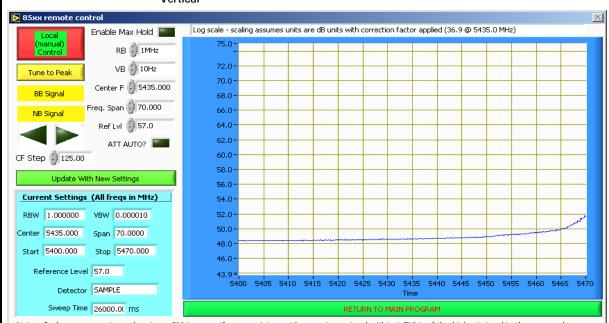
16.1 °C

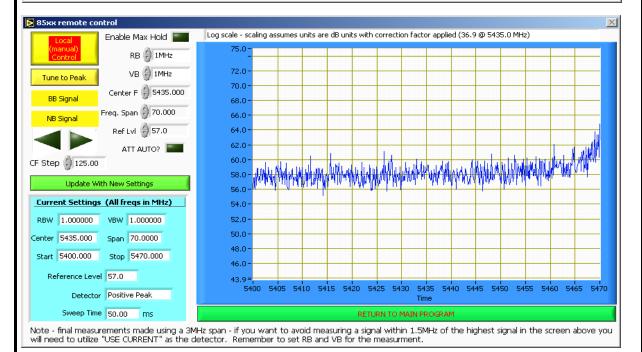
Rel. Humidity:

49 %

Run #2a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5500 MHz

Power Setting: 19 Antenna: A (TX99)

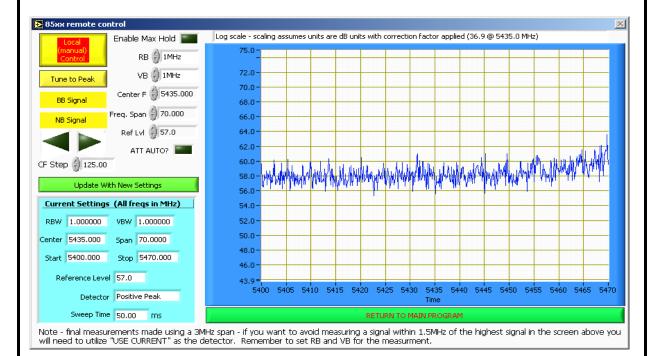

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5498.670	97.4	V	-	-	AVG	77	1.0	Fundamental
5498.670	106.2	V	-	-	PK	77	1.0	Fundamental
5500.940	96.3	Н	-	-	AVG	119	1.3	Fundamental
5500.940	105.8	Н	-	-	PK	119	1.3	Fundamental


Client:	Meru Networks	Job Number:	J69452
Model:	PS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2a: Continued

Vertical

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.


V			
Client:	Meru Networks	Job Number:	J69452
Model:	DS 4000	T-Log Number:	T69548
	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2a: Continued

Horizontal

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

Client: Meru Networks	Job Number:	J69452
Model: RS 4000	T-Log Number:	T69548
Model. RS 4000	Account Manager:	Richard Gencev
Contact: John Dorsey		
Standard: FCC Part 15.247/RSS-210	Class:	N/A

Band Edge Signal Radiated Field Strength - Restricted Band at 5.46 GHz

= =								
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.000	49.6	V	54.0	-4.4	AVG	77	1.0	
5459.670	64.7	V	74.0	-9.3	Pk	77	1.0	
5459.560	49.6	Н	54.0	-4.4	AVG	119	1.3	
5458.760	62.2	Н	74.0	-11.8	Pk	119	1.3	

Band Edge Signal Radiated Field Strength - 27dBm/MHz at 5470 MHz

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.830	52.0	V	68.3	-16.3	AVG	77	1.0	Note 1
5469.820	51.3	Н	68.3	-17.0	AVG	119	1.3	Note 1
5469.900	65.7	V	88.3	-22.6	PK	12	1.0	
5469.830	69.1	Н	88.3	-19.2	PK	22	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm/MHz (~68dBuV/m).

Run #2a: TX Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5500 MHz

Power Setting: 19

Antenna:

Other Spurious Radiated Emissions:

other opan	other oparious readiated Emissions.									
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
10998.55	50.2	V	54.0	-3.8	AVG	139	1.0			
11001.17	48.2	Н	54.0	-5.8	AVG	163	1.2			
10998.55	62.5	V	74.0	-11.5	PK	139	1.0			
11001.17	60.7	Н	74.0	-13.3	PK	163	1.2			
16498.75	40.2	V	54.0	-13.8	AVG	108	1.0			
16498.76	39.3	Н	54.0	-14.7	AVG	142	1.1			
16498.75	55.0	V	74.0	-19.0	PK	108	1.0			
16498.76	51.3	Н	74.0	-22.7	PK	142	1.1			

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm/MHz (~68dBuV/m).

V			
Client:	Meru Networks	Job Number:	J69452
Madal	RS 4000	T-Log Number:	T69548
wodei.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2b: TX Radiated Spurious Emissions, 30 - 40000 MHz. Center Channel @ 5600 MHz

Power Setting: 19

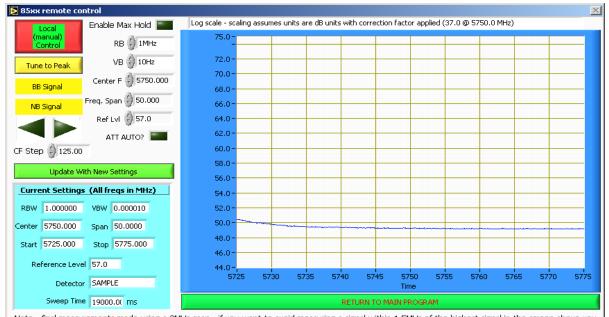
Antenna:

Other Spurious Radiated Emissions:

Other Obuhous Rudiated Emissions.									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11200.91	44.5	Η	54.0	-9.5	AVG	73	1.4		
11199.12	43.3	V	54.0	-10.7	AVG	31	1.0		
16800.98	39.9	Н	54.0	-14.1	AVG	352	1.8		
16801.46	39.8	V	54.0	-14.2	AVG	256	1.0		
11200.91	56.7	Н	74.0	-17.3	PK	73	1.4		
11199.12	55.0	V	74.0	-19.0	PK	31	1.0		
16801.46	52.0	V	74.0	-22.0	PK	256	1.0		
16800.98	51.2	Н	74.0	-22.8	PK	352	1.8		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m).

\sim			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

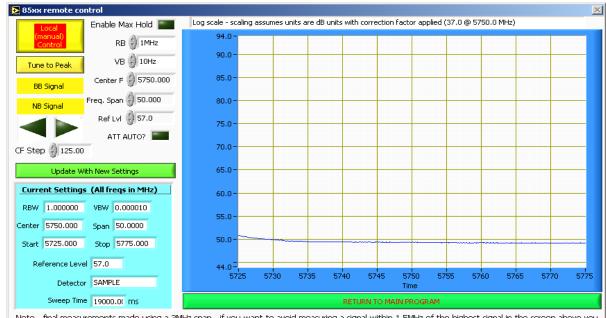

Run #2c: TX Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5700 MHz

Power Setting: 19

Antenna:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5698.880	95.9	Н	-	-	AVG	138	1.3	Fundamental
5698.880	104.8	Н	-	-	PK	138	1.3	Fundamental
5699.150	96.8	V	-	-	AVG	146	1.0	Fundamental
5699.150	106.0	V	-	-	PK	146	1.0	Fundamental

Vertical


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

V			
Client:	Meru Networks	Job Number:	J69452
Madalı	RS 4000	T-Log Number:	T69548
wodei.	RS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #2c: Continued

Horizontal

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

Band Edge Signal Radiated Field Strength - 27dBm/MHz at 5725 MHz

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.000	50.7	Н	68.3	-17.6	AVG	138	1.2	Note 1
5725.270	52.5	V	68.3	-15.8	AVG	146	1.0	Note 1

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
17100.00	43.6	V	54.0	-10.4	AVG	261	1.0	
17098.83	43.5	Н	54.0	-10.5	AVG	109	1.0	
11399.25	41.0	Н	54.0	-13.0	AVG	70	1.5	
11399.70	39.6	V	54.0	-14.4	AVG	360	1.7	
17098.83	55.9	Н	74.0	-18.1	PK	109	1.0	
17100.00	55.5	V	74.0	-18.5	PK	261	1.0	
11399.25	53.3	Н	74.0	-20.7	PK	70	1.5	
11399.70	50.9	V	74.0	-23.1	PK	360	1.7	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm/MHz (~68dBuV/m).

V			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	KS 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #3: RX Radiated Spurious Emissions, 30 - 18000 MHz

Antenna:

Date of Test: 10/17/2007 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

Ambient Conditions: Temperature: 19.4 °C

Rel. Humidity: 43 %

Run #3a: RX Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5300 MHz

Frequency	Level	Pol	RSS-	GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2621.16	48.5	Н	54.0	-5.5	AVG	0	1.0	
3601.78	67.4	V	74.0	-6.6	PK	360	2.0	
17875.21	46.6	V	54.0	-7.4	AVG	0	1.0	
17924.32	46.5	Н	54.0	-7.5	AVG	358	1.0	
2500.53	46.2	V	54.0	-7.8	AVG	176	1.0	
1875.20	43.7	V	54.0	-10.3	AVG	326	1.0	
2335.31	40.2	Н	54.0	-13.8	AVG	30	1.0	
3601.78	38.0	V	54.0	-16.0	AVG	360	2.0	
2340.31	37.8	V	54.0	-16.2	AVG	31	1.0	
17875.21	57.7	V	74.0	-16.3	PK	0	1.0	
17924.32	57.6	Н	74.0	-16.4	PK	358	1.0	
1500.14	37.6	Н	54.0	-16.4	AVG	35	1.0	
15928.67	37.2	Н	54.0	-16.8	AVG	360	1.0	
15939.83	37.1	V	54.0	-16.9	AVG	359	1.0	
6594.91	36.5	Н	54.0	-17.5	AVG	25	1.0	
1500.26	36.5	V	54.0	-17.5	AVG	15	1.0	
3601.31	56.1	Н	74.0	-17.9	PK	360	2.0	
1250.08	35.6	Н	54.0	-18.4	AVG	244	1.3	
10643.17	35.2	Н	54.0	-18.8	AVG	0	1.0	
1210.29	55.1	V	74.0	-18.9	PK	0	1.0	
10622.83	34.9	V	54.0	-19.1	AVG	360	1.0	
3601.31	32.1	Н	54.0	-21.9	AVG	360	2.0	
2340.31	50.6	V	74.0	-23.4	PK	31	1.0	
4309.20	30.2	V	54.0	-23.8	AVG	2	1.0	
2500.53	50.2	V	74.0	-23.8	PK	176	1.0	
1210.29	30.1	V	54.0	-23.9	AVG	0	1.0	
15928.67	49.1	Н	74.0	-24.9	PK	360	1.0	
15939.83	48.8	V	74.0	-25.2	PK	359	1.0	

	EI	lic	ott					EM	C Test Data
	Meru Netv		Jo	b Number:	J69452				
Madal	DC 4000						T-Lo	g Number:	T69548
wodei:	RS 4000						Accoun	it Manager:	Richard Gencev
Contact:	John Dors	sey							
Standard:	FCC Part	15.247/R	RSS-210					Class:	N/A
Run #3a: F		ed Spurio	ous Emissi		000 MHz. (Center Chan	nel @ 5300	MHz	
2621.16	48.5	Н	74.0	-25.5	PK	0	1.0		
	46.6	Н	74.0	-27.4	PK	0	1.0		
10643.17									
10643.1 <i>/</i> 1875.20	46.6	V	74.0	-27.4	PK	326	1.0		
	46.6 46.0	V H	74.0 74.0	-27.4 -28.0	PK PK	326 30	1.0 1.0		
1875.20									
1875.20 2335.31	46.0	Н	74.0	-28.0	PK	30	1.0		
1875.20 2335.31 10622.83	46.0 45.5	H	74.0 74.0	-28.0 -28.5	PK PK	30 360	1.0 1.0		
1875.20 2335.31 10622.83 6594.91	46.0 45.5 44.2	H V H	74.0 74.0 74.0	-28.0 -28.5 -29.8	PK PK PK	30 360 25	1.0 1.0 1.0		
1875.20 2335.31 10622.83 6594.91 4309.20	46.0 45.5 44.2 44.0	H V H V	74.0 74.0 74.0 74.0	-28.0 -28.5 -29.8 -30.0	PK PK PK PK	30 360 25 2	1.0 1.0 1.0 1.0		

V			
Client:	Meru Networks	Job Number:	J69452
Model	RS 4000	T-Log Number:	T69548
wodei.	K3 4000	Account Manager:	Richard Gencev
Contact:	John Dorsey		
Standard:	FCC Part 15.247/RSS-210	Class:	N/A

Run #3b: RX Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5600 MHz

Frequency	Level	Pol		-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2645.24	49.3	Н	54.0	-4.7	AVG	13	1.0	
2501.58	48.4	V	54.0	-5.6	AVG	360	1.0	
17787.27	46.0	Н	54.0	-8.0	AVG	0	1.0	
17720.16	45.9	V	54.0	-8.1	AVG	0	1.0	
1209.54	64.4	V	74.0	-9.6	PK	5	1.0	
2186.67	41.0	V	54.0	-13.0	AVG	20	1.0	
16808.50	39.9	V	54.0	-14.1	AVG	360	1.0	
1250.17	39.9	Н	54.0	-14.1	AVG	30	1.0	
16832.83	39.7	Н	54.0	-14.3	AVG	0	1.0	
6595.04	39.2	V	54.0	-14.8	AVG	95	1.0	
1500.23	39.0	Н	54.0	-15.0	AVG	36	1.0	
2335.41	38.9	Н	54.0	-15.1	AVG	321	1.0	
11210.17	38.1	V	54.0	-15.9	AVG	0	1.0	
17720.16	57.6	V	74.0	-16.4	PK	0	1.0	
17787.27	57.0	Н	74.0	-17.0	PK	0	1.0	
3926.14	36.8	V	54.0	-17.2	AVG	360	1.0	
4257.53	55.7	V	74.0	-18.3	PK	0	1.0	
4257.53	33.9	V	54.0	-20.1	AVG	0	1.0	
5801.15	33.4	Н	54.0	-20.6	AVG	344	1.0	
2501.58	52.6	V	74.0	-21.4	PK	360	1.0	
5578.17	32.0	Н	54.0	-22.0	AVG	359	1.0	
16808.50	51.8	V	74.0	-22.2	PK	360	1.0	
1209.54	31.8	V	54.0	-22.2	AVG	5	1.0	
16832.83	51.1	Н	74.0	-22.9	PK	0	1.0	
2645.24	50.8	Н	74.0	-23.2	PK	13	1.0	
1297.51	29.6	V	54.0	-24.4	AVG	249	1.0	
11210.17	49.4	V	74.0	-24.6	PK	0	1.0	
3926.14	46.3	V	74.0	-27.7	PK	360	1.0	
2335.41	45.9	Н	74.0	-28.1	PK	321	1.0	
6595.04	44.4	V	74.0	-29.6	PK	95	1.0	
1250.17	44.2	Н	74.0	-29.8	PK	30	1.0	
5801.15	44.0	Н	74.0	-30.0	PK	344	1.0	
5578.17	43.7	Н	74.0	-30.3	PK	359	1.0	
1621.48	23.6	V	54.0	-30.4	AVG	253	1.0	
1500.23	42.7	Н	74.0	-31.3	PK	36	1.0	
2186.67	42.3	V	74.0	-31.7	PK	20	1.0	
1297.51	42.1	V	74.0	-31.9	PK	249	1.0	
1621.48	37.7	V	74.0	-36.3	PK	253	1.0	

Report Date: January 2, 2007

EXHIBIT 3: Photographs of Test Configurations

2 Pages

File: R69780 Rev 1 Exhibit Page 3 of 11

EXHIBIT 4: Proposed FCC ID Label & Label Location

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 4 of 11

EXHIBIT 5: Detailed Photographs of Meru Networks Model RS-4000Construction

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 5 of 11

EXHIBIT 6: Operator's Manual for Meru Networks Model RS-4000

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 6 of 11

EXHIBIT 7: Block Diagram of Meru Networks Model RS-4000

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 7 of 11

EXHIBIT 8: Schematic Diagrams for Meru Networks Model RS-4000

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 8 of 11

Report Date: January 2, 2007

EXHIBIT 9: Theory of Operation for Meru Networks Model RS-4000

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 9 of 11

Report Date: January 2, 2007

EXHIBIT 10: Advertising Literature

Unchanged from original application

File: R69780 Rev 1 Exhibit Page 10 of 11

EXHIBIT 11: RF Exposure Information

RSS-102 RF Exposure	1 age
MPE	3 pages
RS4000 full circle	3 pages
RS4000 half circle	3 pages

File: R69780 Rev 1 Exhibit Page 11 of 11