

Report No. : BLA-EMC-201908-A26-01

FCC Report (Bluetooth)

Product Name	:	Bluetooth headset
Trade mark	:	N/A
Model No.	:	In1931
FCC ID	:	RDR-IN1931
Report Number	:	BLA-EMC-201908-A26-01
Date of sample receipt	:	August 8, 2019
Date of Test	:	August 8, 2019–August 20, 2019
Date of Issue	:	August 24, 2019
Test standard	:	FCC CFR Title 47 Part 15 Subpart C Section
		15.247
Test result	:	PASS

Prepared for:

Dongguan Hele Electronics Co., Ltd Dalingya Industrial Zone, Daojiao Town, Dongguan City, Guangdong, China

Prepared by:

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China TEL: +86-755-28682673

FAX: +86-755-28682673

Compiled by:

Eason

Approved by: Emen_Li

2 Version

Version No.	Date	Description
00	August 24, 2019	Original

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia, No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Page 2 of 38

3 Contents

Page

1	COV	ER PAGEFCC REPORT (BLUETOOTH)	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	
	5.1 5.2 5.3 5.4 5.5 5.6	GENERAL DESCRIPTION OF EUT TEST MODE TEST FACILITY TEST LOCATION OTHER INFORMATION REQUESTED BY THE CUSTOMER DESCRIPTION OF SUPPORT UNITS	5 7 7 7
6	TES	T INSTRUMENTS LIST	8
7		T RESULTS AND MEASUREMENT DATA	
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9.1 7.9.2 7.10 7.10 7.10	 Radiated Emission Method SPURIOUS EMISSION 1 Conducted Emission Method 	.11 .14 .15 .16 .17 .18 .19 .20 .20 .21 .23 .23
8	TES	Т SETUP PHOTO	.31
9	EUT	CONSTRUCTIONAL DETAILS	.33
10	APPE	NDIX	.38

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 4 of 38

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

5 General Information

5.1 General Description of EUT

Bluetooth headset				
In1931				
In1931				
identical in the same PCB layout, interior structure and electrical circuits. ne for commercial purpose.				
N/A				
Engineer sample				
N/A				
N/A				
2402MHz-2480MHz				
79				
1MHz				
GFSK, π/4-DQPSK, 8-DPSK				
Chip Antenna				
1.2dBi				
Rechargeable Li-ion polymer Battery DC3.7V, 40mAh				

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 6 of 38

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 7 of 38

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
Remark: Full battery is us	ed during all test except ac conducted emission, DH1, DH3, DH5 all have been

tested, only worse case is reported.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with CAB identifier CN0028

5.4 Test Location

All tests were performed at:

All tests were performed at:

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number
CHILWEE	Storage battery	MH1805	N/A
Lenovo	Notebook computer	E470C	PF-10FB5C

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 8 of 38

6 Test Instruments list

Radi	ated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m SAC	SKET	9m*6 m*6m	966	06-10-2018	06-09-2023
2	Broadband Antenna	SCHWARZBECK	VULB9168	00836 P:00227	07-14-2019	07-13-2020
3	Horn Antenna	SCHWARZBECK	9120D	01892 P:00331	07-14-2019	07-13-2020
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A
5	Pre-amplifier	SKET	N/A	N/A	07-19-2019	07-18-2020
6	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2019	05-23-2020
7	EMI Test Receiver	Rohde & Schwarz	ESR7	101199	03-21-2019	03-20-2020
8	Controller	SKET	N/A	N/A	N/A	N/A
9	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2019	05-23-2020
10	Signal Generator	Agilent	E8257D	MY44320250	05-24-2019	05-23-2020
11	Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
12	Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
13	Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 9 of 38

Conduc	ted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	EMI Test Receiver	Rohde & Schwarz	ESPI3	101082	06-10-2019	06-09-2020
2	LISN	CHASE	MN2050D	1447	12-18-2018	12-17-2019
3	LISN	Rohde & Schwarz	ENV216	3560.6550.15	07-19-2019	07-18-2020
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A
5	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020
6	Coaxial Cable	BlueAsia	BLA-XC-05	N/A	N/A	N/A

RF Con	ducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Spectrum Analyzer	Agilent	N9030A	MY50510123	05-24-2019	05-23-2020
2	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2019	05-23-2020
3	MXA Signal Analyzer	Agilent	N9020A	MY49100060	12-18-2018	12-17-2019
4	Vector Signal Generator	Agilent	N5182A	MY49060650	12-18-2018	12-17-2019
5	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2019	05-23-2020
6	Signal Generator	Agilent	E8257D	MY44320250	05-24-2019	05-23-2020
7	Power Sensor	D.A.R.E	RPR3006W	17100015SNO27	05-24-2019	05-23-2020
8	Power Sensor	D.A.R.E	RPR3006W	17100015SNO28	05-24-2019	05-23-2020
9	DC Power Supply	LODESTAR	LP305DE	N/A	07-19-2019	07-18-2020
10	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 10 of 38

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is Chip antenna, the best case gain of the antenna is 1.2dBi

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

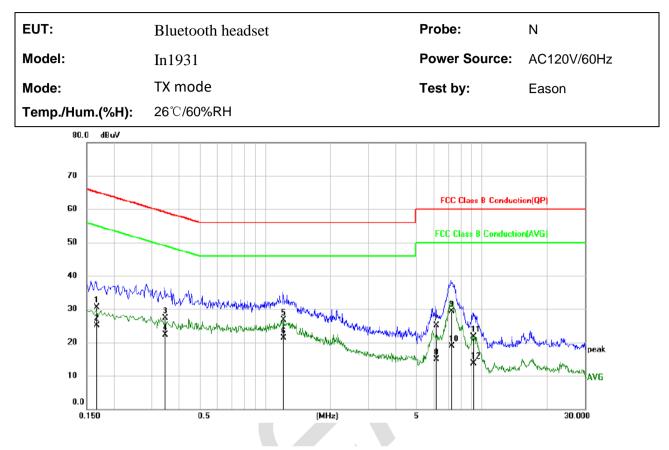
7.2 Conducted Emissions

Т	est Requirement:	FCC Part15 C Section 15.207					
Т	est Method:	ANSI C63.10:2013					
Т	est Frequency Range:	150KHz to 30MHz					
C	Class / Severity:	Class B					
R	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto					
L	.imit:		Limit (dBuV)				
		Frequency range (MHz)	Quasi-peak Average				
		0.15-0.5	66 to 56* 56 to 46*				
		0.5-5	56 46				
		5-30	60 50				
		* Decreases with the logarithm	n of the frequency.				
Т	est setup:	Reference Plane					
		AUX Filter AC power Equipment E.U.T Filter AC power Test table/Insulation plane EMI Receiver Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Retwork					
Т	est procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Т	est Instruments:	Refer to section 6.0 for details					
Т	est mode:	Refer to section 5.2 for details					
Т	est results:	Pass					

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China


EUT:	В	luetooth h	eadset			Probe:	L1
Model:	In	n1931				Power Source	: AC120V/60Hz
Mode:	T	X mode				Test by:	Eason
Гemp./Hum.(%ŀ	H): 26	ട℃/60%RH					
80.0 dBu	V						
70							
· · · ·						FCC Class B Conduc	tion(QP)
60							
50						FCC Class B Conducti	ion(AVG)
40							
W	h dia.	A				. Ar	
30 × 10	~ /J. 27 1	2000 which have been a second and the	And and a particular and the second	White And And And		1 min	
20		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	handlown and an and a second	Shin Vacabille Station	Yur yalaal yaada waxa	Mart Mart	13 hours minut
10				- Wy	ward hard and a ward with	When	Peak peak
0.0							AVG
0.150		0.5		(MHz)	5		30.000
			Reading	Correct	Measure-		
N	o. Mk.	Freq.	Level	Factor	ment	Limit Ove	
		MHz	dBuV	dB	dBuV	dBuV dB	Detector
	1	6.9180	21.02	9.86	30.88	60.00 -29.1	
	2	6.9180	9.95	9.86	19.81	50.00 -30.1	
	3	16.4660	7.08	9.98	17.06	60.00 -42.9	
	4	16.4660	-0.02	9.98	9.96	50.00 -40.0	
	5	2.1820	15.47	9.82	25.29	56.00 -30.7	
	6	2.1820	7.57	9.82	17.39	46.00 -28.6	
	7	1.3220	16.89	9.82	26.71	56.00 -29.2	
	8 *	1.3220	11.63	9.82	21.45	46.00 -24.5	
	9	0.1819	20.81	9.89	30.70	64.40 -33.7	
	0	0.1819	15.12	9.89	25.01	54.40 -29.3	
1		0.2620	19.11	9.91	29.02	61.37 -32.3	
1	2	0.2620	13.91	9.91	23.82	51.37 -27.5	55 AVG

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1660	20.69	9.87	30.56	65.16	-34.60	QP
2	0.1660	15.31	9.87	25.18	55.16	-29.98	AVG
3	0.3460	17.54	9.77	27.31	59.06	-31.75	QP
4	0.3460	12.62	9.77	22.39	49.06	-26.67	AVG
5	1.2140	16.84	9.83	26.67	56.00	-29.33	QP
6 *	1.2140	11.51	9.83	21.34	46.00	-24.66	AVG
7	6.1700	15.20	9.87	25.07	60.00	-34.93	QP
8	6.1700	5.04	9.87	14.91	50.00	-35.09	AVG
9	7.2219	19.43	9.85	29.28	60.00	-30.72	QP
10	7.2219	8.98	9.85	18.83	50.00	-31.17	AVG
11	9.1100	11.77	9.92	21.69	60.00	-38.31	QP
12	9.1100	3.74	9.92	13.66	50.00	-36.34	AVG

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

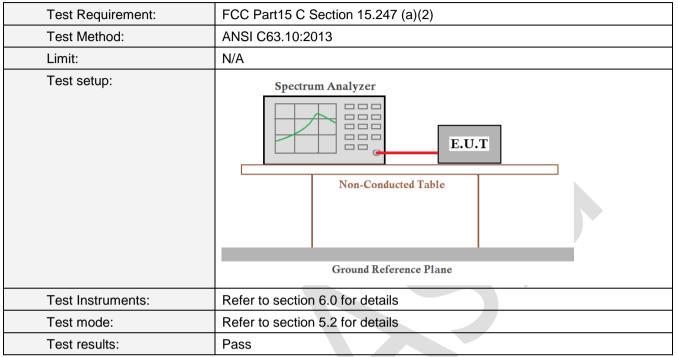
7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013				
Limit:	21dBm(for GFSK),21dBm(for EDR)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Reference to the AppendixC: Maximum conducted output power

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.


IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 15 of 38

7.4 20dB Emission Bandwidth

Measurement Data

Reference to the AppendixA: 20dBEmission Bandwidth

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 16 of 38

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak				
Limit:	GFSK & Pi/4QPSK & 8-DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Reference to the AppendixD: Carrier frequency separation

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:

Reference to the AppendixF: Number of hopping channels

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak			
Limit:	0.4 Second			
Test setup:	O.4 Second Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Reference to the AppendixE: Time of occupancy

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 19 of 38

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) requirement:							
	s shall have hopping channel carrier frequencies separated by a minimun idth of the hopping channel, whichever is greater.							
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate								
								red list of hopping frequencies. Each frequency must be used equally on
								r. The system receivers shall have input bandwidths that match the hopp
	corresponding transmitters and shall shift frequencies in synchronization							
the transmitted signals.								
5	ueneu llemning Convenee							
EUT Pseudorandom Frequ								
	ce may be generated in a nine-stage shift register whose 5th and 9th sta							
	ulo-two addition stage. And the result is fed back to the input of the first							
	s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initializ							
with nine ones.								
Number of shift register sta	ages: 9							
Length of pseudo-random								
Longest sequence of zeros	s: 8 (non-inverted signal)							
	<u> </u>							
Linear Feedback S	Shift Register for Generation of the PRBS sequence							
	Shift Register for Generation of the PRBS sequence							
	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow:							
An example of Pseudorando	om Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 1							

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

7.9 Band Edge

7.9.1 Conducted Emission Method

FCC Part15 C Section 15.247 (d)				
ANSI C63.10:2013				
RBW=100kHz, VBW=300kHz, Detector=Peak				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Refer to section 6.0 for details				
Refer to section 5.2 for details				
Pass				

Measurement Data

Reference to the AppendixG:Band edge measurements

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

7.9.2 Radiated Emission Method

7.9.2 Radiated Emission M							
Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All restriction band have been tested, and 2310MHz to 2390MHz, 2483.5MHz to 2500MHz band is the worse case						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		Peak	1MHz	10Hz	Average Value		
Limit:	Frequency Above 1GHz		Limit (dBuV/m @3n 54.00		Remark Average Value		
			74.0		Peak Value		
Test setup:							
	Tum Tables and a state of the s		Test Antenna < 1m 4m > Receiver- Pr	*			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10df margin would be re-tested one by one using peak, quasi-peak or 						
Test Instruments:	Refer to section	6.0 for details	6				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-201908-A26-01

Remark:

Page 22 of 38

1. During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.

Test channel: Lowest							
Peak value:							
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	57.00	-14.56	42.44	74.00	-31.56	Horizontal	
2390.00	57.48	-14.19	43.29	74.00	-30.71	Horizontal	
2310.00	56.47	-14.85	41.62	74.00	-32.38	Vertical	
2390.00	58.61	-14.52	44.09	74.00	-29.91	Vertical	
Average value:							
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	43.92	-14.56	29.36	54.00	-24.64	Horizontal	
2390.00	45.23	-14.19	31.04	54.00	-22.96	Horizontal	
2310.00	44.53	-14.85	29.68	54.00	-24.32	Vertical	
2390.00	46.08	-14.52	31.56	54.00	-22.44	Vertical	

Test channel:

Peak value: Correct Frequency Read Level Level Limit Line **Over Limit** factor Polarization (dBuV) (dBuV/m) (dBuV/m) (dB) (MHz) (dB/m)2483.50 66.97 -13.66 74.00 Horizontal 53.31 -20.69 2500.00 60.33 -13.57 46.76 74.00 -27.24 Horizontal 2483.50 60.84 -14.05 46.79 74.00 -27.21 Vertical 2500.00 63.54 -13.97 49.57 74.00 -24.43 Vertical

Highest

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.22	-13.66	38.56	54.00	-15.44	Horizontal
2500.00	47.06	-13.57	33.49	54.00	-20.51	Horizontal
2483.50	47.86	-14.05	33.81	54.00	-20.19	Vertical
2500.00	49.04	-13.97	35.07	54.00	-18.93	Vertical

Remark:

1. Final Level =Receiver Read level + Correct factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. Correct factor= Antenna Factor + Cable Loss – Preamplifier Factor

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Reference to the AppendixH:Conducted SpuriousEmission

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

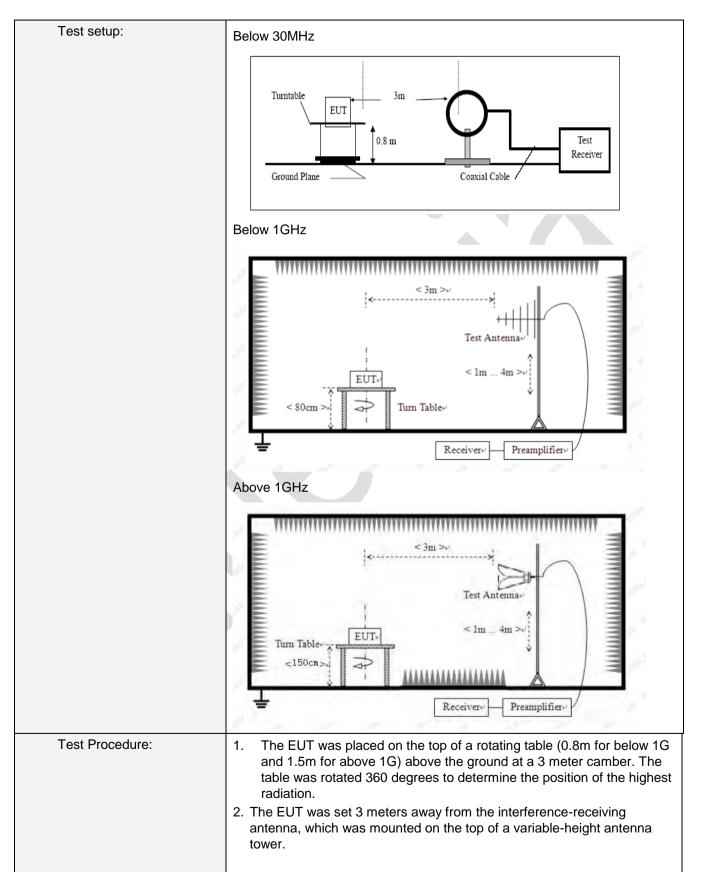
IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 24 of 38

7.10.2 Radiated Emission Method

150KHz-30MHzQuasi-peak9KHz30KHzQuasi-peak30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeakPeak1MHz10HzAverage	Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.209							
Test site:Measurement Distance: 3mReceiver setup:FrequencyDetectorRBWVBWValue9KHz-150KHzQuasi-peak200Hz600HzQuasi-peak150KHz-30MHzQuasi-peak9KHz30KHzQuasi-peak30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeakLimit: (Spurious Emissions)FrequencyLimit (uV/m)ValueMeasurement Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz2400/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP216MHz-960MHz200QP216MHz-960MHz200QP30MHz-1GHz500Averagebove 1GHz500AverageLimit: (band edge)Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.203	Test Method:	ANSI C63.10:2013	ANSI C63.10:2013							
Receiver setup:FrequencyDetectorRBWVBWValue9KHz-150KHzQuasi-peak200Hz600HzQuasi-peak150KHz-30MHzQuasi-peak9KHz30KHzQuasi-peak30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peak30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeakPeak1MHz10HzAverageLimit:(Spurious Emissions)FrequencyLimit (uV/m)ValueMeasuremen Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP960MHz-1GHz500AverageMabove 1GHz500Average1imit:Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.203	Test Frequency Range:	9kHz to 25GHz								
9KHz-150KHzQuasi-peak200Hz600HzQuasi-peak150KHz-30MHzQuasi-peak9KHz30KHzQuasi-peak30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peak30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeakPeak1MHz10HzAverageLimit:(Spurious Emissions)FrequencyLimit (uV/m)ValueMeasurement Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP960MHz-1GHz500AverageAbove 1GHz500QPAbove 1GHz500AverageLimit:Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.203	Test site:	Measurement Distar	Measurement Distance: 3m							
Image: Limit: (Spurious Emissions)Image: Limit 150KHz-30MHzQuasi-peak9KHz30KHzQuasi-peakImit: (Spurious Emissions)Image: Limit FrequencyPeak1MHz30HzPeakImit: (Spurious Emissions)Image: Limit FrequencyImage: Limit Limit (uV/m)ValueMeasurement DistanceImit: (Spurious Emissions)Image: Limit FrequencyImage: Limit Limit (uV/m)ValueMeasurement DistanceImit: (Spurious Emissions)Image: Limit FrequencyImage: Limit Limit (uV/m)ValueMeasurement DistanceImage: Limit: (Spurious Emissions)Image: Limit FrequencyImage: Limit Limit (uV/m)ValueMeasurement DistanceImage: Limit: (band edge)Image: Limit FrequencyImage: Limit SpuriousImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit: (band edge)Image: Limit FrequencyImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit: (band edge)Image: Limit FrequencyImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit: (band edge)Image: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit PeakImage: Limit: (band edge)Image: Limit PiakImage: Limit PiakImage: Limit PiakImage: Limit PiakImage: Limit PiakImage: Limit Piak<	Receiver setup:	Frequency	Γ	Detector	RB\	N	VBW		Value	
30MHz-1GHzQuasi-peak120KHz300KHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeakPeak1MHz10HzAverageLimit: (Spurious Emissions)FrequencyLimit (uV/m)ValueMeasurement Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz2400/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP960MHz-1GHz500QPAbove 1GHz500AverageLimit: (band edge)Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.208		9KHz-150KHz	Qı	uasi-peak	200Hz		600Hz	z	Quasi-peak	
Limit: (Spurious Emissions)Peak1MHz3MHzPeakLimit: (Spurious Emissions)FrequencyLimit (uV/m)ValueMeasurement Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP300MHz-1GHz500Average960MHz-1GHz500Average5000PeakEmissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.205		150KHz-30MHz	150KHz-30MHz Qua			Ιz	30KH:	z	Quasi-peak	
Above 1GHzPeak1MHz10HzAverageLimit: (Spurious Emissions)FrequencyLimit (uV/m)ValueMeasurement Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP30m30MHz-88MHz100QP30m30MHz-960MHz200QP3m960MHz-1GHz500QP3m4bove 1GHz500Average500Peak500PeakLimit: (band edge)Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.205		30MHz-1GHz	Qı	uasi-peak	120K	Hz	300KH	lz	Quasi-peak	
Limit: (Spurious Emissions)FrequencyLimit (uV/m)ValueMeasurement Distance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz2400/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP960MHz-1GHz500QPAbove 1GHz500Average500AverageLimit: (band edge)Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.205				Peak	1MF	Ηz	3MHz	z	Peak	
(Spurious Emissions)FrequencyLimit (uV/m)ValueDistance0.009MHz-0.490MHz2400/F(KHz)QP300m0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP960MHz-1GHz500QP960MHz-1GHz500Average5000PeakLimit:Emissions radiated outside of the specified frequency bands, except for harmonics, shall be atten-uated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.205		Above IGHZ		Peak	1MH	Ηz	10Hz	:	Average	
0.490MHz-1.705MHz24000/F(KHz)QP30m1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP216MHz-960MHz200QP960MHz-1GHz500QPAbove 1GHz500Average5000PeakLimit: (band edge)Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		Frequency	Frequency			v	alue	N	leasurement Distance	
1.705MHz-30MHz30QP30m30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP216MHz-960MHz500QP960MHz-1GHz500QPAbove 1GHz500Average5000PeakEmissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m	
30MHz-88MHz100QP88MHz-216MHz150QP216MHz-960MHz200QP216MHz-960MHz500QP960MHz-1GHz500QPAbove 1GHz500Average5000PeakEmissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		0.490MHz-1.705M	Hz	24000/F(KHz)		QP			30m	
88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average 5000 Peak Limit: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		1.705MHz-30MH	1.705MHz-30MHz				QP		30m	
216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average 5000 Peak Limit: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.205		30MHz-88MHz	30MHz-88MHz				QP			
960MHz-1GHz 500 QP Above 1GHz 500 Average 500 Peak Limit: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		88MHz-216MHz	150		QP					
960MHz-1GHz 500 QP Above 1GHz 500 Average 500 Peak Limit: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		216MHz-960MH	z	200		QP			3m	
Above 1GHz 5000 Peak Limit: (band edge) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		960MHz-1GHz		500		QP			5111	
Limit: (band edge)Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		Above 1GHz		500		Average				
(band edge) harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209		Above Toriz		5000		Peak				
		harmonics, shall be fundamental or to the	atten e gei	uated by at neral radiate	least 5	50 dB	below t	he l	evel of the	


Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 25 of 38

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-201908	-A26-01	Page 26 of 38
	 The antenna height is varied from ground to determine the maximum horizontal and vertical polarization measurement. 	
	and then the antenna was tuned to	e EUT was arranged to its worst case o heights from 1 meter to 4 meters n 0 degrees to 360 degrees to find the
	5. The test-receiver system was set Bandwidth with Maximum Hold Me	to Peak Detect Function and Specified ode.
	limit specified, then testing could b	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement data:

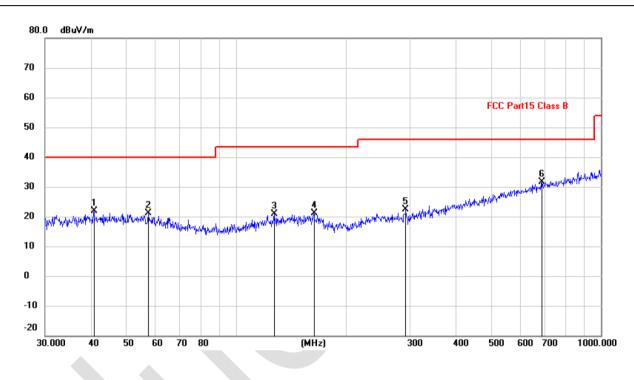
Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.


IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Below 1GHz

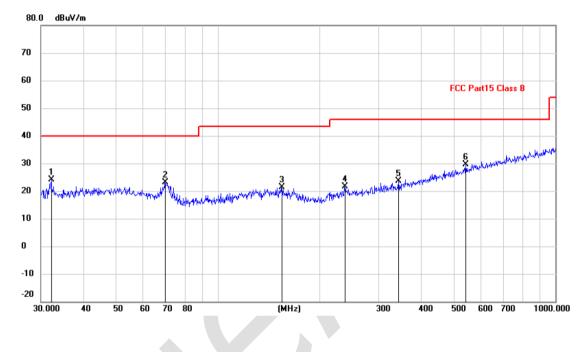
EUT:	Bluetooth headset	Polarziation	Horizontal
Model:	In1931	Power Source:	AC120V/60Hz
Mode:	TX mode	Test by:	Eason
Temp./Hum.(%H):	26℃/60%RH		

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBu∀/m	dB	Detector
	1		40.8446	8.22	13.74	21.96	40.00	-18.04	QP
-	2		57.5939	8.03	13.19	21.22	40.00	-18.78	QP
-	3		127.2176	8.32	12.62	20.94	43.50	-22.56	QP
-	4		163.1818	8.33	12.68	21.01	43.50	-22.49	QP
-	5		292.0583	9.19	13.27	22.46	46.00	-23.54	QP
-	6	*	689.5644	9.41	22.22	31.63	46.00	-14.37	QP
-									

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China


Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Page 27 of 38

Page 28 of 38

EUT:	Bluetooth headset	Polarziation:	Vertical
Model:	In1931	Power Source:	AC120V/60Hz
Mode:	TX mode	Test by:	Eason
Temp./Hum.(%H):	26℃/60%RH		

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	dBu∨	dB	dBuV/m	dBu∀/m	dB	Detector
(1	*	32.1795	12.00	12.20	24.20	40.00	-15.80	QP
-	2		69.8450	12.16	10.85	23.01	40.00	-16.99	QP
-	3		154.2786	8.42	13.03	21.45	43.50	-22.05	QP
-	4		237.4760	9.09	12.54	21.63	46.00	-24.37	QP
-	5		343.1800	8.98	14.77	23.75	46.00	-22.25	QP
-	6		543.2742	9.91	19.77	29.68	46.00	-16.32	QP
_									

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

■ Above 1GHz

Test channel:

Peak value:

reak value.						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	59.04	-7.43	51.61	74.00	-22.39	Vertical
7206.00	56.12	-2.42	53.70	74.00	-20.30	Vertical
9608.00	54.42	-2.38	52.04	74.00	-21.96	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	60.58	-7.43	53.15	74.00	-20.85	Horizontal
7206.00	55.23	-2.42	52.81	74.00	-21.19	Horizontal
9608.00	53.42	-2.38	51.04	74.00	-22.96	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal

Lowest

Test channe	Test channel: Middle							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	57.03	-7.49	49.54	74.00	-24.46	Vertical		
7323.00	56.32	-2.40	53.92	74.00	-20.08	Vertical		
9764.00	55.91	-2.38	53.53	74.00	-20.47	Vertical		
12205.00	*			74.00		Vertical		
14646.00	*			74.00		Vertical		
4882.00	59.91	-7.49	52.42	74.00	-21.58	Horizontal		
7323.00	54.38	-2.40	51.98	74.00	-22.02	Horizontal		
9764.00	54.28	-2.38	51.90	74.00	-22.10	Horizontal		
12205.00	*			74.00		Horizontal		
14646.00	*			74.00		Horizontal		

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Page 29 of 38

Page 30 of 38

Test channel:				Highest		
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	59.91	-7.47	52.44	74.00	-21.56	Vertical
7440.00	55.28	-2.45	52.83	74.00	-21.17	Vertical
9920.00	53.28	-2.37	50.91	74.00	-23.09	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	58.24	-7.47	50.77	74.00	-23.23	Horizontal
7440.00	54.89	-2.45	52.44	74.00	-21.56	Horizontal
9920.00	52.84	-2.37	50.47	74.00	-23.53	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

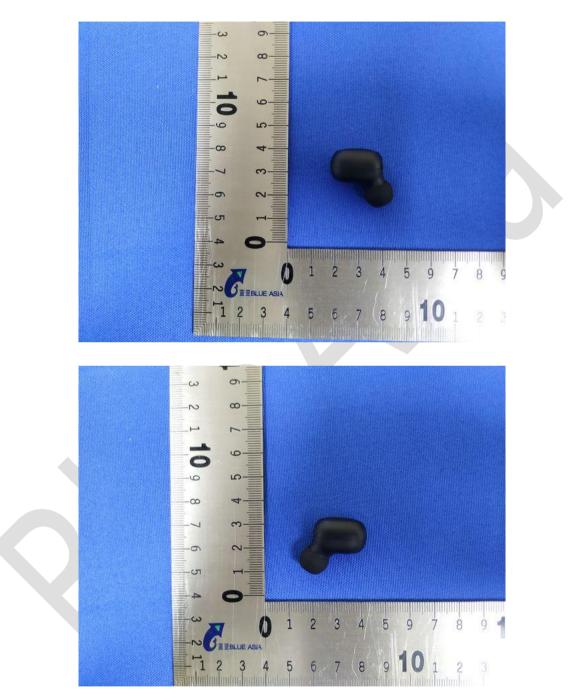
IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Page 31 of 38

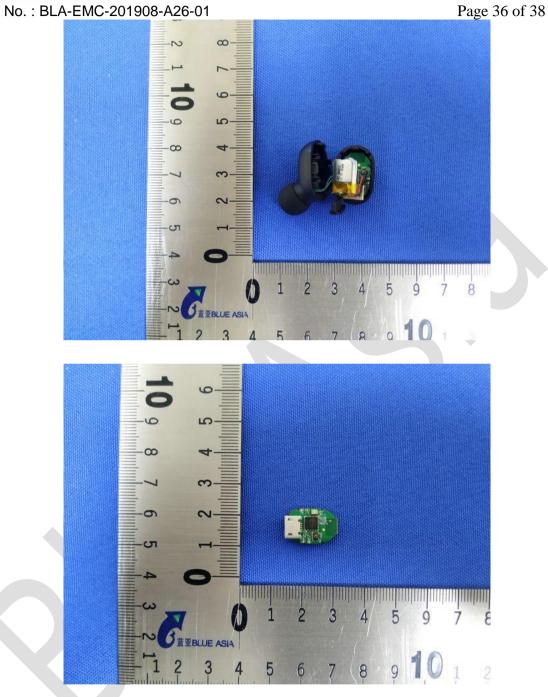
8 Test Setup Photo

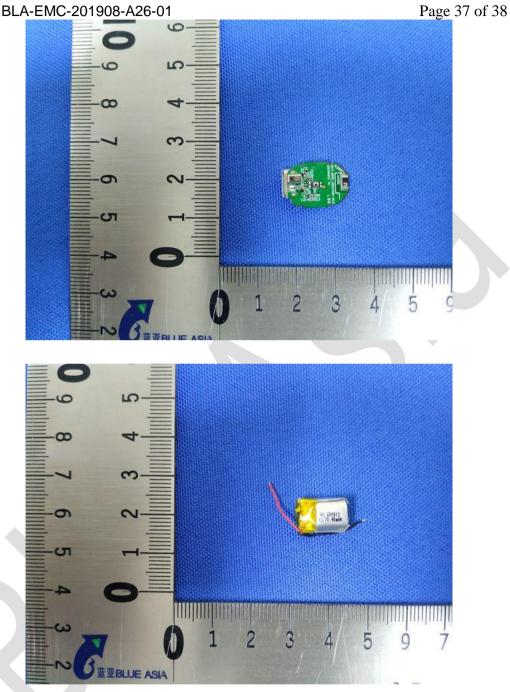
Radiated Emission

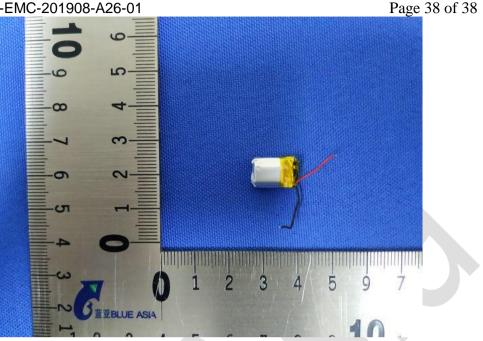

Conducted Emission

Page 32 of 38

9 EUT Constructional Details




Page 35 of 38



Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia, No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

10 Appendix

Refer to the following attachments.

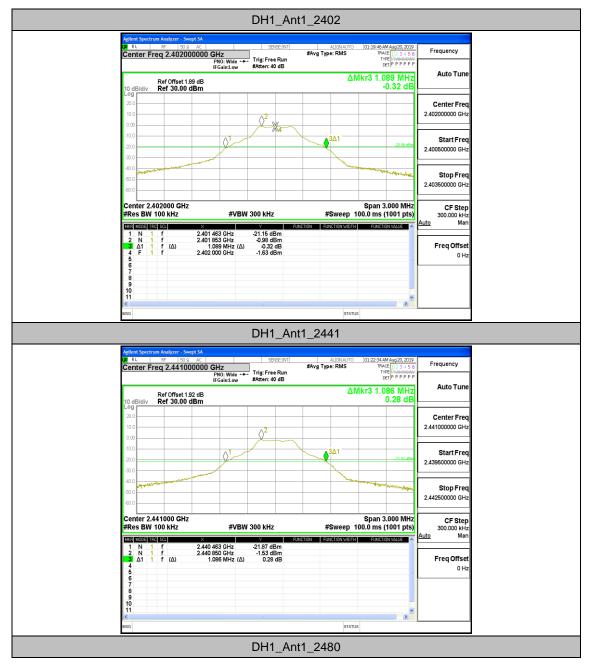
*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

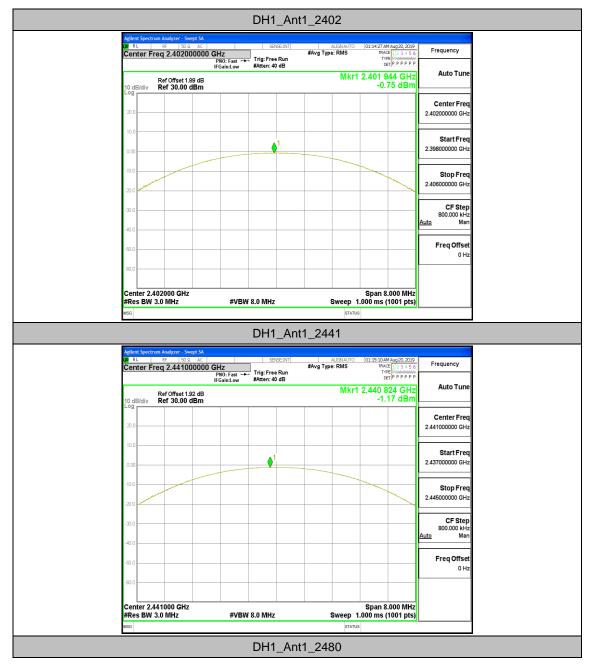

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

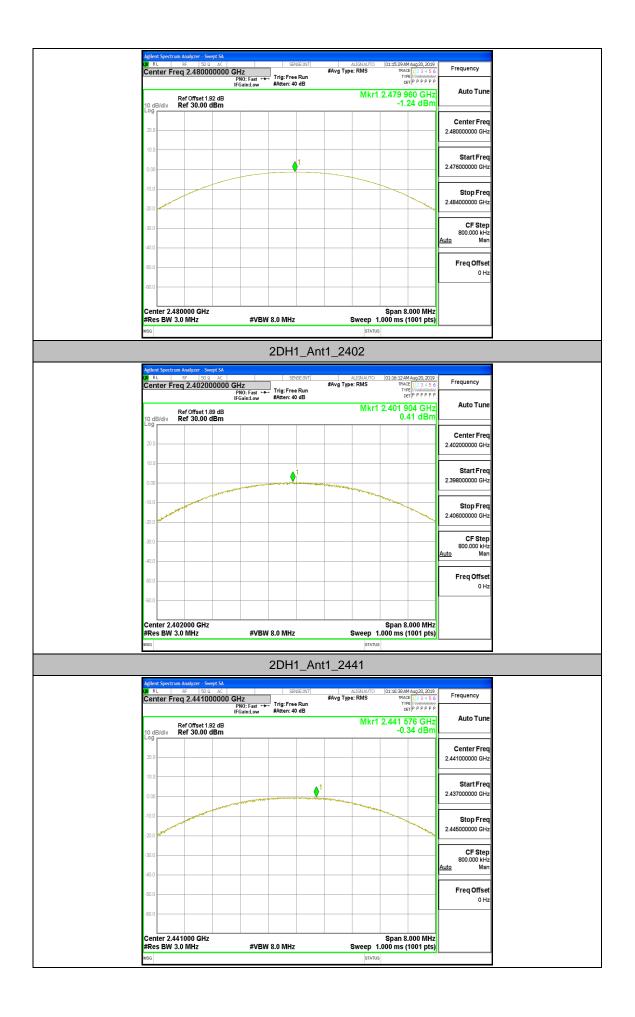
AppendixA: 20dBEmission Bandwidth

Test Result

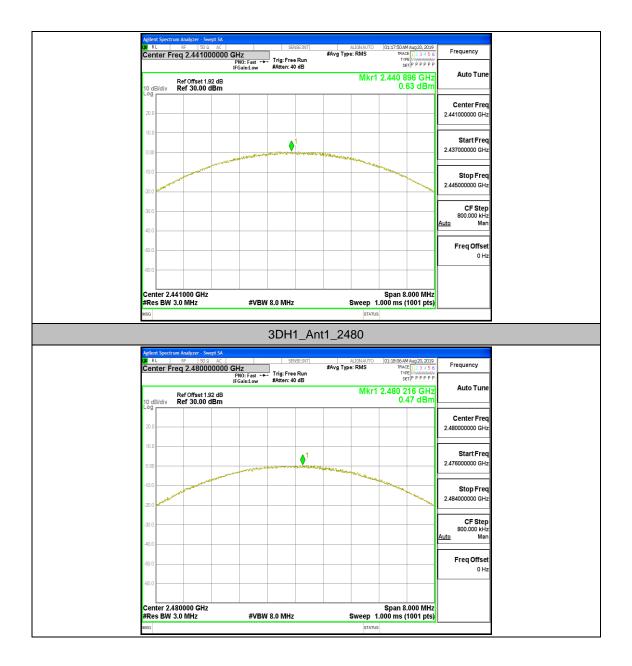
TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	1.089	2401.463	2402.552		PASS
		2441	1.086	2440.463	2441.549		PASS
		2480	1.086	2479.466	2480.552		PASS
2DH1	Ant1	2402	1.338	2401.337	2402.675		PASS
		2441	1.335	2440.337	2441.672		PASS
		2480	1.335	2479.337	2480.672		PASS
3DH1	Ant1	2402	1.332	2401.331	2402.663		PASS
		2441	1.326	2440.334	2441.660		PASS
		2480	1.332	2479.331	2480.663		PASS

Test Graphs




AppendixC: Maximum conducted output power

Test Result


TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH1	Ant1	2402	-0.75	<=21	PASS
		2441	-1.17	<=21	PASS
		2480	-1.24	<=21	PASS
2DH1	Ant1	2402	0.41	<=21	PASS
		2441	-0.34	<=21	PASS
		2480	-0.17	<=21	PASS
3DH1	Ant1	2402	1.07	<=21	PASS
		2441	0.63	<=21	PASS
		2480	0.47	<=21	PASS

Test Graphs

AppendixD: Carrier frequency separation

Test Result

TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.000	=>0.726	PASS
2DH1	Ant1	Нор	1.004	=>0.892	PASS
3DH1	Ant1	Нор	0.994	=>0.888	PASS

Test Graphs

