

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 +86-755-26648637 Fax:

Website: www.cga-cert.com Report Template Revision Date: Mar.1st, 2017

Report Template Version: V03

TEST REPORT

Application No.: CQASZ20210801403E

Applicant: Dongguan Hele Electronics Co., Ltd

Address of Applicant: Dalingya Industrial Zone, Daojiao Town, Dongguan City, Guangdong, China

Manufacturer: Dongguan Hele Electronics Co., Ltd

Address of Manufacturer: Dalingya Industrial Zone, Daojiao Town, Dongguan City, Guangdong, China

Factory: Dongguan Hele Electronics Co., Ltd

Address of Factory: Dalingya Industrial Zone, Daojiao Town, Dongguan City, Guangdong, China

Equipment Under Test (EUT):

TWS Bluetooth headset **Product:**

BH21Q17A Model No.:

Brand Name: N/A

Standards: Item 19 of Article 2 Paragraph 1

Date of Receipt: 2021-08-19

Date of Test: 2021-08-19 to 2021-08-30

Date of Issue: 2021-09-13

PASS Test Result:

Tested By: lewis 2hou (Lewis Zhou)

Reviewed By:

^{*} In the configuration tested, the EUT complied with the standards specified above.

1 Version

Revision Record					
Version Chapter Date Modifier Remark					
01		2021-09-13		Original	

2 Test Summary

Test	Test Requirement	Limit/Severity	Result
Antenna Requirement	Item 19 of Article 2-1	Notice 88 Appendix 43,B-1 (1)&(2)	PASS
Test frequency	Item 19 of Article 2-1	Notice 88 Appendix 43, A-3	PASS
Frequency Error Item 19 of Article 2		±50 PPM or less	PASS
Occupied Bandwidth	Item 19 of Article 2-1	83.5 MHz or less	PASS
Spread-spectrum Bandwidth	Item 19 of Article 2-1	500 kHz or more	PASS
Antenna Power	Item 19 of Article 2-1	3 mW /MHz or less Error+20% -80%	PASS
Spurious Emission of Tx	Item 19 of Article 2-1	(1) Below 2387 MHz: 2.5µW/MHz (2) 2387 to 2400 MHz: 25µW/MHz (3) 2483.5 through 2496.5 MHz: 25µW/MHz (4)Over 2496.5 MHz: 2.5µW/MHz	PASS
Dwell Time	Item 19 of Article 2-1	less than 0.4sec	PASS
Interference prevention capability	Item 19 of Article 2-1	Notice 88 Appendix 43, 44, 45	PASS
RF accessibility	Item 19 of Article 2-1	Article 49-20, paragraph 1 (a)	PASS
Spurious Emission of Rx	Item 19 of Article 2-1	(1) Below 1 GHz : 4 nW (2) 1 GHz to 13 GHz : 20 nW	PASS
Transmission Antenna Gain	Item 19 of Article 2-1	1	N/A
Transmission Radiation Angle Width	Item 19 of Article 2-1	1	N/A

Remark:

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

N/A: This test item was not required for the output power less than 6.91dBm/MHz(E.I.R.P), So Not Applicable.

3 Contents

1 VERSION	
2 TEST SUMMARY	
3 CONTENTS	2
4 GENERAL INFORMATION	
4.1 General Description of E.U.T	
4.2 Details of E.U.T	
4.3 Description of Support Units	
4.4 Deviation from Standards	
4.5 Abnormalities from Standard Conditions	
4.6 Other Information Requested by the Customer	
4.7 Test Location	
4.8 Test Facility	
5 EQUIPMENT LIST	
6 TEST RESULTS	
6.1 Radio Technical Requirements Specification	9
6.2 E.U.T. Test Conditions	
6.3 Antenna Requirement	13
6.4 Interference prevention function	14
6.5 Frequency Error	15
6.6 Occupied Bandwidth (99%)	19
6.7 Spread spectrum Bandwidth (90%)	22
6.8 Antenna Power	25
6.9 Spurious Emissions of Tx	30
6.10 Dwell Time	44
6.11 Pseudorandom Frequency Hopping Sequence	49
6.12 RF accessibility	50
6.13 Spurious Emissions of Rx	51
7 PHOTOGRAPHS	55
7.1 Test Setup	5.5

4 General Information

4.1 General Description of E.U.T.

Product Name: TWS Bluetooth headset

Model No: BH21Q17A

Trade Mark: N/A

4.2 Details of E.U.T.

Operating Frequency: 2402 MHz to 2480 MHz

Type of Modulation: GFSK, $(\pi/4)$ DQPSK

Number of Channels: 79 Channels

Channel Separation: 1 MHz

Dwell Time: Per channel is less than 0.4s.

Bluetooth Version: BT5.1
Hardware Version: V5.1

Software Version: V5.1

Antenna Type: Internal Antenna

Antenna Gain: 1.81 dBi

Rated power: 0.03027 mW/MHz
Sample Type: Portable product

Power Supply: Left ear: lithium battery: DC 3.7V, 0.16Wh, Charge by DC 3.7V

Right ear: lithium battery: DC 3.7V, 0.16Wh, Charge by DC 3.7V

The earphone box: lithium battery: DC 3.7V 380mAh, Charge by DC 5.0V

4.3 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark
Adapter	XIAOMI	MDY-08-EF	Provide by lab

4.4 Deviation from Standards

None.

4.5 Abnormalities from Standard Conditions

None.

4.6 Other Information Requested by the Customer

None.

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

No tests were sub-contracted.

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• ISED Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

5 Equipment List

Test Equipment List								
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date	Cal. Due Date	Remark		
Humi/ Temp Indicator	VICTOR	VC330	CQA-S070	2020/9/25	2021/9/24	-		
Spectrum Analyzer	Rohde & Schwarz	FSU26	CQA-038	2020/10/25	2021/10/24	-		
DC Power Supply	KEYSIGHT	E3631A	CQA-028	2020/9/26	2021/9/25	-		
Multi Meter	Fluke	15B	CQA-S011	2020/9/25	2021/9/24	-		
iPhone 6s	Apple	A1688	FK1QJUUS GRYD	-	-	Certificate number: [T] ADF15009 9003 [R]003-150 132		
Signal generator	ANRITSU	MG3692B	CQA-019	2020/9/25	2021/9/24	-		

Remark:

- (a) Calibration conducted by the National Institute of Information and Communications Technology (NICT) in Japan (hereinafter referred to as "NICT") or a designated calibration agency under Article 102-18 paragraph (1) in JRL.
- (b) Correction conducted pursuant to the provisions of Article 135 or Article 144 of the Measurement Act (Act No. 51 of 1992) .
- (c) Calibration conducted in countries except Japan, which shall be equivalent to the calibration conducted by the NICT or a designated calibration agency under Article 102-18 paragraph (1).
- (d) Calibration, etc. conducted by using measuring instruments and other equipment listed in the right column of appended table No. 3, which shall have been given any type of calibration, etc. listed above from (a) to (c).

 From JRL Article 24-2, paragraph 4, Item 2

Notice: Calibration duration for above equipments is 1 year.

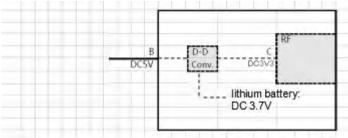
6 Test Results

6.1 Radio Technical Requirements Specification

Table 1: Radio Technical Requirements Specification for 2.4 GHz band wide-band low-power data communication system (Item 19 of Article 2-1)

Items	Technical standard
Assigned frequency or designated frequency	2402-2480MHz
Communication method	One-way communication, simplex, semi-duplex, or duplex operation of digital signal transmission including spread spectrum
Tolerance of frequency (×10 ⁻⁶)	±50
Tolerance of occupied bandwidth	FH: 83.5MHz or less FH + DS: 83.5MHz or less FH + OFDM: 83.5MHz or less OFDM: 38MHz or less Others: 26MHz or less
Antenna power	Designated value (1) FH, FH+DS, FH+OFDM: 3mW/MHz (used in the range of 2402 - 2480MHz) (2) OFDM, DS other than (1) 10mW/MHz (3) Other than (1) & (2) 10mW (4) OFDM OBW 26 - 38MHz: 5mW/MHz Tolerance:+20%,-80%
Antenna gain	1) 0dBi or less in principle 2) In case of directional antenna (1) FH, FH+DS or FH+OFDM using 2402-2480 MHz EIRP≤ 16.91 dBm/MHz (2) OFDM or DS other than (1) EIRP≤ 22.14 dBm/MHz (3) Other than (1) and (2): 22.14 dBm or less (4) OFDM OBW 26 - 38MHz: 19.14dBm/MHz (5) Half-power angle of directional antenna (e) in case of the item 2):e ≤ 360/A (The A is 10 in maximum.)
Tolerance of spurious emission intensity	 (1) Below 2387 MHz: 2.5μW (2) 2387 to 2400 MHz: 25μW (3) 2483.5 through 2496.5 MHz: 25μW (4) Over 2496.5 MHz: 2.5μW
Spreading bandwidth	DS,FH,FH+DS,FH+OFDM: 500kHz or more
Spreading rate of spectrum	For DS system;(Spreading bandwidth) / (Frequency corresponding to transmission rate) ≥ 5
Limit of secondary radiated	(1) Below 1 GHz: 4nW

emissions	(2) 1 GHz or higher: 20nW
Interference prevention function	Shall have the function of automatic transmission and reception of identification sign.
Structure	Shall be of the structure that the RF and modulator sections excluding antenna cannot easily be opened.
Note	DS: Direct spread FH: Frequency hopping OFDM: Orthogonal frequency division multiplexing


6.2 E.U.T. Test Conditions

Power Supply: lithium battery: DC 3.7V 0.16Wh, Charge by DC 3.7V

The RF unit is supplied DC with DC. The fluctuation of input voltage to the circuit of RF unit of test equipment is under ±1%, when input voltage from DC5V or DC 3.7V to the test equipment is fluctuated by

±10%, So, all measurement has been conducted by only rated voltage.

Power Supply view:

Test below

The RF unit is supplied DC with DC . The fluctuation of input voltage to the circuit of RF unit of test equipment is under $\pm 1\%$, when input voltage from DC5V or DC3.7V to the test equipment is fluctuated by $\pm 10\%$, So, all measurement has been conducted by only rated voltage.

Power S	vlaaı	resu	ılt:
---------	-------	------	------

DC Input	DC3V3	DC Input	DC3V3
5.05V	3.32V	3.74V	3.32V
5.0V	3.31V	3.7V	3.30V
4.95V	3.30V	3.66V	3.28V

 Temperature:
 5 -35.0 °C

 Humidity:
 45-85 % RH

Atmospheric Pressure: 1000 -1010 mbar

Test Frequencies:

If the EUT can be set to 3 of more different (carrier) frequencies in 1 allocated band, testing shall be performed using the Lowest, Middle and the Highest frequency (L, M and H). If there are 2 or fewer frequencies, testing shall be performed with the available frequencies.

^{1:} The fluctuation of C point is under $\pm 1\%$, when input voltage from B point to the test equipment is fluctuated by $\pm 10\%$.

² The fluctuation of C point is under ±1%, when input voltage from A point to the test equipment is fluctuated by ±10%.

EUT Channels and Frequencies List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	27	2429	54	2456
1	2403	28	2430	55	2457
2	2404	29	2431	56	2458
3	2405	30	2432	57	2459
4	2406	31	2433	58	2460
5	2407	32	2434	59	2461
6	2408	33	2435	60	2462
7	2409	34	2436	61	2463
8	2410	35	2437	62	2464
9	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Test frequencies are the lowest channel: 0 channel (2402 MHz), middle channel: 39 channel (2441 MHz) and highest channel: 78 channel (2480 MHz).

6.3 Antenna Requirement

Standard requirement

Applicable for equipment with an antenna terminal, including testing terminals) If an antenna connector is available, all relevant tests will be carried out conducted. If not, tests will be carried out in an anechoic room or with a suitable test-fixture.

EUT Antenna

The EUT with PCB antenna, the best case gain of the antenna is 1.81 dBi.

Result: An antenna connector is available, all relevant tests will be carried out conducted.

6.4 Interference prevention function

The device consists of the the integral antenna and 2.4 GHz BT module; Component BT module also can use the protocol function to protect interference come from outside.

6.4.1 Test Equipment

iPhone 5c

6.4.2 Test Software

Walkie Talkie for Bluetooth

6.4.3 Test Procedure

1:Open the software

2:Search the Bluetooth device

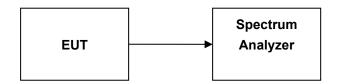
We can use software to detect Bluetooth ID information is as follows:

1C:52:16:1A:A4:82

Test result: The unit does meet the requirements.

PASS

6.5 Frequency Error


Test Requirement: Item 19 of Article 2-1

Tolerance of frequency: ±50×10⁻⁶

Text Method: MIC Notice No.88 Appendix No.43

Test Status: Test the EUT in transmitting mode without modulation.

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping OFF, CW Tx

3. Spectrum Analyzer conditions:

Frequency: Test Frequency

Span 1MHz

RBW 10 kHz (Modulation OFF),

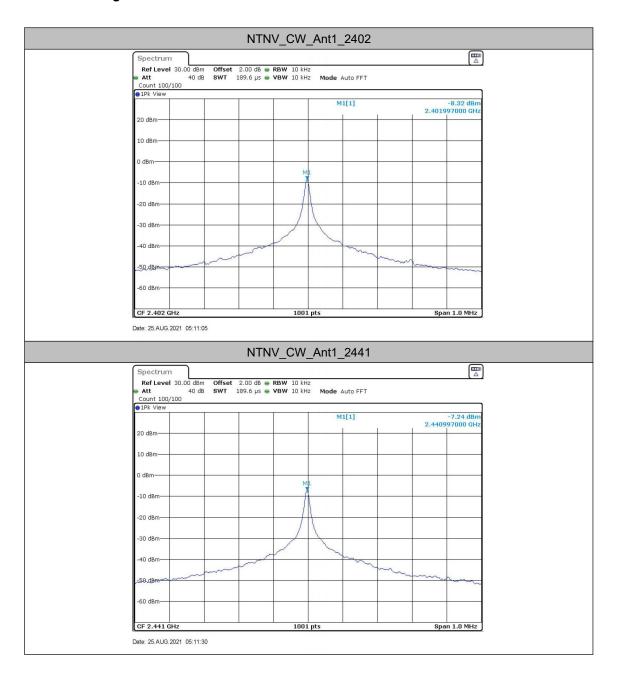
VBW 10 kHz (Modulation OFF),

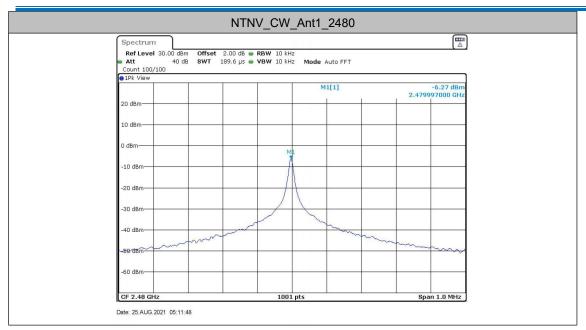
Sweep Time Auto

Detector mode Positive peak

Indication mode Max hold

Test Result:


TestCondition	TestMode	Antenna	Channel	Result[ppm]	Limit[ppm]	Verdict
			2402	-1.24896	±50	PASS
NTNV	CW	Ant1	2441	-1.22900	±50	PASS
			2480	-1.20968	±50	PASS


Note: The nominal frequency shall be confirmed by the applicant and test lab.

Result plot as follows:

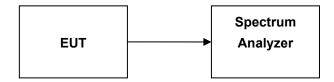
Normal Voltage: DC3.7V

Test Result: The unit does meet the requirements.

6.6 Occupied Bandwidth (99%)

Test Requirement: Item 19 of Article 2-1

FH: 83.5MHz or less


Text Method: MIC Notice No.88 Appendix No.43

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed

below.

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping ON, Modulation Tx

For equipment using diffusion code, set to the test diffusion code and modulate with standard coding test signal.

3. Spectrum Analyzer conditions:

Frequency: Test Frequency

Span 83.5 MHz (FHSS),

RBW 1 MHz

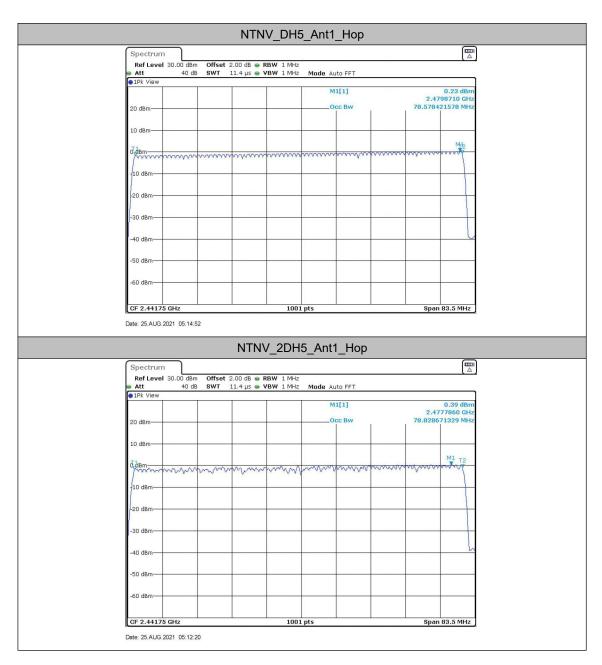
VBW 1 MHz

Sweep Time Auto

detector mode Positive peak

Indication mode Max hold

OBW 99%


Test Result:

TestCondition	TestMode	Antenna	Channel	Result [MHz]	Limit [MHz]	Verdict
NITNIX	DH5	Ant1	Нор	78.578	<=83.5	PASS
NTNV	2DH5	Ant1	Нор	78.829	<=83.5	PASS

Result plot as follows:

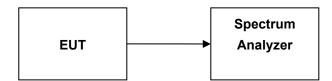
Normal Voltage: DC3.7V

Test Result: The unit does meet the requirements.

6.7 Spread spectrum Bandwidth (90%)

Test Requirement: Item 19 of Article 2-1

500 kHz or more


Text Method: MIC Notice No.88 Appendix No.43

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed

below.

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping ON, Modulation Tx

For equipment using diffusion code, set to the test diffusion code and modulate with standard coding test signal.

3. Spectrum Analyzer conditions:

Frequency: Test Frequency Span 83.5MHz (FHSS),

RBW 1 MHz VBW 1 MHz

Sweep Time Auto

detector mode Positive peak

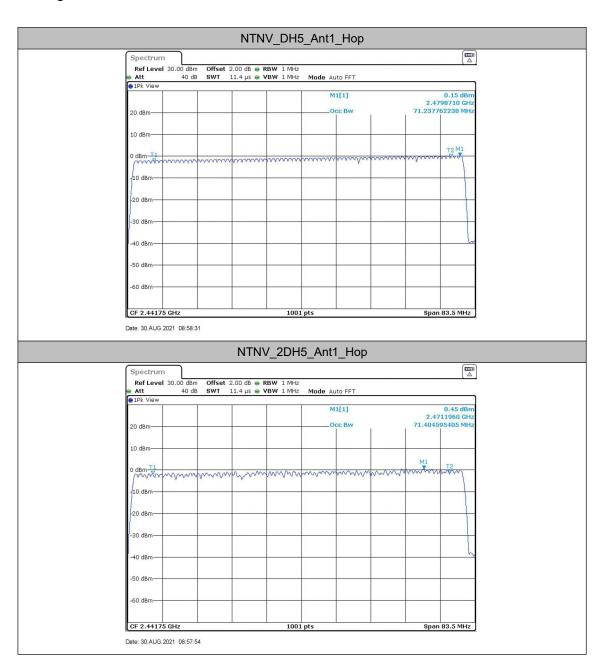
Indication mode Max hold

OBW 90%

Test Result:

TestCondition	TestMode	Antenna	Channel	Result [MHz]	Limit [MHz]	Verdict
NTNV	DH5	Ant1	Нор	71.238	>=0.5	PASS
	2DH5	Ant1	Нор	71.405	>=0.5	PASS

		Spreading factor				
	Test	Normal Voltage	High Voltage	Low Voltage		
Modulation	channels	3.7V DC	4.07V DC	3.33V DC	Limit	
	79 channels	71.238	,	,	>5	
GFSK	(2402~2480)	71.230	1	1	/ 5	
	79 channels	35.703	,	1	>5	
(π/4)DQPSK	(2402~2480)	33.703	1	1	/3 	


Remark: 1. Spreading factor = Spread bandwidth/ Transmission rate

2. Transmission rate of GFSK, $(\pi/4)$ DQPSK are 1 Mbps, 2 Mbps

Result plot as follows:

Normal Voltage: DC3.7V

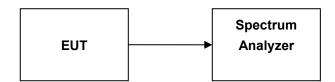
Test Result: The unit does meet the requirements.

6.8 Antenna Power

Test Requirement: Item 19 of Article 2-1

2400-2427MHz, 2470.75-2483.5MHz: 10mW/MHz or less

2427-2470.75MHz: 3mW/MHz or less


Text Method: MIC Notice No.88 Appendix No.43

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed

below.

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping ON, Modulation Tx

For equipment using diffusion code, set to the test diffusion code and modulate with standard coding test signal.

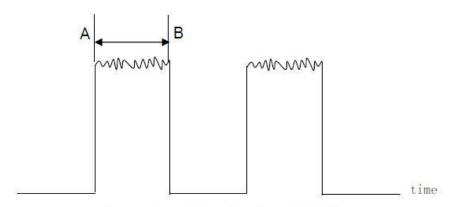
3. Spectrum Analyzer conditions:

Center Frequency: Test Frequency
Span: 2 times of occupied bandwidth

RBW: 1 MHz VBW: 3 MHz

Sweep Time: Auto

detector mode: Positive peak Indication mode: Max hold


4. Spectrum Analyzer conditions(Measure of Antenna Power):

Center Frequency: Frequency of Peak Power (Search Frequency by 3)

Span: 0Hz RBW: 1 MHz VBW: 1 MHz

Sweep Time: Auto

detector mode: Positive peak
Indication mode: Sample Average

Measures the Average Burst power (A to B)

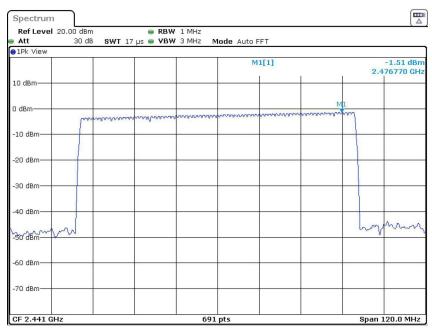
Test Result:

GFSK:

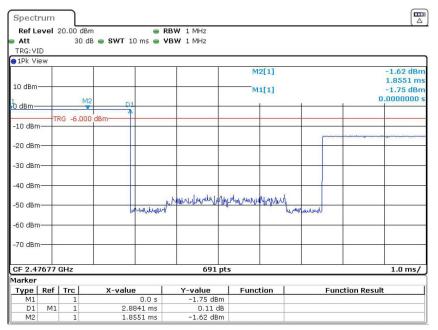
Modulation	Test channels	Test Result				
		Normal Voltage	High Voltage	Low Voltage	Item	Limit
		3.7V DC	4.07V DC	3.33V DC		
GFSK	79 channels (2402~2480)	-1.62	1	1	Average Burst Power(dB)	1
		0.00966	1	1	Antenna power(mW/MHz)	≤3 mW /MHz
		-68.08	1	1	Antenna power Tolerance (%)	+20% -80%
		-1.75	1	1	Antenna power(dBm/MHz)	/
		0.06	1	1	EIRP(dBm/MHz)	≤6.91dBm/MHz

(π/4)DQPSK:

Modulation	Test channels	Test Result				
		Normal Voltage	High Voltage	Low Voltage	Item	Limit
		3.7V DC	4.07V DC	3.33V DC		
(π/4)DQP SK	79 channels (2402~2480)	0.34	1	1	Average Burst Power(dB)	1
		0.03029	1	1	Antenna power(mW/MHz)	≤3 mW /MHz
		0	1	1	Antenna power Tolerance (%)	+20% -80%
		-1.83	1	1	Antenna power(dBm/MHz)	/
		-0.02	1	1	EIRP(dBm/MHz)	≤6.91dBm/MHz

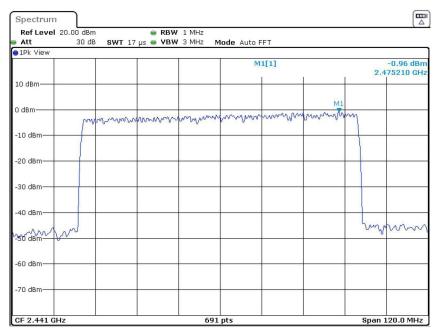

Remark:

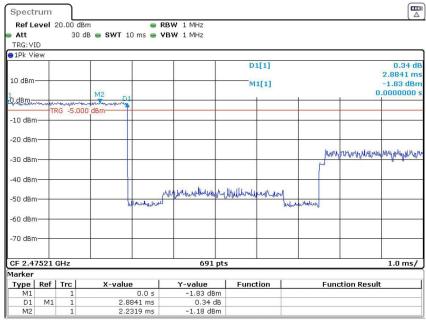
- 1. Antenna power(mW/MHz)=Average Burst Power / Spread Band width
- 2. The "Spread Band width" please refer to section 7.6.
- 3. Tolerance (%) :[(test value- rate power)/rater power]*100
- 4. EIRP= Antenna power + Antenna Gain
- 5. Antenna Gain is 1.81 dBi
- 6. Rated power: 0.03029MW/MHz



Result plot as follows: Normal Voltage: DC3.7V

GFSK


Date: 31.AUG.2021 13:44:29


Date: 31.AUG.2021 13:45:55

(π/4)DQPSK

Date: 31.AUG.2021 13:41:14

Date: 31.AUG.2021 13:42:42

Remark: The "Spread Band width" please refer to section 7.6.

Test result: The unit does meet the requirements.

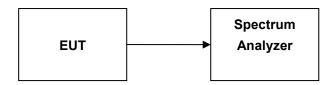
6.9 Spurious Emissions of Tx

Test Requirement: Item 19 of Article 2-1

Text Method: MIC Notice No.88 Appendix No.43

(1) Below 2387 MHz: 2.5µW/MHz(-26dBm/MHz)(2) 2387 to 2400 MHz: 25µW/MHz(-16dBm/MHz)

(3) 2483.5 through 2496.5 MHz: 25µW/MHz(-16dBm/MHz)


(4) Over 2496.5 MHz: 2.5µW/MHz(-26dBm/MHz)

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed

below.

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping ON, , Modulation Tx

For equipment using diffusion code, set to the test diffusion code and modulate with standard coding test signal.

3. Spectrum Analyzer conditions:

Step 1

All spurious are measured from 30 MHz to 13 GHz by peak mode.

Step 2

IF the value measured by Step1 is 2 dB or less, measure in average mode.

Test setup for Step 1:

Frequency: 30 MHz - 1000 MHz

RBW 100 KHz VBW 100 KHz Sweep Time Auto

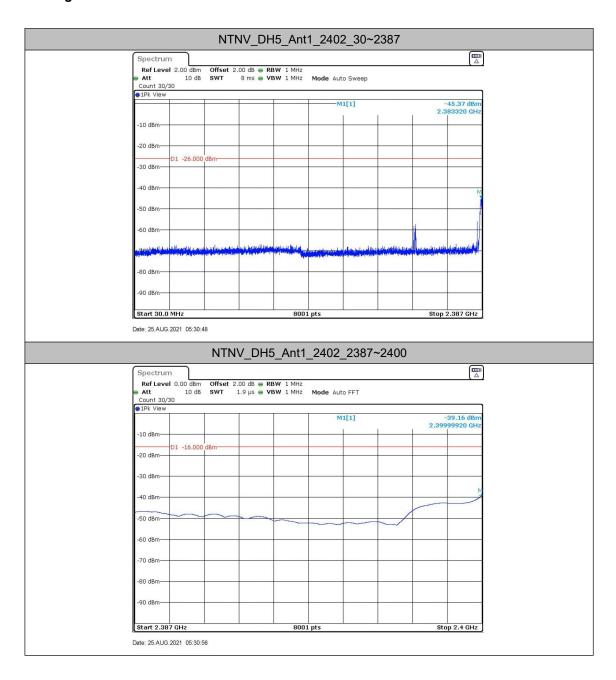
detector mode Positive peak Indication mode Max hold

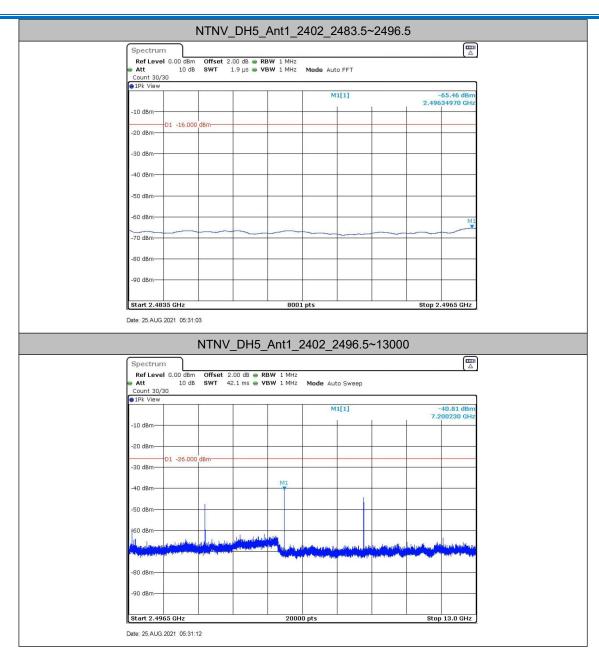
Frequency: 1000 MHz - 2400 MHz, 2483.5 MHz - 13 GHz

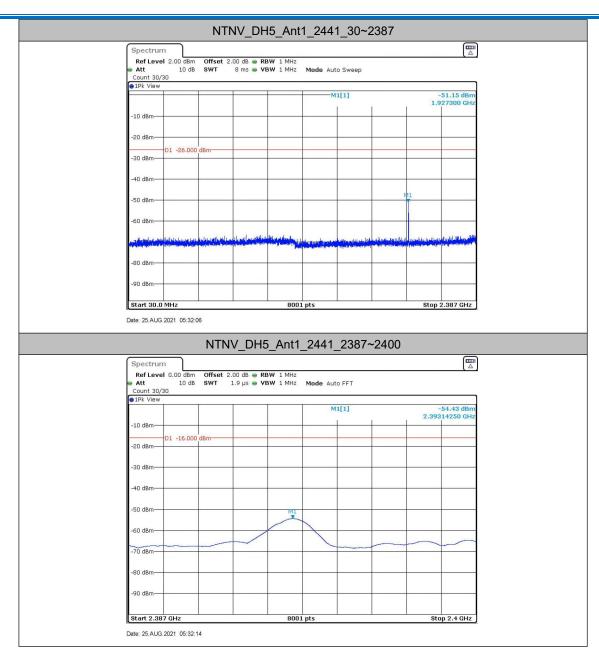
RBW 1 MHz VBW 1 MHz Sweep Time Auto

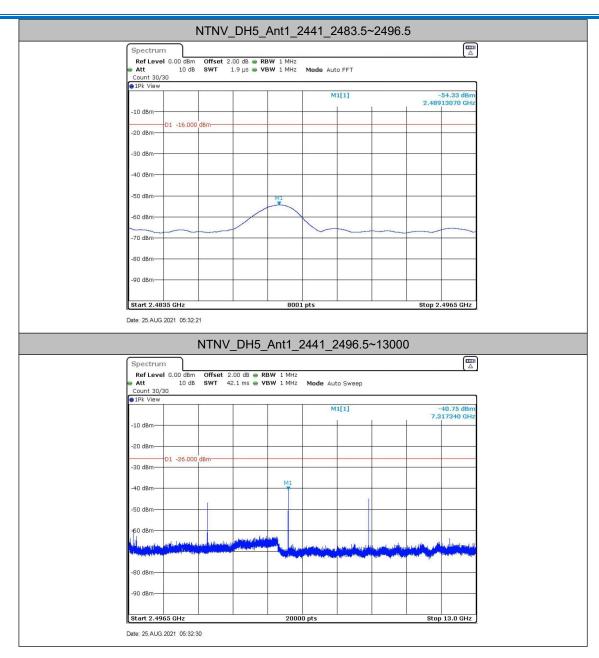
detector mode Positive peak Indication mode Max hold

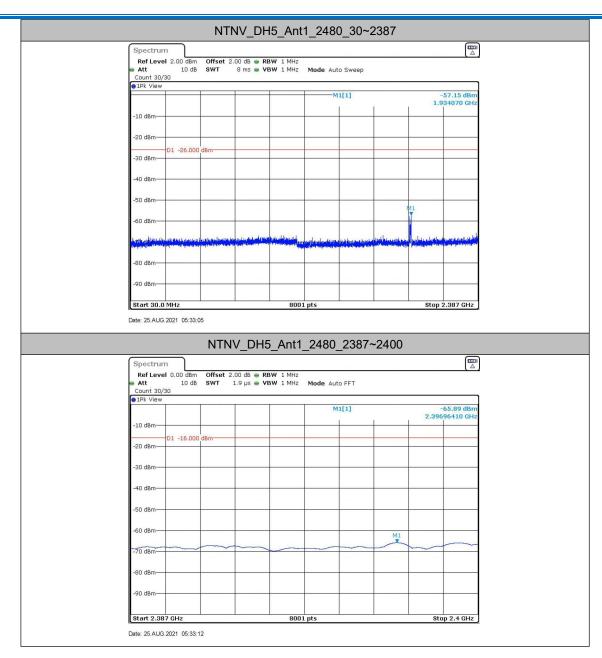
Test setup for Step 2: Frequency: Spurious Frequency RBW 1 MHz VBW 1 MHz Sweep Time Auto detector mode Sample Indication mode Max hold

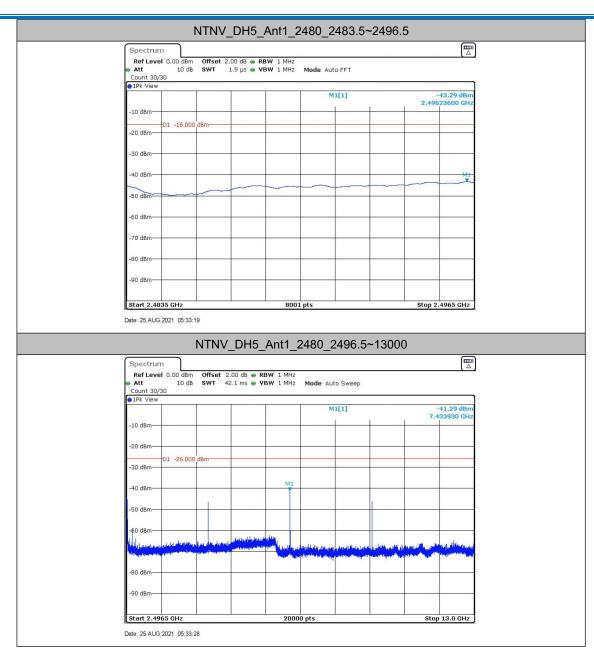

Test Result:

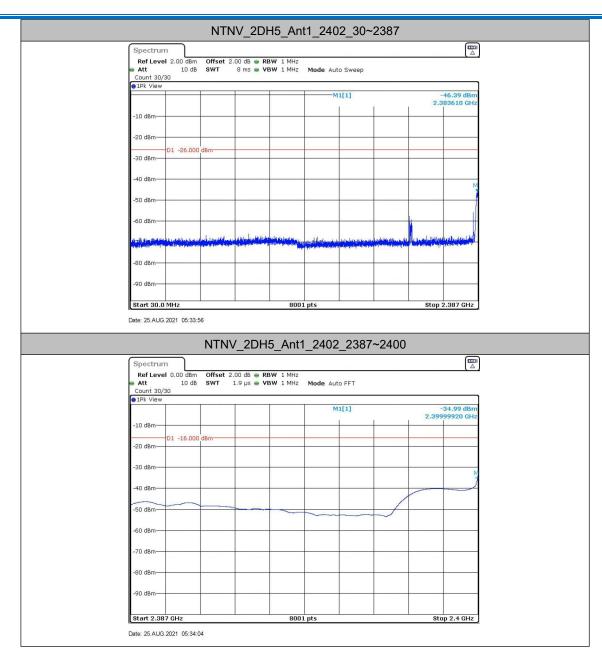

TestCondition	TestMode	Antenna	Channel	Freq.Range	Result	Limit	Verdict	
				[MHz]	[dBm]	[dBm]		
			2402	30~2387	-45.37	<=-26	PASS	
				2387~2400	-39.16	<=-16	PASS	
				2483.5~2496.5	-65.46	<=-16	PASS	
				2496.5~13000	-40.81	<=-26	PASS	
			2441	30~2387	-51.15	<=-26	PASS	
		Ant1		2387~2400	-54.43	<=-16	PASS	
	DH5			2483.5~2496.5	-54.33	<=-16	PASS	
				2496.5~13000	-40.75	<=-26	PASS	
			2480	30~2387	-57.15	<=-26	PASS	
				2387~2400	-65.89	<=-16	PASS	
				2483.5~2496.5	-43.29	<=-16	PASS	
NTNV				2496.5~13000	-41.29	<=-26	PASS	
INTINV	2DH5	Ant1	2402	30~2387	-46.39	<=-26	PASS	
				2387~2400	-34.99	<=-16	PASS	
				2483.5~2496.5	-65.81	<=-16	PASS	
				2496.5~13000	-40.76	<=-26	PASS	
			2441	30~2387	-55.55	<=-26	PASS	
				2387~2400	-54.31	<=-16	PASS	
				2483.5~2496.5	-54.48	<=-16	PASS	
				2496.5~13000	-40.85	<=-26	PASS	
			2480	30~2387	-51.54	<=-26	PASS	
				2387~2400	-65.57	<=-16	PASS	
				2483.5~2496.5	-43.33	<=-16	PASS	
				2496.5~13000	-41.34	<=-26	PASS	

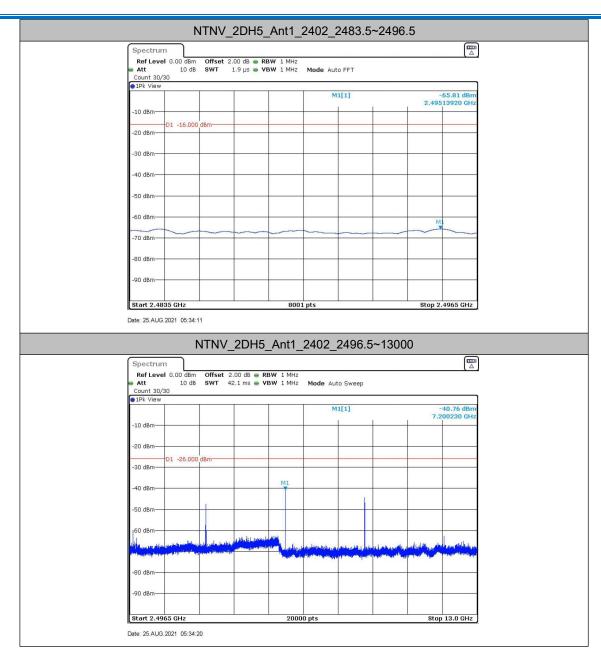

Test Result:

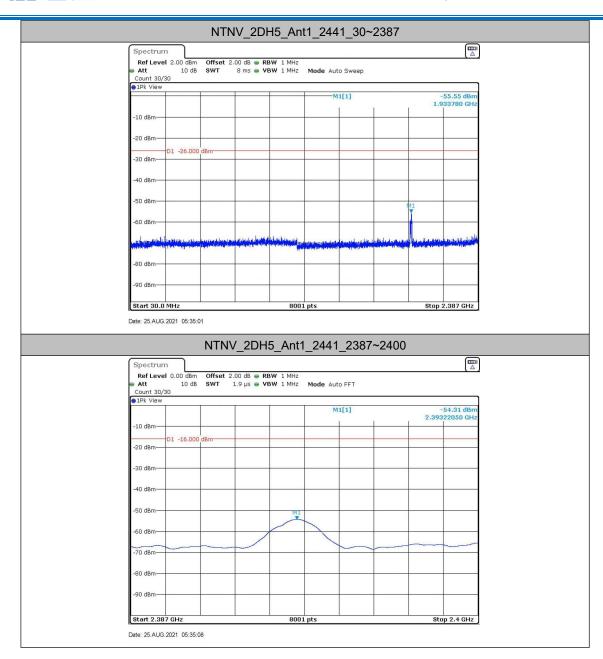

Result plot as follows:

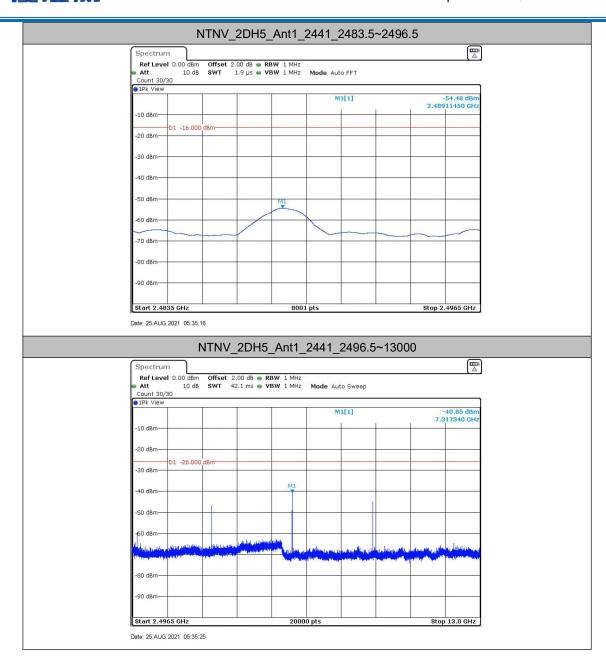

Normal Voltage DC3.7V

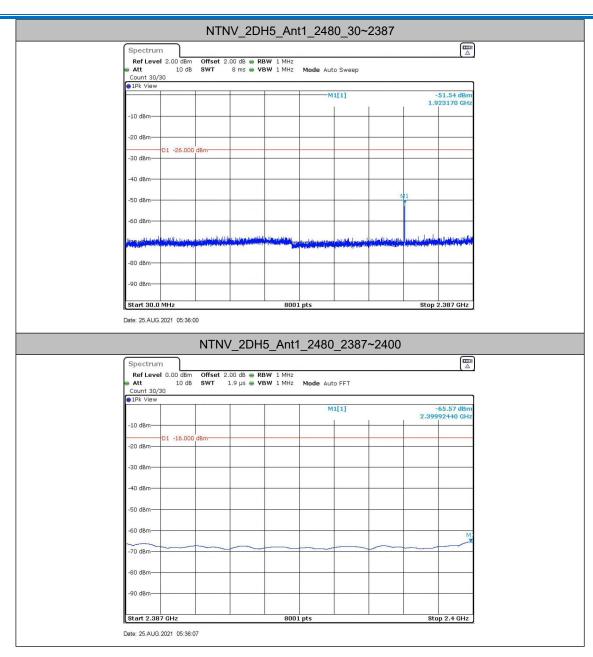


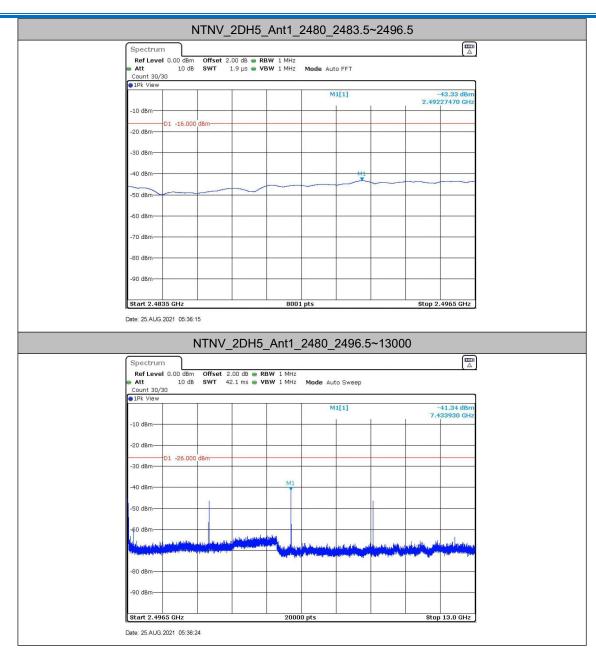












Test Result: The unit does meet the requirements.

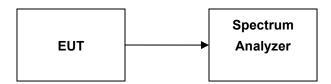
6.10 Dwell Time

Test Requirement: Item 19 of Article 2-1

less than 0.4sec

MIC Notice No.88 Appendix No.43 Text Method:

Pre-Scan has been conducted to determine the worst-case mode from all Test Status:


> possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following

channel(s) was (were) selected for the final test as listed below.

Modulation/Spread/Hopping ON, Hopping frequency is fixed, Bluetooth

equipment is setting DH5 mode

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping ON, Hopping frequency is fixed, Bluetooth equipment is setting DH5 mode

For equipment using diffusion code, set to the test diffusion code and modulate with standard coding test signal.

3. Spectrum Analyzer conditions:

Frequency: Test Frequency (fixed hopping frequency)

Span 0 Hz **RBW 1 MHz**

VBW 1 MHz

Sweep Time EUT condition

Trigger Video Trigger

Measures the Transmission time of 1 burst (sec)

Measures the Burst cycle (sec)

4. Calculation procedure:

Dwell time = (0.4(s) x [spreading rate] x [Transmission time of 1 burst(s)]) / ([burst cycle(s)] x [No. of hopping channel])

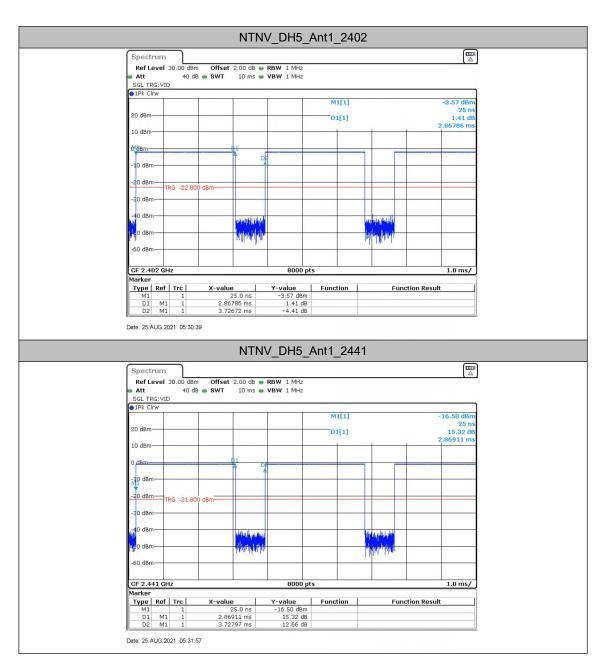
Note:

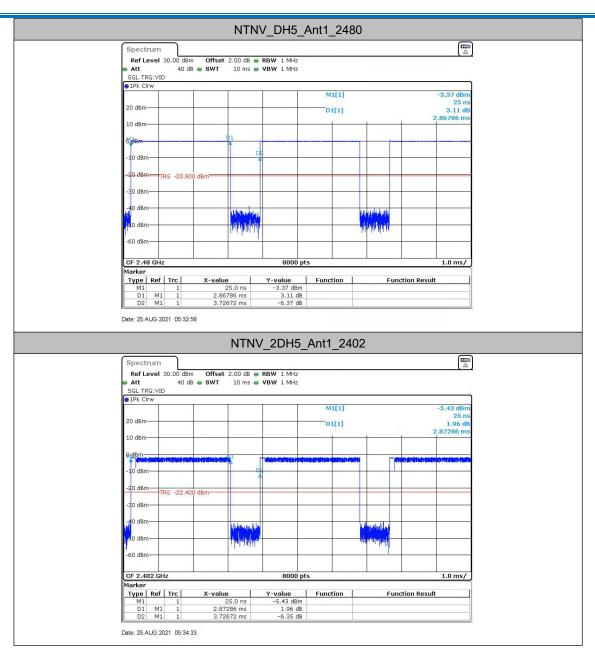
* Spreading rate = [Spread bandwidth (actual measurement value)] / [Transmission rate]

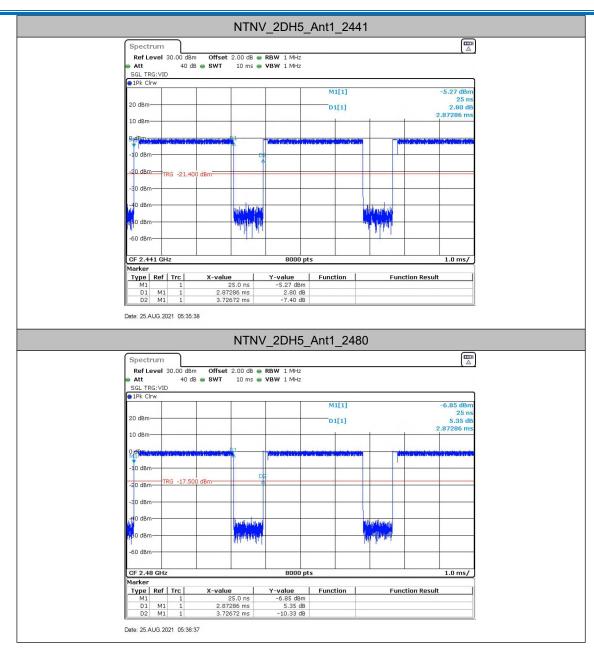
Test Result:

TestCondition	TestMode	Antenna	Channel	BurstWidth	Period	Result	Limit	Verdict
				[ms]	[ms]	[s]	[s]	
NTNV	DH5	Ant1	2402	2.87	3.73	0.31	<0.4	PASS
			2441	2.87	3.73	0.31	<0.4	PASS
			2480	2.87	3.73	0.31	<0.4	PASS
	2DH5	Ant1	2402	2.87	3.73	0.31	<0.4	PASS
			2441	2.87	3.73	0.31	<0.4	PASS
			2480	2.87	3.73	0.31	<0.4	PASS

Remark: Calculated method: Dwell time = $(0.4(s) \times [spreading rate] \times [Transmission time of 1 burst(s)])/([burst cycle(s)] \times [No. of hopping channel])$


Note: Spreading rate = [Spread bandwidth (actual measurement value)]/[Transmission rate]


Transmission rate is GFSK:1.0 Mbps, $(\pi/4)$ DQPSK:2.0 Mbps

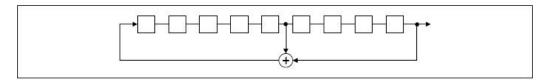

Result plot as follows:

Normal Voltage: DC3.7V

Test Result: The unit does meet the requirements.

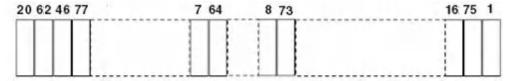
6.11 Pseudorandom Frequency Hopping Sequence

Standard requirement


Article 2, Item (19) Notice 88 Appendix 43, 44, 45 requirement:

The EUT shall have the capability to transmit or to receive the MAC identification automatically, so that sender and receiver shall exclude other equipment.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

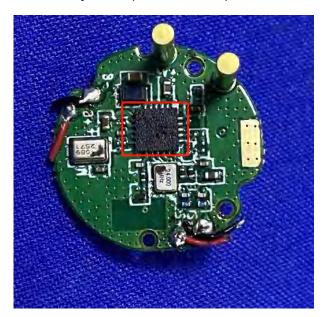
Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.12RF accessibility


Standard requirement

Article 49-20, paragraph 1 (a)

The EUT shall be constructed in such a way that sensitive RF parts, (like modulation and oscillator parts) cannot be reached easily by the user. These parts shall be covered by soldered metal caps or glue or by other mechanical covers. If the covers are fixed with screws, these shall be not the common type(s) like a Phillips, but special versions like Torx, so that the user cannot open the device with common tools.

Tamper proof Declaration:

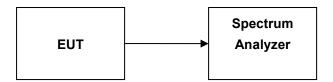
- ☐ 2. Plastic chassis is being welded using ultrasonic waves.
- ☐ 3. Chassis is glued using a special adhesive.
- ☐ 4. Metal covers are spot-fused.
- ☐ 5. Cover is specially interlocked.
- ☐ 6. RF and Modulation components are covered with shielding case and this shielding case is soldered.
- ☐ 7. Shield case is welded at RF and modulation parts, and ID-ROM is welded using the BGA Method.
- ☐ 8. Shield case is welded at RF and modulation parts, and ID-ROM is glued at its lead with a special adhesive.
- ☐ 9. Shield case is welded at RF and modulation parts, and ID-ROM is glued with a non-transparent laminating agent.
- ☑ 10. RF and Modulation parts are mounted on PCB with surface mount technology, and there is no any adjustable parts on PCB or adjustable parts are not exposed.

Result: Method used to meet "can not open easily requirement" is welded using ultrasonic waves, Any attempt to modify the RF chip will void the normal operation of this device.

6.13 Spurious Emissions of Rx

Test Requirement: Item 19 of Article 2-1

Text Method: MIC Notice No.88 Appendix No.43


(1) Below 1 GHz : 4 nW(-54dBm) or less (2) 1 GHz and over : 20 nW(-47dBm) or less

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed

below.

Test Configuration:

Test Procedure:

1. Test Conditions:

Spectrum Analyzer is used for measurement.

2. EUT conditions:

Modulation/Spread/Hopping ON

For equipment using diffusion code, set to the test diffusion code and modulate with standard coding test signal.

3. Spectrum Analyzer conditions:

Step 1

All spurious are measured from 30 MHz to 13 GHz by peak mode.

Step 2

IF the value measured by Step1 is 2 dB or less, measure in average mode.

Test setup for Step 1:

Frequency: 30 MHz - 2400 MHz , 2483.5 MHz -13 GHz

RBW 100 kHz (30 – 1GHz), 1 MHz (over 1GHz)

VBW 100 kHz (30 – 1GHz), 1 MHz (over 1GHz)

Sweep Time Auto

detector mode Positive peak Indication mode Max hold

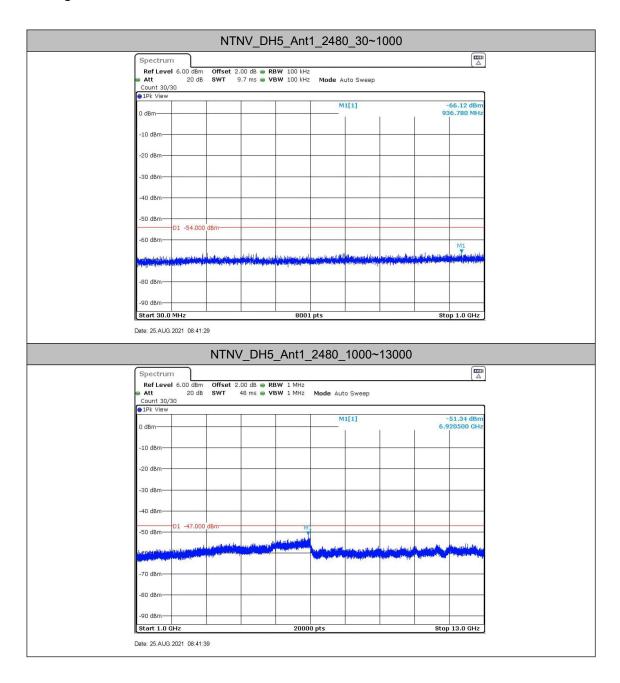
Test setup for Step 2:

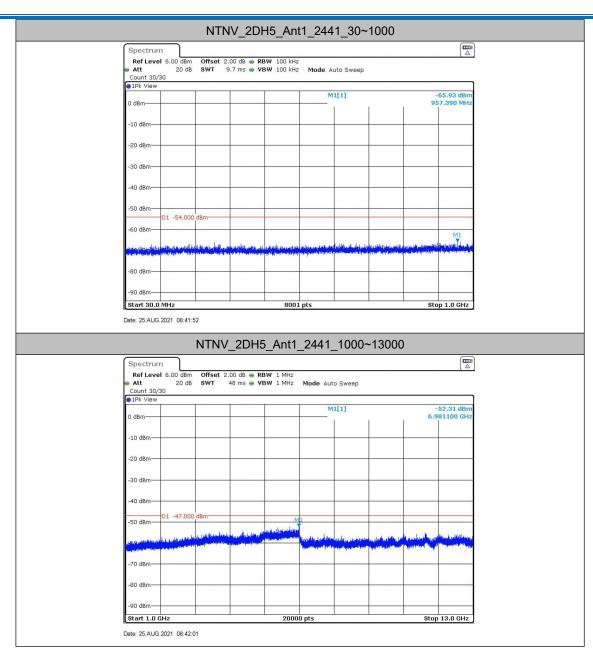
Frequency: Spurious Frequency

Span 0 Hz

RBW 100 kHz (30 – 1GHz), 1 MHz (over 1GHz) VBW 100 kHz (30 – 1GHz), 1 MHz (over 1GHz)

Sweep Time Auto detector mode Sample Indication mode Max hold

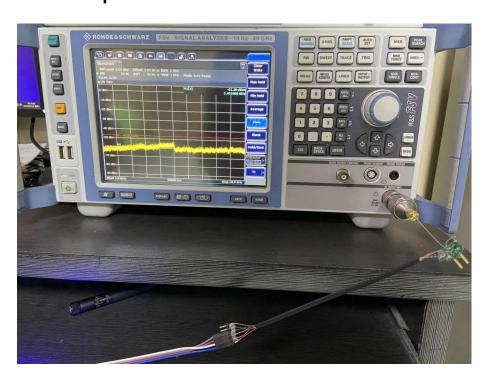



Test Result:

TestCondition	TestMode	Antenna	Channel	Freq.Range	Result	Limit	Verdict	
				[MHz]	[dBm]	[dBm]		
NTNV	DH5	Ant1	2480	30~1000	-65.99	<=-54	PASS	
				1000~13000	-53.05	<=-47	PASS	
	2DH5	Ant1	2441	30~1000	-66.04	<=-54	PASS	
				1000~13000	-53.15	<=-47	PASS	

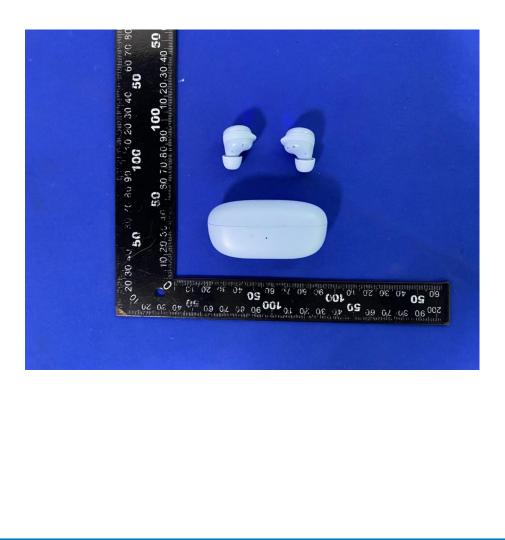
Result plot as follows:

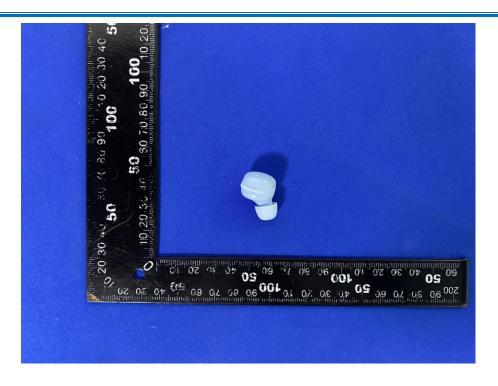
Normal Voltage DC3.7V

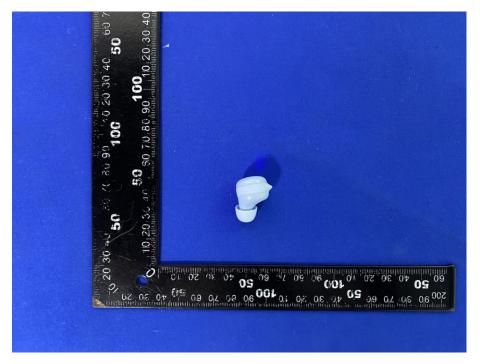


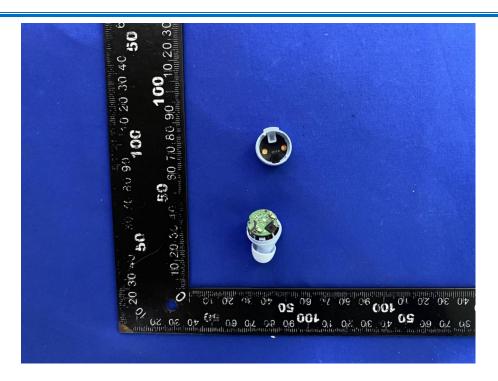
7 Photographs

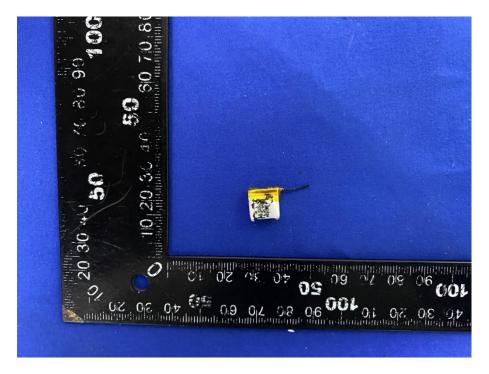
7.1 Test Setup

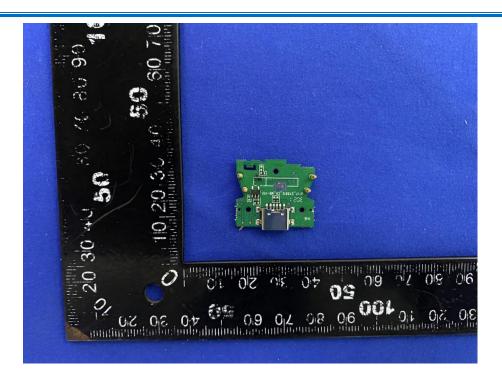


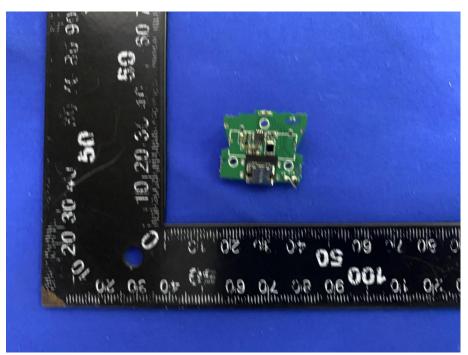

Test model No.: BH21Q17A











The End