

Note: This report is issued subject to TÜV SÜD PSB's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH

FCC Parts 15B & C: 2007

OF A

RF REMOTE CONTROL [Model : RC1984720/00RF] [FCC ID: RCSRC1984720]

TEST FACILITY TÜV SÜD PSB Pte Ltd,

Telecoms & EMC, Testing Group,

1 Science Park Drive, Singapore 118221

FCC REG. NO. 90937 (3m & 10m OATS)

99142 (10m Anechoic Chamber) 871638 (5m Anechoic Chamber) 325572 (10m Anechoic Chamber)

IND. CANADA REG. NO. IC 4257 (3m and 10m Anechoic Chambers)

PREPARED FOR Philips Electronics Singapore Pte Ltd

> Remote Control Systems 620A Lorong 1 Toa Payoh

Singapore 319762

Tel: (65) 6882 3321 Fax: (65) 6254 1691

QUOTATION NUMBER 56Q0700684

JOB NUMBER 56S070510

TEST PERIOD 20 Jun 2007

PREPARED BY

Quek Keng Huat

Associate Engineer

APPROVED BY

Lim Cher Hwee Assistant Vice President

Laboratory: TÜV SÜD PSB Pte. Ltd. Testing Group No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

I A-2007-0380-A LA-2007-0380-A-1 I A-2007-0381-F LA-2007-0382-B LA-2007-0383-G LA-2007-0384-G LA-2007-0385-E

LA-2007-0386-C

The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

SUPPORTING EQUIPMENT DESCRIPTION

EUT OPERATING CONDITIONS

RADIATED EMISSION TEST

20dB BANDWIDTH TEST

DUTY CYCLE FACTOR COMPUTATION

ANNEX A - EUT PHOTOGRAPHS / DIAGRAMS

ANNEX B - FCC LABEL & POSITION

ANNEX C - USER MANUAL, TECHNICAL

DESCRIPTION, BLOCK & CIRCUIT

DIAGRAMS

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail
FCC Part 15: 2007		
15.107(a), 15.207	Conducted Emissions	Not Applicable *See Note 2
15.109(a), 15.205, 15.209	Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)	Pass
15.231(b)	Radiated Emissions (Fundamental and Harmonics)	Pass
15.231(c)	20dB Bandwidth	Pass
15.35(c)	Duty Cycle Factor Computation	Refer to page 18 for details

Notes

- 1. The EUT is a Class B device when in non-transmitting state and meets the FCC Part15B Class B requirements.
- 2. The Equipment Under Test (EUT) is a battery-operated device and contains no provision for public utility connections.
- 3. All test measurement procedures are according to ANSI C63.4: 2003.

Modifications

1. No modifications were made.

PRODUCT DESCRIPTION

Description : The Equipment Under Test (EUT) is a RF REMOTE CONTROL.

Manufacturer : Philips Electronics Singapore Pte Ltd

Remote Control Systems 620A Lorong 1 Toa Payoh

Singapore 319762

Model Number : RC1984720/00RF

FCC ID : RCSRC1984720

Serial Number : 3139 228 52281

Microprocessor : Samsung - S3C80F9BRX

Operating / Transmitting

Frequency

: 433.92MHz ± 14kHz

Clock / Oscillator Frequency : 8MHz & 13.56MHz

Modulation : Frequency Shift Keying (FSK)

Port / Connectors : Nil

Rated Input Power : 3Vdc Battery Powered (2×1.5V AA size batteries)

Accessories : Nil

SUPPORTING EQUIPMENT DESCRIPTION

The EUT was tested as a stand-alone unit without any supporting equipment.

EUT OPERATING CONDITIONS

FCC Part 15

- 1. Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)
- 2. Radiated Emissions (Fundamental and Harmonics)
- 3. 20dB Bandwidth
- 4. Duty Cycle Factor Computation

The EUT was exercised by operating in maximum continuous transmission in test mode, i.e transmitting at 433.92MHz continuously.

RADIATED EMISSION TEST

FCC Part 15.205 Restricted Bands

N	ЛH	<u>z</u>	ı	ИΗ	Z		МН	Z		H:	Z
0.090	-	0.110	16.42	-	16.423	399.9	-	410	4.5	-	5.15
0.495	-	0.505	16.69475	-	16.69525	608	-	614	5.35	-	5.46
2.1735	-	2.1905	16.80425	-	16.80475	960	-	1240	7.25	-	7.75
4.125	-	4.128	25.5	-	25.67	1300	-	1427	8.025	-	8.5
4.17725	-	4.17775	37.5	-	38.25	1435	-	1626.5	9.0	-	9.2
4.20725	-	4.20775	73	-	74.6	1645.5	-	1646.5	9.3	-	9.5
6.215	-	6.218	74.8	-	75.2	1660	-	1710	10.6	-	12.7
6.26775	-	6.26825	108	-	121.94	1718.8	-	1722.2	13.25	-	13.4
6.31175	-	6.31225	123	-	138	2200	-	2300	14.47	-	14.5
8.291	-	8.294	149.9	-	150.05	2310	-	2390	15.35	-	16.2
8.362	-	8.366	156.52475	-	156.52525	2483.5	-	2500	17.7	-	21.4
8.37625	-	8.38675	156.7	-	156.9	2690	-	2900	22.01	-	23.12
8.41425	-	8.41475	162.0125	-	167.17	3260	-	3267	23.6	-	24.0
12.29	-	12.293	167.72	-	173.2	3332	-	3339	31.2	-	31.8
12.51975	-	12.52025	240	-	285	3345.8	-	3358	36.43	-	36.5
12.57675	-	12.57725	322	-	335.4	3600	-	4400	Abo	ve :	38.6
13.36	-	13.41									

FCC Parts 15.109(a) and 15.209 Radiated Emission Limits

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m) @ 3m				
30 - 88	40.0				
88 - 216	43.5				
216 - 960	46.0				
Above 960	54.0*				
* Above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.					

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz–26.5GHz) –	ESMI	829214/006	10 May 2008
ESMI2		829550/001	
TESEQ Preamplifier (1GHz-18GHz) – PA16	LNA6018	70214	09 Jan 2008
Schaffner Preamplifier (9kHz-2GHz) – PA19	CPA9231A	18763	12 Jan 2008
Schaffner Bilog Antenna –BL	CBL6112D	22020	14 May 2008
EMCO Horn Antenna – H14	3115	0003-6087	18 May 2008

RADIATED EMISSION TEST

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which
 is a portable device, the prescan was carried out by rotating the EUT through three orthogonal
 axes to determine which attitude and equipment arrangement produces such emissions.
- axes to determine which attitude and equipment arrangement produces such emissions.
 The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out.
- 5. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured.
- 6. The frequency range covered was from 30MHz to 10th harmonics of the EUT fundamental frequency, using the Bi-log antenna for frequencies from 30MHz up to 3GHz, and the Horn antenna above 3GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = $200 \mu V/m = 46.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dB_μV/m (Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION TEST

FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Test Input Power	3Vdc Battery Powered	Temperature	24°C
Test Distance	3m	Relative Humidity	57%
		Atmospheric Pressure	1030mbar
		Tested By	Lucas Beh

Spurious Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
41.6400	29.6	-10.4	0	100	Н
314.2100	36.9	-9.1	0	100	V
369.5000	34.7	-11.3	0	100	Н
420.9100	31.5	-14.5	0	100	Н
448.0700	30.7	-15.3	0	100	Н
467.4700	29.6	-16.4	0	100	Н

Spurious Emissions above 1GHz

Frequency (GHz)	Peak Value (dB _µ V/m)	Average Value (dBμV/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)	Channel

Notes

- All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. "--" indicates no emissions were found and shows compliance to the limits.
- Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak measurements were used for emissions above 1GHz. The average measurement was done by averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.
- 4. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 5. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

- 6. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
- 7. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz 25GHz (QP only @ 3m & 10m) is ±4.3dB (for EUTs < 0.5m X 0.5m X 0.5m).

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Limits

Fundamental Frequency (MHz)	Field Strength of Fundamental Limit Values @ 3m (dBµV/m) *	Field Strength of Harmonics Limit Values @ 3m (dBµV/m) *
40.66 - 40.70	67.0	47.0
70 - 130	62.0	42.0
130 - 174	62.0 to 71.5 **	42.0 to 51.5 **
174 - 260	71.5	51.5
260 - 470	71.5 to 82.0 **	51.5 to 62.0 **
Above 470	82.0	62.0

^{*} Average detector employed. A peak limit of 20dB above the average limit does apply.

Note:

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows. The maximum permitted unwanted emission level (harmonic) is 20dB below the maximum permitted fundamental level.

- Band 130MHz 174MHz 20 log [56.81818(F) - 6136.3636]
- Band 260MHz 470MHz

20 log [41.6667(F) - 7083.3333]

FCC Parts 15.231(b) Radiated Emission (Fundamental and Harmonics) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz–26.5GHz) –	ESMI	829214/006	10 May 2008
ESMI2		829550/001	
TESEQ Preamplifier (1GHz-18GHz) – PA16	LNA6018	70214	09 Jan 2008
Schaffner Preamplifier (9kHz-2GHz) – PA19	CPA9231A	18763	12 Jan 2008
Schaffner Bilog Antenna –BL	CBL6112D	22020	14 May 2008
EMCO Horn Antenna – H14	3115	0003-6087	18 May 2008

Liner interpolations (in $\mu V/m$).

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- The filtered power supply for the EUT and supporting equipment were tapped from the 2. appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A prescan was carried out to pick the fundamental and harmonics emission frequencies from the EUT. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which attitude and equipment arrangement produces such emissions.
- The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna 3. polarization, and adjusting the antenna height in the following manner:

 a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full
 - rotation of the EUT) was chosen.
 - The EUT was then rotated to the direction that gave the maximum emission.
 - Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 4. A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out.
- Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points 5. were measured.
- The frequency range covered was from the EUT fundamental frequency until its 10th harmonics, 6. using the Bi-log antenna for frequencies from 30MHz up to 3GHz, and the Horn antenna above 3GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = $200 \mu V/m = 46.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = $40.0 \text{ dB}_{\mu}\text{V/m}$ (Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Results

Test Input Power	3V dc Battery Powered	Temperature	24°C
Test Distance	3m	Relative Humidity	57%
		Atmospheric Pressure	1030mbar
		Tested By	Lucas Beh

Frequency (GHz)	Peak Value (dB _µ V/m)	Average Value (dB _µ V/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)	Note
433.9458	77.6	72.7	-8.1	0	100	Н	Fundamental
867.0658	50.1	45.2	-15.6	0	100	Н	Harmonics
1301.0010	50.5	45.6	-15.2	0	100	Н	Harmonics
1735.8800	45.2	40.3	-20.5	0	100	V	Harmonics
2169.5563	48.3	43.4	-17.4	0	100	V	Harmonics
2603.6799	53.9	49.0	-11.8	0	100	V	Harmonics

Notes

- All possible modes of operation were investigated. Only the worst case emissions measured, using the average and peak detectors, are reported. All other emissions were relatively insignificant.
- The average measurement was done by averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 4. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

- 5. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
- 6. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 25GHz (QP only @ 3m & 10m) is $\pm 4.3\text{dB}$ (for EUTs < 0.5m X 0.5m X 0.5m).

20dB BANDWIDTH TEST

FCC Part 15.231(c) 20dB Bandwidth Limits

The EUT shows compliance to the requirements of this section, which states that the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

FCC Part 15.231(c) 20dB Bandwidth Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz–26.5GHz) –	ESMI	829214/006	10 May 2008
ESMI2		829550/001	
TESEQ Preamplifier (1GHz-18GHz) – PA16	LNA6018	70214	09 Jan 2008
Schaffner Preamplifier (9kHz-2GHz) – PA19	CPA9231A	18763	12 Jan 2008
Schaffner Bilog Antenna –BL	CBL6112D	22020	14 May 2008
EMCO Horn Antenna – H14	3115	0003-6087	18 May 2008

FCC Part 15.231(c) 20dB Bandwidth Test Setup

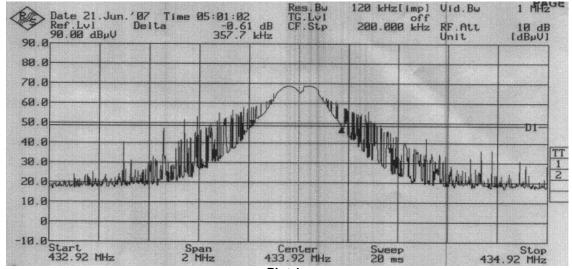
- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 120kHz and 1000kHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.231(c) 20dB Bandwidth Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, non-hopping with transmitting frequency at 433.92MHz.
- 2. The center frequency of the spectrum analyser was set to the transmitting frequency with the frequency span wide enough to capture the 20dB bandwidth of the transmitting frequency.
- 3. The spectrum analyser was set to max hold to capture the transmitting frequency. The signal capturing was continuous until no further changes were observed.
- 4. The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser. The frequencies below the 20dB peak frequency at lower (f_L) and upper (f_H) sides of the transmitting frequency were marked and measured by using the marker-delta function of the spectrum analyser.
- 5. The 20dB bandwidth of the transmitting frequency is the frequency difference between the marked lower and upper frequencies, $|f_H f_L|$.

20dB BANDWIDTH TEST

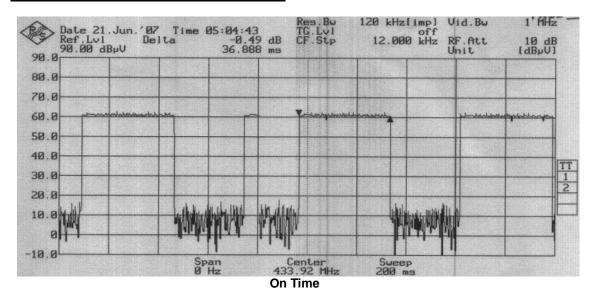
20dB Bandwidth Test Setup

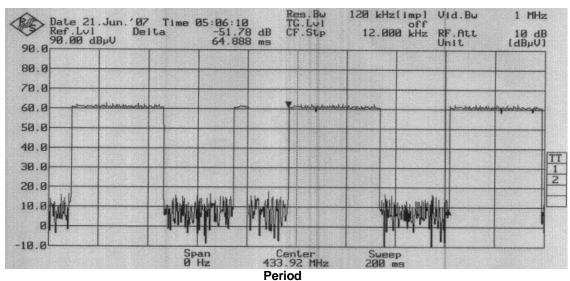

20dB BANDWIDTH TEST

FCC Part 15.231(c) 20dB Bandwidth Results

Test Input Power	3Vdc Battery Powered	Temperature	24°C
Attached Plots	1	Relative Humidity	57%
		Atmospheric Pressure	1030mbar
		Tested By	Lucas Beh

Channel Frequency (MHz)	20dB Bandwidth (MHz)	
433.9200	0.3577	


20dB Bandwidth Plots



DUTY CYCLE FACTOR COMPUTATION

FCC Part 15.35(c) Duty Cycle Correction Factor

Duty Cycle Factor (worst-case)

- = 20 log [Total On time / Period]
- = 20 log [(36.8880/64.8880)]
- = <u>-4.9dB</u>

This Report is issued under the following conditions:

- Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- 2. Unless otherwise requested, a report shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "quarantees" the later performance of the product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through TÜV SÜD PSB, unless the Client has authorised TÜV SÜD PSB in writing to do so.
- 6. TÜV SÜD PSB may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with TÜV SÜD PSB and the Client shall, upon payment of TÜV SÜD PSB's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that TÜV SÜD PSB may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- 8. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 9. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 10. Unless otherwise stated, the tests are carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

May 2007

EUT PHOTOGRAPHS / DIAGRAMS

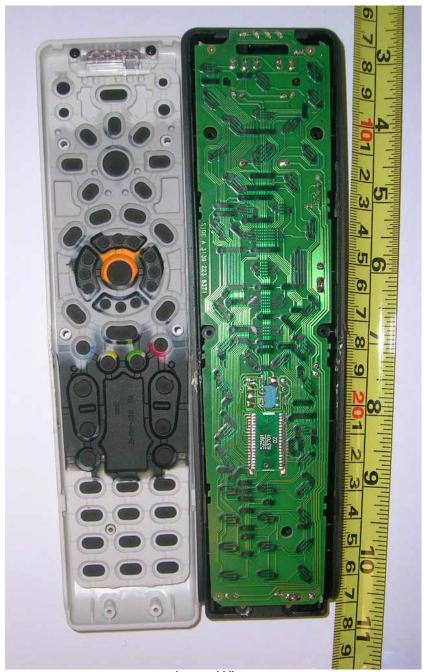
ANNEX A

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

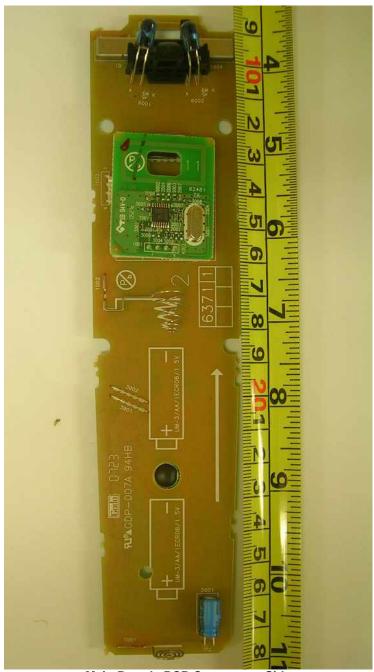
Front View



Rear View

EUT PHOTOGRAPHS / DIAGRAMS

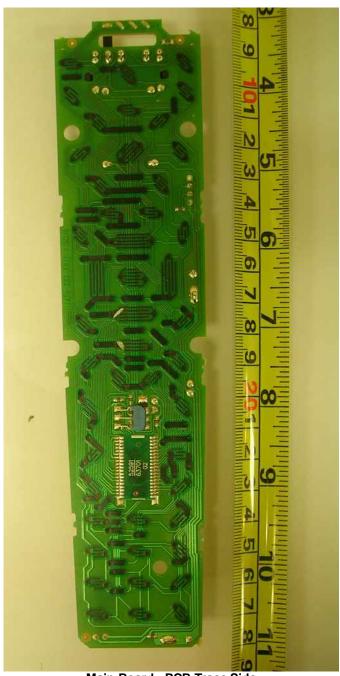
ANNEX A



Internal View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A



Main-Board - PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Main-Board - PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

RF Module - PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

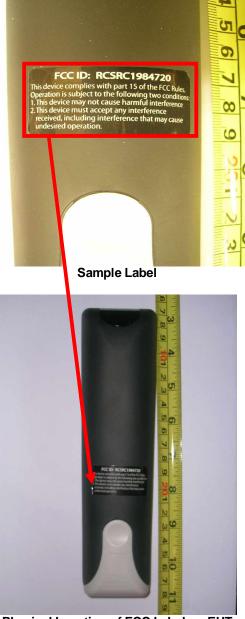
ANNEX A

RF Module - PCB Trace Side

FCC LABEL & POSITION

ANNEX B

ANNEX B FCC LABEL & POSITION



FCC LABEL & POSITION

ANNEX B

Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

Physical Location of FCC Label on EUT

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

ANNEX C

ANNEX C

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

(Please refer to manufacturer for details)