TEST REPORT

Your Ref: 56Q0500956 Date: 2 Sep 2005

Our Ref: 56S050782/01 Page: 1 of 21

DID: +65-6885 1459 Fax: +65-6774 1459

NOTE: This report is issued subject to PSB Corporation's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH

FCC Parts 15B & C : 2005

OF AN

INFRARED / RF REMOTE CONTROL

[Model : RC1704701/00] [FCC ID : RCSRC1704701A]

TEST FACILITY Telecoms & EMC, Testing Group, PSB Corporation Pte Ltd

1 Science Park Drive, Singapore 118221

FCC REG. NO. 90937 (3m & 10m OATS)

99142 (10m Anechoic Chamber) 871638 (5m Anechoic Chamber) 325572 (10m Anechoic Chamber) IC 4257 (10m Anechoic Chamber)

IND. CANADA REG. NO. IC 4257 (10m Anechoic Chamber)

PREPARED FOR Philips Electronics Singapore Pte Ltd

Remote Control Systems 620A Lorong 1 Toa Payoh

Singapore 319762

Tel: 6882 3321 Fax: 6254 1691

JOB NUMBER 56S050782

TEST PERIOD 29 Aug 2005 – 2 Sep 2005

PREPARED, BY

Quek Keng Huat Associate Engine **APPROVED BY**

Lim Cher Hwee Product Manager

LA-2001-0212-A LA-2001-0213-F LA-2001-0214-E LA-2001-0215-B LA-2001-0216-G LA-2001-0217-G

The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Corporation

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

SUPPORTING EQUIPMENT DESCRIPTION

EUT OPERATING CONDITIONS

RADIATED EMISSION TEST

20dB BANDWIDTH TEST

DUTY CYCLE FACTOR COMPUTATION

ANNEX A - EUT PHOTOGRAPHS / DIAGRAMS

ANNEX B - FCC LABEL & POSITION

ANNEX C - USER MANUAL, TECHNICAL

DESCRIPTION, BLOCK & CIRCUIT

DIAGRAMS

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail
FCC Part 15: 2005		
15.107(a), 15.207	Conducted Emissions	Not Applicable *See Note 2
15.109(a), 15.205, 15.209	Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)	Pass
15.231(b)	Radiated Emissions (Fundamental and Harmonics)	Pass
15.231(c)	20dB Bandwidth	Pass
15.231(d)	Band Edge Compliance	Not Applicable *See Note 3
15.231(d)	Frequency Stability Versus Temperature	Not Applicable *See Note 3
15.231(d)	Frequency Stability Versus Input Voltage	Not Applicable *See Note 3
15.35(c)	Duty Cycle Factor Computation	Refer to page 19-20 for details

Notes

- 1. The EUT is a Class B device when in non-transmitting state and meets the FCC Part15B Class B requirements.
- 2. The Equipment Under Test (EUT) is a battery-operated device and contains no provision for public utility connections.
- 3. The Band Edge and Frequency Tolerance tests are not applicable, as the carrier of the Equipment Under Test (EUT) is no in 40.66MHz 40.70MHz band.

Modifications

1. No modifications were made.

Page 3 of 21

PRODUCT DESCRIPTION

Description : The Equipment Under Test (EUT) is an Infrared / RF Remote

Control.

Manufacturer : Philips Electronics Singapore Pte Ltd – Remote Control Systems

Model Number : RC1704701/00

FCC ID : RCSRC1704701A

Serial Number : 3139 228 65651

Microprocessor : Samsung Micro Controller

Operating / Transmitting

Frequency

: IR Carrier – 38kHz ± 2% RF – 433.92MHz ± 14kHz

Clock / Oscillator Frequency : 8MHz & 13.56MHz

Modulation : Frequency Shift Keying (FSK)

Port / Connectors : Refer to manufacturers' user manual / operating manual.

Rated Input Power : 2.4VDC – 3.3VDC

Accessories : Nil

SUPPORTING EQUIPMENT DESCRIPTION

The EUT was tested as a stand-alone unit without any supporting equipment.

EUT OPERATING CONDITIONS

FCC Part 15

- 1. Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)
- 2. Radiated Emissions (Fundamental and Harmonics)
- 3. 20dB Bandwidth
- 4. Duty Cycle Factor Computation

The EUT was exercised by operating in following modes:

- 1. IR mode maximum continuous transmission in test mode, i.e transmitting at 38kHz
- 2. RF mode with maximum continuous transmission in test mode, i.e transmitting at 433.92MHz

FCC Part 15.205 Restricted Bands

N	ЛΗ	<u>z</u>	ı	ИΗ	Z		МН	Z	G	Hz
0.090	-	0.110	16.42	-	16.423	399.9	-	410	4.5	- 5.15
0.495	-	0.505	16.69475	-	16.69525	608	-	614	5.35	- 5.46
2.1735	-	2.1905	16.80425	-	16.80475	960	-	1240	7.25	- 7.75
4.125	-	4.128	25.5	-	25.67	1300	-	1427	8.025	- 8.5
4.17725	-	4.17775	37.5	-	38.25	1435	-	1626.5	9.0	- 9.2
4.20725	-	4.20775	73	-	74.6	1645.5	-	1646.5	9.3	- 9.5
6.215	-	6.218	74.8	-	75.2	1660	-	1710	10.6	- 12.7
6.26775	-	6.26825	108	-	121.94	1718.8	-	1722.2	13.25	- 13.4
6.31175	-	6.31225	123	-	138	2200	-	2300	14.47	- 14.5
8.291	-	8.294	149.9	-	150.05	2310	-	2390	15.35	- 16.2
8.362	-	8.366	156.52475	-	156.52525	2483.5	-	2500	17.7	- 21.4
8.37625	-	8.38675	156.7	-	156.9	2690	-	2900	22.01	- 23.12
8.41425	-	8.41475	162.0125	-	167.17	3260	-	3267	23.6	- 24.0
12.29	-	12.293	167.72	-	173.2	3332	-	3339	31.2	- 31.8
12.51975	-	12.52025	240	-	285	3345.8	-	3358	36.43	- 36.5
12.57675	-	12.57725	322	-	335.4	3600	-	4400	Above	e 38.6
13.36	-	13.41								

FCC Parts 15.109(a) and 15.209 Radiated Emission Limits

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m) @ 3m			
30 - 88	40.0			
88 - 216	43.5			
216 - 960	46.0			
Above 960	54.0*			
* Above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.				

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz-26.5GHz) –	ESMI	829214/006	18 APR 2006
ESMIE		829550/001	
Agilent Preamplifier (0.01-4GHz) – PA6	87405B	MY39500338	02 AUG 2006
Schaffner Bilog Antenna – BL9	CBL6143	5045	19 May 2006

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable. 2.
- The relevant broadband antenna was set at the required test distance away from the EUT and 3. supporting equipment boundary.

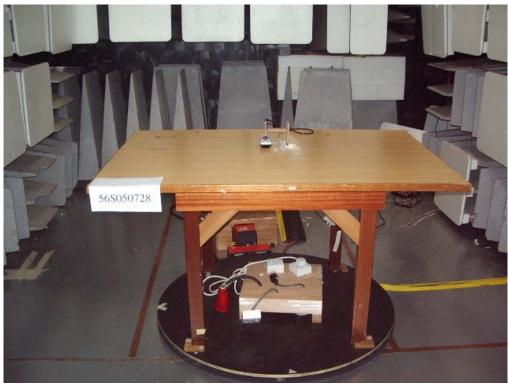
FCC Parts 15.109(a) and 15.209 Radiated Emission Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which 2. is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which attitude and equipment arrangement produces such emissions.
- 3. The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full a. rotation of the EUT) was chosen.
 - h. The EUT was then rotated to the direction that gave the maximum emission.
- c. Finally, the antenna height was adjusted to the height that gave the maximum emission. A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were 4.
- 5. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured.
- The frequency range covered was from 30MHz to 10th harmonics of the EUT fundamental 6. frequency, using the Bi-log antenna for frequencies from 30MHz up to 3GHz, and the Horn antenna above 3GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = 200 μ V/m = 46.0 dB μ V/m


Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dB_µV/m

(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0

i.e. 6 dB below Q-P limit

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Test Input Power	2 x 1.5V DC Battery	Temperature	22°C
Test Distance	3m	Relative Humidity	58%
Operating Mode	RF Mode	Atmospheric Pressure	1030mbar
		Tested By	Kenneth Ler

Spurious Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
30.8819	16.9	-23.0	62	100	Н
53.1872	7.1	-32.9	2	101	Н
58.9840	11.7	-28.3	6	100	V
66.7131	9.7	-30.3	0	101	V
86.0358	19.6	-20.4	0	100	V
115.0199	16.6	-26.4	3	100	V

FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Test Input Power	2x1.5V DC Battery	Temperature	22°C
Test Distance	3m	Relative Humidity	58%
Operating Mode	IR Mode	Atmospheric Pressure	1030mbar
		Tested By	Kenneth Ler

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
451.2350	27.6	-18.4	1	100	V
646.3944	25.3	-20.7	0	100	V
741.0756	25.9	-20.1	4	100	V
808.7051	26.6	-19.4	0	100	V
928.5059	26.9	-19.1	0	100	V
957.4900	27.9	-18.1	0	100	V

Notes:

- All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak measurements were used for emissions above 1GHz. The average measurement was done by averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

4. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

5. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.

6. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz – 25GHz (QP only @ 3m & 10m) is ±4.3dB (for EUTs < 0.5m X 0.5m X 0.5m).

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Limits

Field Strength of Fundamental Limit Values @ 3m (dBµV/m) *	Field Strength of Harmonics Limit Values @ 3m (dBµV/m) *
67.0	47.0
62.0	42.0
62.0 to 71.5 **	42.0 to 51.5 **
71.5	51.5
71.5 to 82.0 **	51.5 to 62.0 **
82.0	62.0
	Limit Values @ 3m (dBμV/m) * 67.0 62.0 62.0 to 71.5 ** 71.5 71.5 to 82.0 **

^{*} Average detector employed. A peak limit of 20dB above the average limit does apply.

Note:

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows. The maximum permitted unwanted emission level (harmonic) is 20dB below the maximum permitted fundamental level.

- Band 130MHz 174MHz 20 log [56.81818(F) - 6136.3636]
- Band 260MHz 470MHz
 20 log [41.6667(F) 7083.3333]

FCC Parts 15.231(b) Radiated Emission (Fundamental and Harmonics) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz-26.5GHz) –	ESMI	829214/006	18 Apr 2006
ESMIE		829550/001	
Agilent Preamplifier (0.01-4GHz) – PA6	87405B	MY39500338	02 Aug 2006
Schaffner Bilog Antenna – BL9	CBL6143	5045	19 May 2006
MITEQ Preamplifier (0.1-26.5GHz) – PA11	NSP2650-N	728231	01 Apr 2006
EMCO Horn Antenna – H15	3115	0003-6088	19 May 2006

^{**} Liner interpolations (in μV/m).

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Test Setup

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.

The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable. 2.

The relevant broadband antenna was set at the required test distance away from the EUT and 3. supporting equipment boundary.

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Test Method

The EUT was switched on and allowed to warm up to its normal operating condition. 1.

A prescan was carried out to pick the fundamental and harmonics emission frequencies from 2. the EUT. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which attitude and equipment arrangement produces such emissions.

The test was carried out at the selected frequency points obtained from the prescan in step 2. 3. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:

Vertical or horizontal polarisation (whichever gave the higher emission level over a full

rotation of the EUT) was chosen.

b. The EUT was then rotated to the direction that gave the maximum emission.

Finally, the antenna height was adjusted to the height that gave the maximum emission.

A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were 4. carried out.

5. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured.

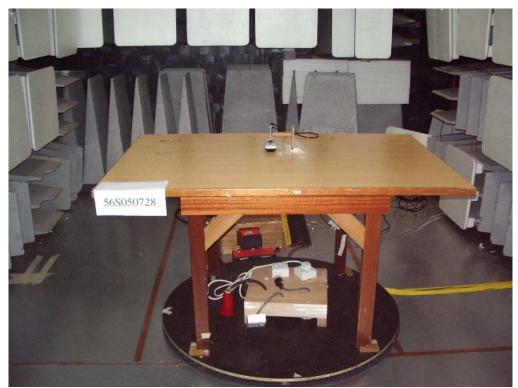
6. The frequency range covered was from the EUT fundamental frequency until its 10th harmonics, using the Bi-log antenna for frequencies from 30MHz up to 3GHz, and the Horn antenna above 3GHz.

Sample Calculation Example

At 300 MHz

a.

Q-P limit (Class B) = 200 μ V/m = 46.0 dB μ V/m


Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dB_µV/m

(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0

i.e. 6 dB below Q-P limit

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

FCC Part 15.231(b) Radiated Emission (Fundamental and Harmonics) Results

Test Input Power	2 x 1.5V DC Battery	Temperature	22°C
Test Distance	3m	Relative Humidity	58%
Operating Mode	RF mode	Atmospheric Pressure	1030mbar
		Tested By	Kenneth Ler

Frequency (GHz)	Peak Value (dBμV/m)	Average Value (dBμV/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)	Note
0.4339	61.8	47.9	-32.9	0	100	Н	Fundamental
0.8679	49.0	35.1	-25.7	0	100	Н	Harmonics
1.3016	51.1	37.2	-23.6	0	100	Н	Harmonics
1.7351	48.1	34.2	-26.6	0	100	Н	Harmonics
2.1694	42.6	28.7	-32.1	0	100	Н	Harmonics
2.6033	42.6	28.7	-32.1	0	100	Н	Harmonics

Notes:

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the average and peak detectors, are reported. All other emissions were relatively insignificant.
- 2. As the measured peak shows compliance to the average limit, as such no average measurement was required.
- 3. The average measurement was done averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.
- 4. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 5. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

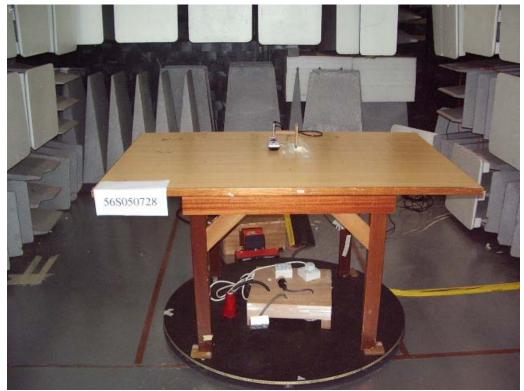
RBW: 1MHz VBW: 1MHz

- 6. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
- 7. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz 25GHz (QP only @ 3m & 10m) is ±4.3dB (for EUTs < 0.5m X 0.5m X 0.5m).

FCC Part 15.231(c) 20dB Bandwidth Limits

The EUT shows compliance to the requirements of this section, which states that the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

FCC Part 15.231(c) 20dB Bandwidth Test Instrumentation

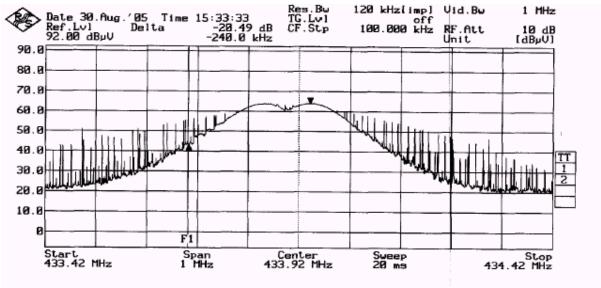

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz-26.5GHz) –	ESMI	829214/006	18 Apr 2006
ESMIE		829550/001	
Agilent Preamplifier (0.01-4GHz) – PA6	87405B	MY39500338	02 Aug 2006
Schaffner Bilog Antenna – BL9	CBL6143	5045	19 May 2006

FCC Part 15.231(c) 20dB Bandwidth Test Setup

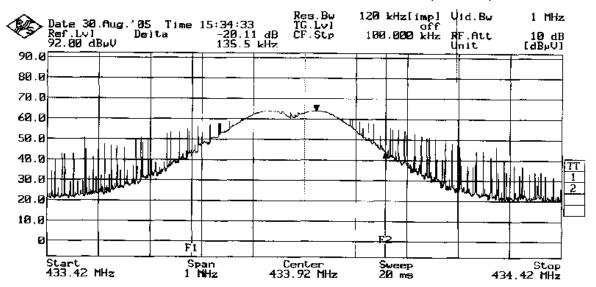
- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- 3. The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 120kHz and 1MHz.
- 4. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.231(c) 20dB Bandwidth Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, non-hopping with transmitting frequency at Channel 433.92Mhz.
- 2. The center frequency of the spectrum analyser was set to the transmitting frequency with the frequency span wide enough to capture the 20dB bandwidth of the transmitting frequency.
- 3. The spectrum analyser was set to max hold to capture the transmitting frequency. The signal capturing was continuous until no further changes were observed.
- 4. The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser. The frequencies below the 20dB peak frequency at lower (f_L) and upper (f_H) sides of the transmitting frequency were marked and measured by using the marker-delta function of the spectrum analyser.
- 5. The 20dB bandwidth of the transmitting frequency is the frequency difference between the marked lower and upper frequencies, $|f_H f_L|$.


20dB Bandwidth Test Setup

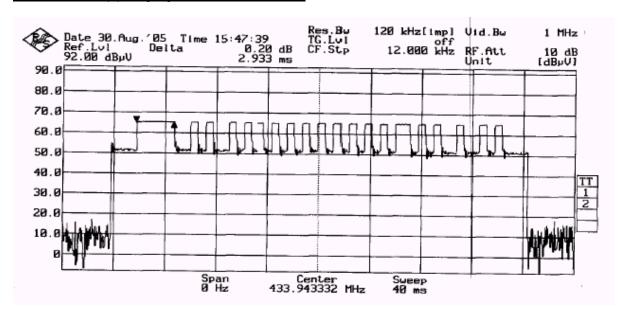
FCC Part 15.231(c) 20dB Bandwidth Results


Test Input Power	2 x 1.5V DC Battery	Temperature	22°C
Attached Plots	1 - 2	Relative Humidity	58%
		Atmospheric Pressure	1030mbar
		Tested By	Kenneth Ler

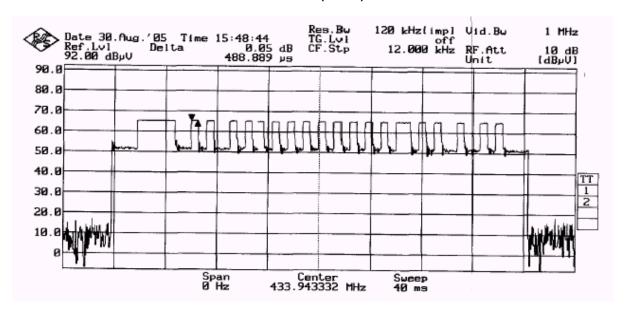
Channel Frequency (MHz)	20dB Bandwidth (MHz)	
433.92MHz	375.5kHz	

20dB Bandwidth Plots

Plot 1 for Channel 433.92MHz at 20dB Bandwidth (Left side)

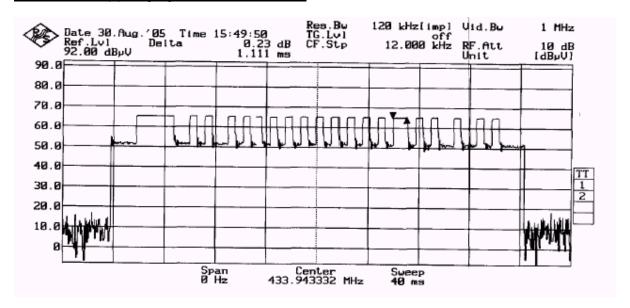


Plot 2 for Channel 433.92MHz at 20dB Bandwidth (Right side)

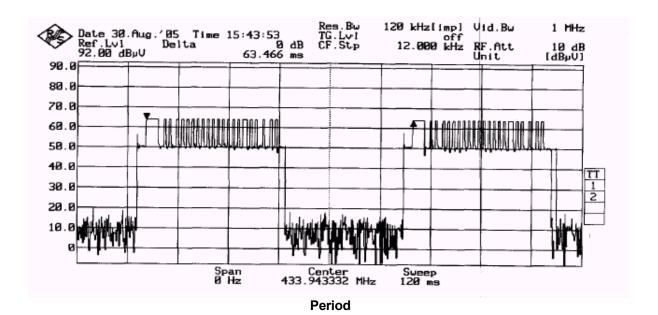

Page 18 of 21

[FCC ID : RCSRC1704701A]

FCC Part 15.35(c) Duty Cycle Correction Factor



On Time (Part 1)



On Time (Part 2)

FCC Part 15.35(c) Duty Cycle Correction Factor

On Time (Part 3)

Duty Cycle Factor (worst-case)

= 20 log [Total On time / Period]

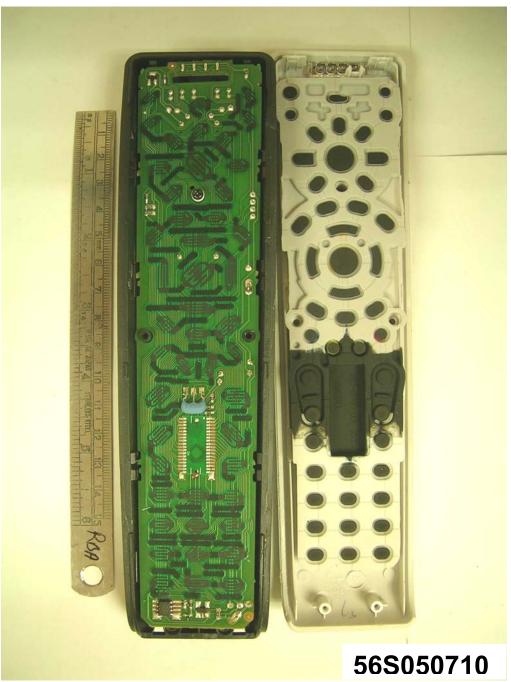
 $= 20 \log [(2.933 + 18 (0.488889) + 1.111) / 63.466]$

= -13.9dB

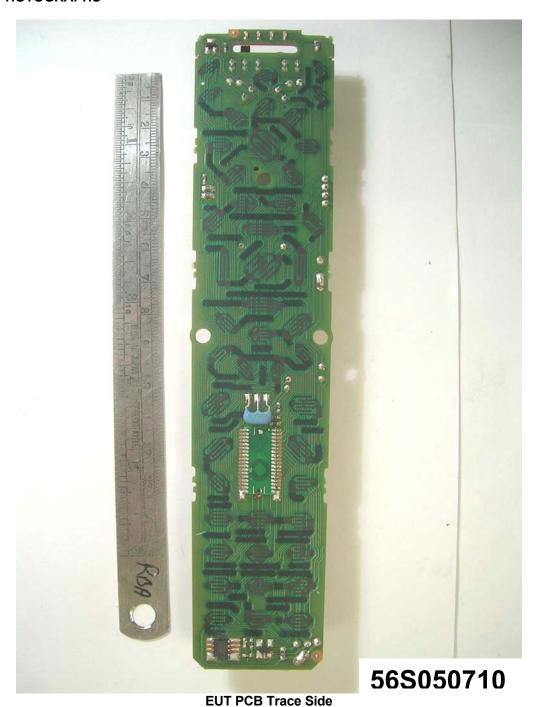
This Report is issued under the following conditions:

- Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- Unless otherwise requested, a report shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that PSB Corporation approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that PSB Corporation in any way "guarantees" the later performance of the product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. PSB Corporation therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through PSB Corporation, unless the Client has authorised PSB Corporation in writing to do so.
- PSB Corporation may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with PSB Corporation and the Client shall, upon payment of PSB Corporation's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that PSB Corporation may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- Nothing in this report shall be interpreted to mean that PSB Corporation has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to PSB Corporation or to the report or results furnished by PSB Corporation in any advertisements or sales promotion.
- Unless otherwise stated, the tests are carried out in PSB Corporation Pte Ltd, No.1 Science Park Drive Singapore 118221.

May 2005


ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Front View


56S050782/01

EUT Layout View

ANNEX A

56S050782/01

RF Module Circuit

ANNEX B FCC LABEL & POSITION

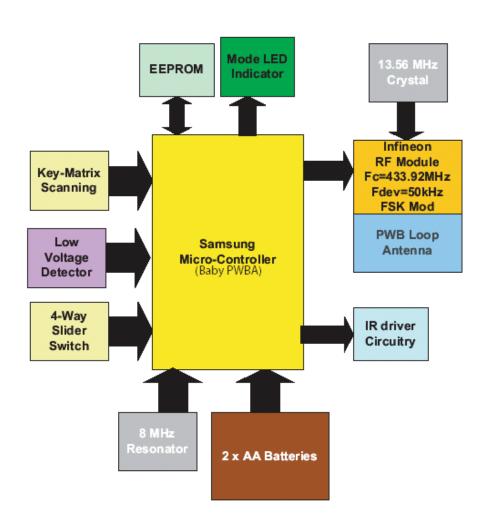
Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

FCC ID: RCSRC1704701A

This device complies with part 15 of the FCC Rules.
Operation is subject to the following two conditions:
1. This device may not cause harmful interference
2. This device must accept any interference received, including interference that may cause undesired operation.

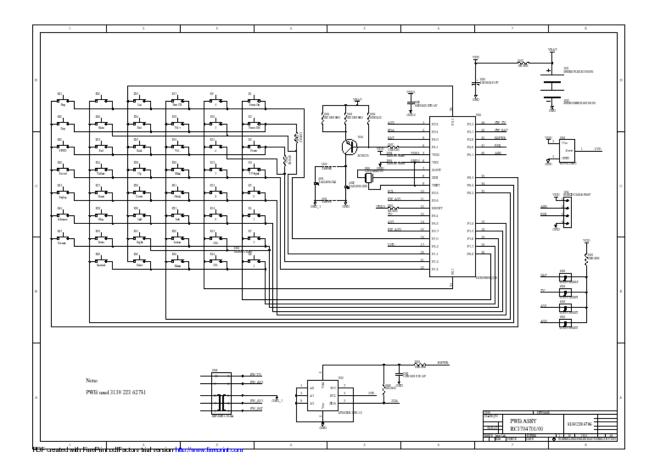
Physical Location of FCC Label on EUT

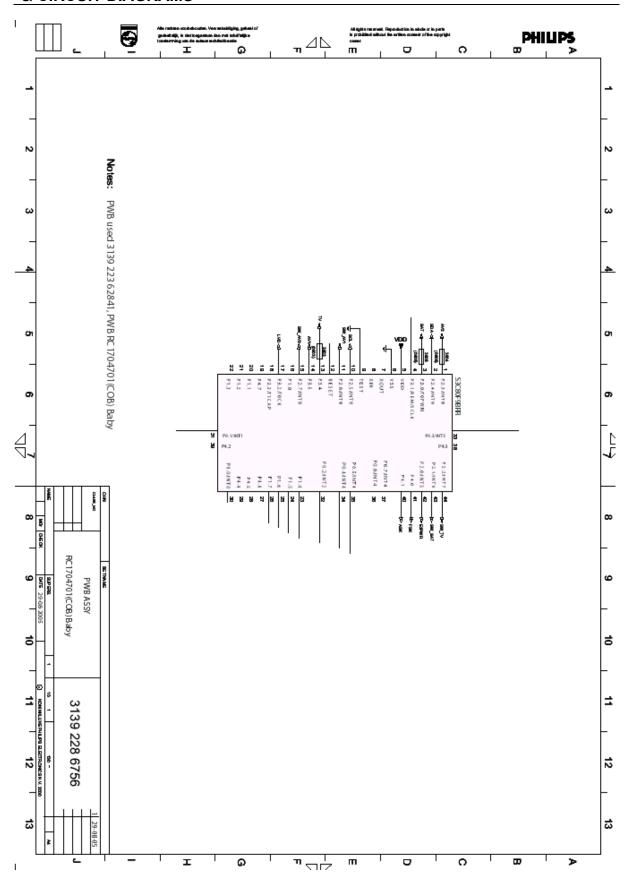

ANNEX C

ANNEX C

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS


RC1704701-COB DirecTv RF remote control Electrical Logic Block Diagram



Phillips Remote Control System Singapore

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

ANNEX C

ANNEX C

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

3139 228 67061 PWB ASSY RC1704701(COB) Main

Item	Article	Description	Qty	UoM
1001	3139 221 21581	Spring Plus RC1704701	1	PC
1002	3139 221 21591	Spring Minus Rc1704701	1	PC
1003	3139 228 67581	SMD ASSY RC1704701(COB)	1	PC
1004	2422 127 00569	SWI SLID 1P 4POS 30V H 3MM7 Y	1	PC
1006	3139 221 00201	RIBBON CABLE 4 RIBS	1	PC
2001	2020 012 93776	ELCAP VR 10V S 470U PM20 A	1	PC
3907	2422 015 00512	WIRE 0.6MM JUMP. JPW-06A	1	PC
3908	2422 015 00512	WIRE 0.6MM JUMP. JPW-06A	1	PC
3909	2422 015 00512	WIRE 0.6MM JUMP, JPW-06A	1	PC
3910	2422 015 00512	WIRE 0.6MM JUMP. JPW-06A	1	PC
3911	2422 015 00512	WIRE 0.6MM JUMP, JPW-06A	1	PC
5001	2422 540 98444	RES CER 8MHZ CSTS*MG03 B	1	PC
6001	9322 127 27678	LED IR TSAL5300(VISH) A	1	PC
6002	9322 127 27678	LED IR TSAL5300(VISH) A	1	PC
7001	3139 228 67561	PWB ASSY RC1704701(COB) Baby	1	PC
7002	9322 219 99668	IC SM AT24C02N-10SU-1.8(ATMEL)	1	PC

3139 228 67561 PWB ASSY RC1704701(COB) Baby

3139 223 62841	PWB RC1704701(COB) Baby	1	PC
3139 227 03281	Die RC1704701 - S3C80F9BRR	1	PC

3139 228 67581 SMD ASSY RC1704701(COB) Main

Item	Article	Description	Qty	UoM
21	3139 223 62731	PWB RC1704701(COB) Main	1	PC
2002	2238 786 15649	CER2 0603 X7R 16V 100N PM10 R	1	PC
2003	2238 786 15649	CER2 0603 X7R 16V 100N PM10 R	1	PC
3001	2322 730 61181	RST SM 0805 RC11 180R PM5 R	1	PC
3002	2322 702 60105	RST SM 0603 RC21 1M PM5 R	1	PC
3003	2322 730 61109	RST SM 0805 RC11 10R PM5 R	1	PC
3004	2322 702 60104	RST SM 0603 RC21 100K PM5 R	1	PC
3005	2322 734 64708	RST SM 0805 RC21H 4R7 PM1 R	1	PC
3006	2322 734 64708	RST SM 0805 RC21H 4R7 PM1 R	1	PC
3007	2322 702 60101	RST SM 0603 RC21 100R PM5 R	1	PC
3008	2322 702 60103	RST SM 0603 RC21 10K PM5 R	1	PC
3009	2322 702 60101	RST SM 0603 RC21 100R PM5 R	1	PC
3905	2322 702 96001	RST SM 0603 JUMP.MAX 0R05 R	1	PC
3906	2322 702 96001	RST SM 0603 JUMP.MAX 0R05 R	1	PC
6003	9322 189 24685	LED VS SM LTST-C190GK(LITO) T	1	PC
6004	9322 189 24685	LED VS SM LTST-C190GK(LITO) T	1	PC
6005	9322 189 24685	LED VS SM LTST-C190GK(LITO) T	1	PC
6006	9322 189 24685	LED VS SM LTST-C190GK(LITO) T	1	PC
7003	9322 219 28685	IC SM NCP301LSN25G(ONSE) R	1	PC
7004	9336 285 70215	TRA SIG SM BC807-25(PHSE) R	1	PC