#### FCC 47 CFR PART 15 SUBPART C

## **TEST REPORT**

For

## **Philips Electronics Singapore Pte Ltd**

#### **RF** Remote control

Model: RC1406902/05RF; RC1406901/05RF

**Trade Name: ONKYO** 

Prepared for

Philips Electronics Singapore Pte Ltd 620A, Lorong 1, Toa Payoh, Singapore 319762

Prepared by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C.

TEL: 886-3-324-0332 FAX: 886-3-324-5235



# TABLE OF CONTENTS

| 1. TE | ST RESULT CERTIFICATION                        | 3  |
|-------|------------------------------------------------|----|
| 2. EU | UT DESCRIPTION                                 | 4  |
|       | CST METHODOLOGY                                |    |
| 3.1   | EUT CONFIGURATION                              | 5  |
| 3.2   | EUT EXERCISE                                   |    |
| 3.3   | GENERAL TEST PROCEDURES                        | 5  |
| 3.4   | FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS | 6  |
| 3.5   | DESCRIPTION OF TEST MODES                      | 6  |
| 4. IN | STRUMENT CALIBRATION                           | 7  |
| 5. FA | CILITIES AND ACCREDITATIONS                    | 8  |
| 5.1   | FACILITIES                                     | 8  |
| 5.2   | EQUIPMENT                                      |    |
| 5.3   | LABORATORY ACCREDITATIONS AND LISTING          | 8  |
| 5.4   | TABLE OF ACCREDITATIONS AND LISTINGS           | 9  |
| 6. SE | TUP OF EQUIPMENT UNDER TEST                    | 10 |
| 6.1   | SUPPORT EQUIPMENT                              | 10 |
| 7. FC | CC PART 15.231 REQUIREMENTS                    | 11 |
| 7.1   | 20 DB BANDWIDTH                                | 11 |
| 7.2   | DUTY CYCLE                                     | 13 |
| 7.3   | RADIATED EMISSIONS                             | 16 |
| 7.4   | DOWED INE CONDUCTED EMISSIONS                  | 25 |

## 1. TEST RESULT CERTIFICATION

**Applicant:** Philips Electronics Singapore Pte Ltd

620A, Lorong 1, Toa Payoh, Singapore 319762

**Equipment Under Test:** RF Remote control

**Trade Name:** ONKYO

**Model:** RC1406902/05RF; RC1406901/05RF

**Model Difference** All the above models are identical except the model designation

**Report Number:** B31015205-RP

**Date of Test:** October 16, 2003

| APPLICABLE STANDARDS  |                         |  |
|-----------------------|-------------------------|--|
| STANDARD TEST RESULT  |                         |  |
| FCC Part 15 Subpart C | No non-compliance noted |  |

## We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (1992) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.231.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Jonson Lee

Director of Linkou Laboratory

Compliance Certification Services Inc.

Reviewed by:

Eric Wong

Section Manager

Compliance Certification Services Inc.

# 2. EUT DESCRIPTION

| Product                     | RF Remote control                                               |
|-----------------------------|-----------------------------------------------------------------|
| Trade Name                  | ONKYO                                                           |
| Model Number                | RC1406902/05RF; RC1406901/05RF                                  |
| <b>Model Difference</b>     | All the above models are identical except the model designation |
| Power Supply                | Powered by AA batteries (Rating: 3 × 1.5Vdc)                    |
| Frequency Range             | 433.92 MHz                                                      |
| <b>Modulation Technique</b> | Pulse Modulation                                                |
| Antenna Gain                | -2dBi (Max)                                                     |
| Antenna Designation         | Helical Antenna                                                 |

**Note:** This submittal(s) (test report) is intended for FCC ID: <u>RCSRC140A</u> filing to comply with Section 15.231 of the FCC Part 15, Subpart C Rules. The composite system (digital device) is compliance with Subpart B is authorized under a DoC procedure.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, and 15.231.

Date of Issue: October 17, 2003

## 3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### 3.2 EUT EXERCISE

The EUT (RF Remote control) was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.231 under the FCC Rules Part 15 Subpart C. The composite system (Digital device) is compliance with the Subpart B is authorized under the DoC procedure.

#### 3.3 GENERAL TEST PROCEDURES

## **Conducted Emissions**

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4-1992. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

## **Radiated Emissions**

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4-1992.

## 3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz           |
|----------------------------|---------------------|-----------------|---------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15    |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46   |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75   |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5   |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2     |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5     |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7   |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4  |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5  |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2  |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4   |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12 |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0   |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8   |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5  |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | $\binom{2}{}$ |
| 13.36 - 13.41              | 322 - 335.4         |                 |               |

<sup>&</sup>lt;sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

## 3.5 DESCRIPTION OF TEST MODES

The EUT (RF Remote control) has been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

<sup>&</sup>lt;sup>2</sup> Above 38.6

# 4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

## 5. FACILITIES AND ACCREDITATIONS

## 5.1 FACILITIES

| All measurement facilities used to collect the measurement data are located at                                   |
|------------------------------------------------------------------------------------------------------------------|
| No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.                                      |
| No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.                                             |
| The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 an CISPR Publication 22 |

Date of Issue: October 17, 2003

## 5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

#### 5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 93105 and 90471).



## 5.4 TABLE OF ACCREDITATIONS AND LISTINGS

| Country | Agency             | Scope of Accreditation                                                                                                                                                                                                                                                                                                        | Logo                                                                                               |
|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| USA     | NVLAP*             | EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS 3548IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11                                                                                | 200600-0                                                                                           |
| USA     | FCC                | 3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements                                                                                                                                                                                                                                                        | FC<br>93105, 90471                                                                                 |
| Japan   | VCCI               | 4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements                                                                                                                                                                                                                                                  | VCCI<br>R-393/1066/725/879<br>C-402/747/912                                                        |
| Norway  | NEMKO              | EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2 | ELA 124a<br>ELA 124b<br>ELA 124c                                                                   |
| Taiwan  | CNLA               | EN 300 328-1, EN 300 328-2, EN 300 220-1, EN 300 220-2, EN 300 220-3, 47 CFR FCC Part 15 Subpart C, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 14115, CNS 13438, AS/NZS 3548, CNS 13022-1, IEC 1000-4-3/4/5/6/8/11, CNS 13022-2/3                                                                                | O 3 6 3<br>ILAC MRA                                                                                |
| Taiwan  | BSMI               | CNS 13438, CNS 13783-1, CNS 13439, CNS 14115                                                                                                                                                                                                                                                                                  | SL2-IS-E-0014<br>SL2-IN-E-0014<br>SL2-A1-E-0014<br>SL2-R1-E-0014<br>SL2-R2-E-0014<br>SL2-L1-E-0014 |
| Canada  | Industry<br>Canada | RSS212, Issue 1                                                                                                                                                                                                                                                                                                               | <b>Canada</b> IC 3991-3 IC 3991-4                                                                  |

<sup>\*</sup> No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

# 6. SETUP OF EQUIPMENT UNDER TEST

# **6.1 SUPPORT EQUIPMENT**

RF Remote control (EUT)

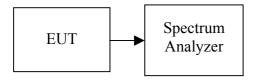
| Device<br>Type | Brand | Model | FCC ID | Series No. | Data Cable | Power Cord |
|----------------|-------|-------|--------|------------|------------|------------|
| N/A            | N/A   | N/A   | N/A    | N/A        | N/A        | N/A        |

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

# 7. FCC PART 15.231 REQUIREMENTS

#### 7.1 20 DB BANDWIDTH

## **LIMIT**


The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

## MEASUREMENT EQUIPMENT USED

| Name of Equipment        | Manufacturer | Model  | Serial Number | <b>Calibration Due</b> |
|--------------------------|--------------|--------|---------------|------------------------|
| Spectrum Analyzer        | Agilent      | E4446A | US42510252    | 04/28/2004             |
| Temp. / Humidity Chamber | Kingson      | THS-M1 | 242           | 03/20/2004             |

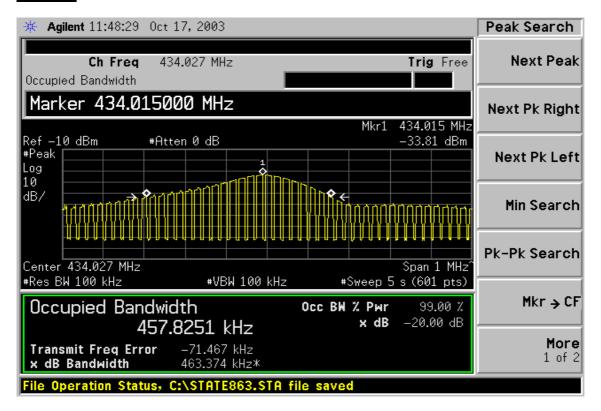
**Remark:** Each piece of equipment is scheduled for calibration once a year.

#### **Test Configuration**



## **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The hopping function is turned off and the transmitter is set to a fixed frequency. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW and VBW are set to 10 kHz.


## **TEST RESULTS**

No non-compliance noted

#### **Test Data**

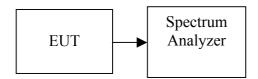
| Frequency (MHz) | 20 dB Bandwidth<br>(kHz) | Limit<br>(MHz) | Result |
|-----------------|--------------------------|----------------|--------|
| 433.98          | 463.37                   | 1.0848         | PASS   |

### **Test Plot**



#### 7.2 **DUTY CYCLE**

## LIMIT


Nil (No dedicated limit specified in the Rules)

## MEASUREMENT EQUIPMENT USED

| Name of Equipment        | Manufacturer | Model  | Serial Number | <b>Calibration Due</b> |
|--------------------------|--------------|--------|---------------|------------------------|
| Spectrum Analyzer        | Agilent      | E4446A | US42510252    | 04/28/2004             |
| Temp. / Humidity Chamber | Kingson      | THS-M1 | 242           | 03/20/2004             |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

## **Test Configuration**



## **TEST PROCEDURE**

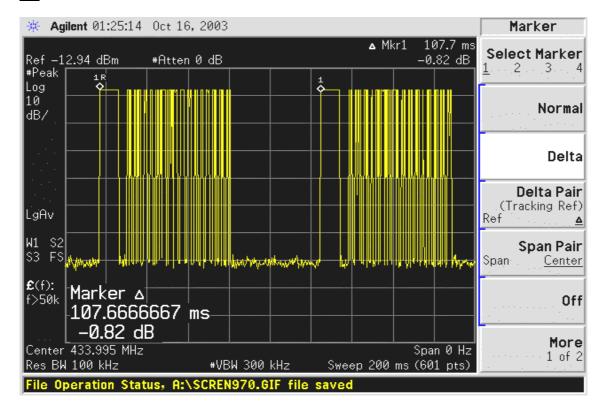
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 0Hz, Adjust Sweep = 30s.
- 5. Repeat above procedures until all frequency measured were complete.

## **TEST RESULTS**

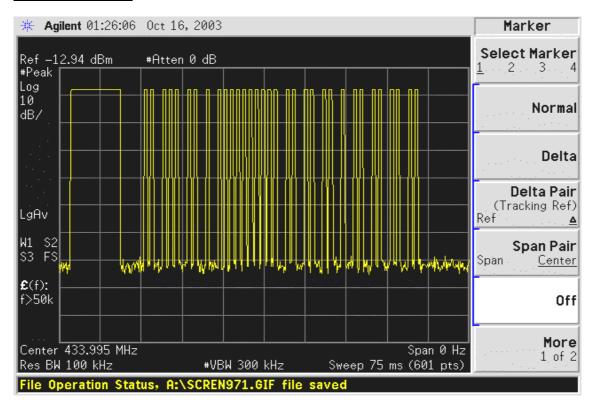
No non-compliance noted

## Test Data

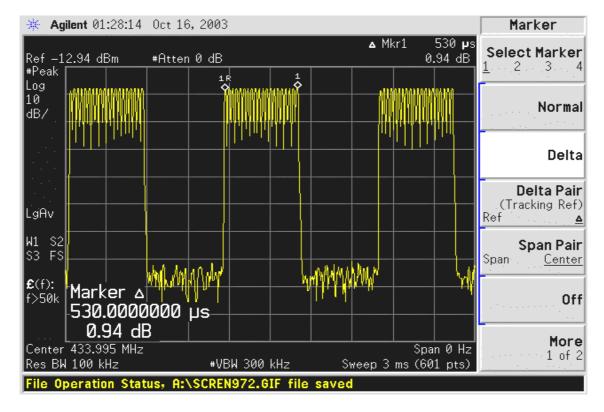
$$Tp = 107.7ms$$


Ton = 
$$0.53 * 33 + 8.925 * 1 = 26.415$$
 (ms)

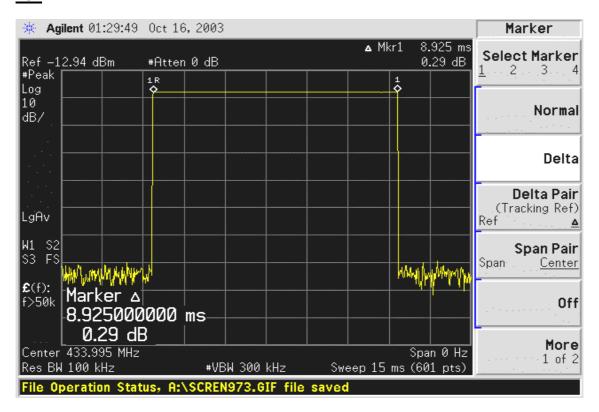
Factor = 
$$20 * log(Ton / Tp) = 20 * log(26.415/107.7) = -12.207dB$$


Report No: B31015205-RP

## **Test Plot**


## <u>Tp</u>




## **Channel Number**



### **Ton**



#### **Ton**



## 7.3 RADIATED EMISSIONS

## **LIMIT**

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

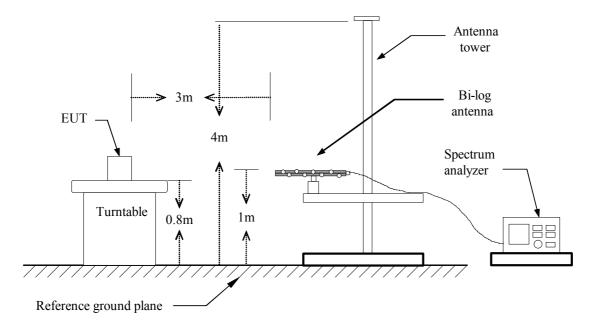
| Frequency (MHz) | Field Strength (mV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 30-88           | 100*                  | 3                        |
| 88-216          | 150*                  | 3                        |
| 216-960         | 200*                  | 3                        |
| Above 960       | 500                   | 3                        |

**Note:** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

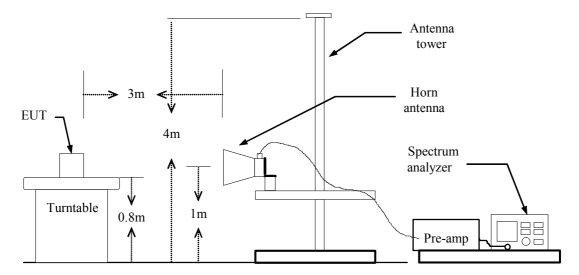
2. In the above emission table, the tighter limit applies at the band edges.

| Frequency (Hz) | Field Strength<br>(μV/m at 3-meter) | Field Strength<br>(dBµV/m at 3-meter) |
|----------------|-------------------------------------|---------------------------------------|
| 30-88          | 100                                 | 40                                    |
| 88-216         | 150                                 | 43.5                                  |
| 216-960        | 200                                 | 46                                    |
| Above 960      | 500                                 | 54                                    |




# **MEASUREMENT EQUIPMENT USED**

|                   | Open Area Test Site # 3 |           |               |                        |  |  |  |  |  |  |
|-------------------|-------------------------|-----------|---------------|------------------------|--|--|--|--|--|--|
| Name of Equipment | Manufacturer            | Model     | Serial Number | <b>Calibration Due</b> |  |  |  |  |  |  |
| Spectrum Analyzer | ADVANTEST               | R3261A    | N/A           | 03/18/2004             |  |  |  |  |  |  |
| EMI Test Receiver | R&S                     | ESVS20    | 838804/004    | 01/04/2004             |  |  |  |  |  |  |
| Pre-Amplifier     | НР                      | 8447D     | 2944A09173    | 03/03/2004             |  |  |  |  |  |  |
| Bilog Antenna     | SCHWAZBECK              | VULB9163  | 145           | 07/05/2004             |  |  |  |  |  |  |
| Turn Table        | EMCO                    | 2081-1.21 | 9709-1885     | N.C.R                  |  |  |  |  |  |  |
| Antenna Tower     | EMCO                    | 2075-2    | 9707-2060     | N.C.R                  |  |  |  |  |  |  |
| Controller        | EMCO                    | 2090      | 9709-1256     | N.C.R                  |  |  |  |  |  |  |
| RF Switch         | ANRITSU                 | MP59B     | M53867        | N.C.R                  |  |  |  |  |  |  |
| Site NSA          | C&C                     | N/A       | N/A           | 09/06/2004             |  |  |  |  |  |  |
| Horn antenna      | Schwarzbeck             | BBHA 9120 | D210          | 02/23/2004             |  |  |  |  |  |  |
| Loop Antenna      | EMCO                    | 6502      | 2356          | 07/10/2004             |  |  |  |  |  |  |
| Pre-Amplifier     | НР                      | 8449B     | 3008B00965    | 10/02/2004             |  |  |  |  |  |  |


**Remark:** Each piece of equipment is scheduled for calibration once a year.

## **Test Configuration**

## **Below 1 GHz**



#### **Above 1 GHz**



## **TEST PROCEDURE**

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

# **TEST RESULTS**

**Below 1 GHz** 

**Operation Mode:** TX / X Mode **Test Date:** October 16, 2003

Temperature: 20°C Tested by: Jacky

**Humidity:** 70 % RH **Polarity:** Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit 3m (dBuV/m) | Safe<br>Margin<br>(dB) |
|----------------|-----------------|-----------------------------|----------------|-------------|--------------------|-------------------|------------------------|
| 434.16         | V               | Peak                        | 45.03          | 20.34       | 65.37              | 80.14             | -14.77                 |
| 868.16         | V               | Peak                        | 1.19           | 27.60       | 28.79              | 60.14             | -31.35                 |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
| 434.16         | Н               | Peak                        | 55.86          | 20.34       | 76.20              | 80.14             | -3.94                  |
| 417.83         | Н               | Peak                        | 14.58          | 20.52       | 35.10              | 60.14             | -25.04                 |
| 450.50         | Н               | Peak                        | 1.03           | 20.19       | 21.22              | 60.14             | -38.92                 |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

**Operation Mode:** TX / Y Mode **Test Date:** October 16, 2003

Date of Issue: October 17, 2003

Temperature: 20°C Tested by: Jacky

**Humidity:** 70 % RH **Polarity:** Ver. / Hor.

| Freq. (MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit 3m (dBuV/m) | Safe<br>Margin<br>(dB) |
|-------------|-----------------|-----------------------------|----------------|-------------|--------------------|-------------------|------------------------|
| 434.16      | V               | Peak                        | 57.36          | 20.34       | 77.70              | 80.14             | -2.44                  |
| 417.83      | V               | Peak                        | 14.41          | 20.52       | 34.93              | 60.14             | -25.21                 |
| 450.50      | V               | Peak                        | 11.70          | 20.19       | 31.89              | 60.14             | -28.25                 |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
| 434.16      | Н               | Peak                        | 40.53          | 20.34       | 60.87              | 80.14             | -19.27                 |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |
|             |                 |                             |                |             |                    |                   |                        |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

**Operation Mode:** TX / Z Mode **Test Date:** October 16, 2003

Date of Issue: October 17, 2003

Temperature: 20°C Tested by: Jacky

**Humidity:** 70 % RH **Polarity:** Ver. / Hor.

| Freq.<br>(MHz) | Ant.Pol.<br>H/V | Detector<br>Mode<br>(PK/QP) | Reading (dBuV) | Factor (dB) | Actual FS (dBuV/m) | Limit 3m (dBuV/m) | Safe<br>Margin<br>(dB) |
|----------------|-----------------|-----------------------------|----------------|-------------|--------------------|-------------------|------------------------|
| 434.16         | V               | Peak                        | 45.19          | 20.34       | 65.53              | 80.14             | -14.61                 |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
| 434.16         | Н               | Peak                        | 55.19          | 20.34       | 75.53              | 80.14             | -4.61                  |
| 417.83         | Н               | Peak                        | 12.91          | 20.52       | 33.43              | 60.14             | -26.71                 |
| 450.50         | Н               | Peak                        | 2.70           | 20.19       | 22.89              | 60.14             | -37.25                 |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |
|                |                 |                             |                |             |                    |                   |                        |

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

**Above 1 GHz** 

**Operation Mode:** TX / X Mode **Test Date:** October 16, 2003

Date of Issue: October 17, 2003

**Temperature:** 20°C **Humidity:** 70 % RH

**Tested by:** Jacky

| Ewag        | Ant. Pol | Peak    | AV      | Ant. / CL | Actu     | al Fs    | Peak     | AV       | Margin         |        |
|-------------|----------|---------|---------|-----------|----------|----------|----------|----------|----------------|--------|
| Freq. (MHz) | H/V      | Reading | Reading |           | Peak     | AV       | Limit    | Limit    | Margin<br>(dB) | Remark |
| ,           |          | (dBuV)  | (dBuV)  | (dB)      | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (" )           |        |
| 1733.33     | V        | 43.84   |         | -6.08     | 37.76    |          | 74.00    | 54.00    | -16.24         | Peak   |
| 2166.66     | V        | 47.34   |         | -3.84     | 43.50    |          | 74.00    | 54.00    | -10.50         | Peak   |
| 2600.00     | V        | 42.17   |         | -2.52     | 39.65    |          | 74.00    | 54.00    | -14.35         | Peak   |
| 3533.33     | V        | 40.84   |         | 0.53      | 41.37    |          | 74.00    | 54.00    | -12.63         | Peak   |
|             |          |         |         |           |          |          |          |          |                |        |
|             |          |         |         |           |          |          |          |          |                |        |
| 1733.33     | Н        | 44.50   |         | -6.08     | 38.42    |          | 74.00    | 54.00    | -15.58         | Peak   |
| 2166.66     | Н        | 46.00   |         | -3.84     | 42.16    |          | 74.00    | 54.00    | -11.84         | Peak   |
| 2603.33     | Н        | 41.00   |         | -2.51     | 38.49    |          | 74.00    | 54.00    | -15.51         | Peak   |
| 4941.66     | Н        | 40.17   |         | 3.54      | 43.71    |          | 74.00    | 54.00    | -10.29         | Peak   |
|             |          |         |         |           |          |          |          |          |                |        |
|             |          |         |         |           |          | ·        |          |          |                |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

**Operation Mode:** TX / Y Mode **Test Date:** October 16, 2003

Date of Issue: October 17, 2003

**Temperature:** 20°C **Humidity:** 70 % RH

**Tested by:** Jacky

| Freq.   | Ant. Pol | Peak           | AV             | Ant. / CL  | Actu             | al Fs          | Peak              | AV             | Margin |        |
|---------|----------|----------------|----------------|------------|------------------|----------------|-------------------|----------------|--------|--------|
| (MHz)   | H/V      | Reading (dBuV) | Reading (dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit (dBuV/m) | (dR)   | Remark |
| 1733.33 | V        | 44.67          |                | -6.08      | 38.59            |                | 74.00             | 54.00          | -15.41 | Peak   |
| 2166.66 | V        | 49.34          |                | -3.84      | 45.50            |                | 74.00             | 54.00          | -8.50  | Peak   |
| 2603.33 | V        | 45.67          |                | -2.51      | 43.16            |                | 74.00             | 54.00          | -10.84 | Peak   |
| 3033.33 | V        | 42.50          |                | -1.43      | 41.07            |                | 74.00             | 54.00          | -12.93 | Peak   |
| 3466.66 | V        | 41.17          |                | 0.25       | 41.42            |                | 74.00             | 54.00          | -12.58 | Peak   |
|         |          |                |                |            |                  |                |                   |                |        |        |
| 1733.33 | Н        | 51.00          |                | -6.08      | 44.92            |                | 74.00             | 54.00          | -9.08  | Peak   |
| 2170.00 | Н        | 52.00          |                | -3.83      | 48.17            |                | 74.00             | 54.00          | -5.83  | Peak   |
| 2600.00 | Н        | 44.34          |                | -2.52      | 41.82            |                | 74.00             | 54.00          | -12.18 | Peak   |
| 5308.33 | Н        | 40.34          |                | 4.32       | 44.66            |                | 74.00             | 54.00          | -9.34  | Peak   |
|         |          |                |                |            |                  |                |                   |                |        |        |
|         |          |                |                |            |                  |                |                   |                |        |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

**Operation Mode:** TX / Z Mode **Test Date:** October 16, 2003

Date of Issue: October 17, 2003

**Temperature:** 20°C **Humidity:** 70 % RH

**Tested by:** Jacky

| Ечас        | Ant. Pol | Peak           | AV             | Ant. / CL  | Actu             | al Fs          | Peak              | AV             | Maugin         |        |
|-------------|----------|----------------|----------------|------------|------------------|----------------|-------------------|----------------|----------------|--------|
| Freq. (MHz) | H/V      | Reading (dBuV) | Reading (dBuV) | CF<br>(dB) | Peak<br>(dBuV/m) | AV<br>(dBuV/m) | Limit<br>(dBuV/m) | Limit (dBuV/m) | Margin<br>(dB) | Remark |
| 1733.33     | V        | 48.67          |                | -6.08      | 42.59            |                | 74.00             | 54.00          | -11.41         | Peak   |
| 2166.66     | V        | 50.84          |                | -3.84      | 47.00            |                | 74.00             | 54.00          | -7.00          | Peak   |
| 2600.00     | V        | 43.00          |                | -2.52      | 40.48            |                | 74.00             | 54.00          | -13.52         | Peak   |
|             |          |                |                |            |                  |                |                   |                |                |        |
|             |          |                |                |            |                  |                |                   |                |                |        |
|             |          |                |                |            |                  |                |                   |                |                |        |
| 1733.33     | Н        | 48.00          |                | -6.08      | 41.92            |                | 74.00             | 54.00          | -12.08         | Peak   |
| 1930.00     | Н        | 41.17          |                | -4.87      | 36.30            |                | 74.00             | 54.00          | -17.70         | Peak   |
| 2166.66     | Н        | 45.50          |                | -3.84      | 41.66            |                | 74.00             | 54.00          | -12.34         | Peak   |
|             |          |                |                |            |                  |                |                   |                |                |        |
|             |          |                |                |            |                  |                |                   |                |                |        |
|             |          |                |                |            |                  |                |                   |                |                |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

## 7.4 POWERLINE CONDUCTED EMISSIONS

## **LIMIT**

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Date of Issue: October 17, 2003

| Frequency Range (MHz)   | Limits (dBμV) |          |  |  |  |  |
|-------------------------|---------------|----------|--|--|--|--|
| Frequency Range (MIIIZ) | Quasi-peak    | Average  |  |  |  |  |
| 0.15 to 0.50            | 66 to 56      | 56 to 46 |  |  |  |  |
| 0.50 to 5               | 56            | 46       |  |  |  |  |
| 5 to 30                 | 60            | 50       |  |  |  |  |

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

## **MEASUREMENT EQUIPMENT USED**

| Name of Equipment | Manufacturer | Model   | Serial Number | Calibration Due |
|-------------------|--------------|---------|---------------|-----------------|
| EMI Test Receiver | R&S          | ESCS30  | 847793/012    | 12/20/2003      |
| LISN              | R&S          | ESH2-Z5 | 843285/010    | 12/15/2003      |
| LISN              | EMCO         | 3825/2  | 9003-1628     | 07/25/2004      |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

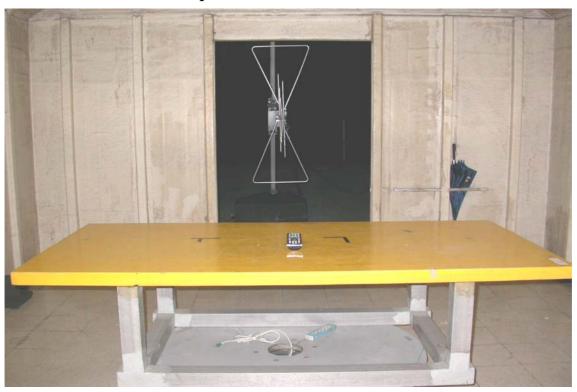
### **Test Configuration**

1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-1992.

Date of Issue: October 17, 2003

- 2. The EUT was plug-in the host PC via USB port. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 110Vac/60Hz power source.

The EUT is set to transmit in a continuous mode.


## **Test Procedure**

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

## **TEST RESULTS**

Not applicable (Since the EUT is powered by battery)

# **APPENDIX 1 PHOTOGRPHS OF TEST SETUP Radiated Emission Set up Photos**

