

TEST REPORT

Report Number: 30475761 Project Number: 3047576 Report Date: August 29, 2003

Testing performed on the **PCS Base Station** FCC ID: RCEICELL1900P-1

> to FCC Part 24

for **TELOS Technology**

Test Performed by: Intertek Testing Services 1365 Adams Court Menlo Park, CA 94025

Test Authorized by: TELOS Technology 4600 Jacombs Road Richmond, BC, V6V3B1

Tested by:	B Andr	Bruce Gordon, Test Engineer
Reviewed by:	David Chemomoodik	David Chernomordik, EMC Technical Manager
	Paviaw Data: 00/00/2002	

Review Date: 09/09/2003

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Intertek ETL SEMKO

TELOS Technology, Inc.

FCC ID: RCEICELL1900P-1

TABLE OF CONTENTS

1.0	Job]	Description	.3
	1.1	Applicant information	. 3
	1.2	Test Summary	. 3
	1.3	Product Description	. 4
	1.3	Test Configuration	. 4
	1.4	Justification	. 5
	1.5	Mode of Operation	. 5
	1.6	Related Submittal(s) Grants	. 5
2.0	RF F	Power Output	.6
	2.1	Test Procedure	. 6
	2.2	Test Equipment	. 6
	2.3	Test Results	. 6
3.0	Radi	ated Power	10
4.0	Occi	ipied Bandwidth	11
	4.1	Test Procedure	11
	4.2	Test Equipment	11
	4.3	Test Results	11
5.0	Out	of Band Emissions at Antenna Terminals	13
	5.1	Test Procedure	13
	5.2	Test Equipment	14
	5.3	Test Results	14
6.0	Field	l Strength of Spurious Radiation	16
	6.1	Test Procedure	16
	6.2	Test Equipment	16
	6.3	Test Results	17
7.0	Freq	uency Stability vs Temperature and Voltage	18
8.0	RF e	xposure info	19
9.0	List	of test Equipment	20
10.0	Doc	cument History	21
Appe	ndix A		22

FCC ID: RCEICELL1900P-1

1.0 Job Description

1.1 Applicant information

Applicant name & address	TELOS Technology 4600 Jacombs Road Richmond, BC, V6V3B1, Canada
Contact info	Mr. Richard LaLau
Telephone:	604-303-2353
Fax:	604=880-0957
Email	rlalau@telostech.com

1.2 Test Summary

FCC Rule	Description of Test	Result	Page
2.1046	RF Power Output	Complies 49 mW - average	6
24.232	EIRP	Complies	10
2.1047	Modulation Requirements	Not Applicable	-
2.1049	Occupied Bandwidth, Emission Designator	1M25F9W	11
2.1051, 24.238	Out of Band Emissions at Antenna Terminals	Complies	13
2.1053	Field Strength of Spurious Radiation	Complies	16
2.1055	Frequency Stability vs. Temperature and Voltage	Complies, see separate file	-
2.1091	RF Exposure	Complies	19

The test results in this report pertain only to the item tested.

FCC ID: RCEICELL1900P-1

1.3 Product Description

The iCell1900 Pico BSS is a low power, wall mountable CDMA Base Station intended for small network coverage locations such as a commercial campus or shopping mall. This industrial grade product acts as infill coverage to relieve the Macro network in congested locations.

For more information, please refer to the attached product description.

Use of Product	Base Station
Cellular Phone standards	CDMA
Type(s) of Emission	1M25F9W
Rated RF Output Power	16 dBm (average)
Frequency Range	1930 - 1990 MHz
Antenna(e) & Gain	Typically a –2 dBd mini whip.
DC voltage and current into the final RF stage	6.2 V, 1 A
External input	Digital Data

EUT receive date:	August 25, 2003
EUT receive condition:	The EUT was received in good condition with no apparent damage.
Test start date:	August 25, 2003
Test completion date:	August 29, 2003

1.3 Test Configuration

Item #	Description	Make	Model No.	Serial No.
1	EUT	TELOS Technology	iCell	Not labeled
2	Laptop	Compaq	Armada 1750	6333/T/6400/D/M/1
3	Power supply	Apx Technologies Inc.	P/N SP130948R	Not labeled

FCC ID: RCEICELL1900P-1

1.4 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For radiated emission measurements, the EUT is placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible).

The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

1.5 Mode of Operation

The EUT was setup to transmit continuously a CDMA signal on selected channels.

1.6 Related Submittal(s) Grants

None

1.7 Test Facility

The test site and conducted measurement facility used to collect the radiated data is site 1 (10 m semianechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.

FCC ID: RCEICELL1900P-1

2.0 **RF Power Output** FCC 2.1046

2.1 Test Procedure

The transmitter output was connected to a spectrum analyzer. The resolution and video bandwidths of the spectrum analyzer were set up to 30 kHz and 300 Hz accordingly, and the spectrum analyzer reading was recorded. The average value of the output power was calculated by adding a bandwidth correction factor equal 10Log(1250/30) = 16.2 dB to the spectrum analyzer reading.

Tests were performed at three frequencies (low, middle, and high channels) in Cellular band.

2.2 Test Equipment

HP8565E Spectrum Analyzer

2.3 Test Results

Frequency MHz	Average Power dBm	Average Power mW	Plot Number
1931.25	14.9	30.9	2.1
1963.75	16.9	49.0	2.2
1988.75	14.4	27.5	2.3

For more details refer to the attached plots.

1365 Adams Court, Menlo Park, CA 94025

TELOS Technology, Inc.

1365 Adams Court, Menlo Park, CA 94025

TELOS Technology, Inc.

FCC ID: RCEICELL1900P-1

3.0 Radiated Power <u>FCC 24.232</u>

Requirement

The Equivalent Isotropically Radiated Power (EIRP) of base stations must not exceed 1640 Watts.

Result

The EIRP may be calculated by adding the antenna gain (in dBi) to the output power in dBm. In normal operation the EUT is typically used a -2dBd (0 dBi) gain mini whip antenna. Therefore, the EIRP is not to exceed 50 mW (17 dBm).

FCC ID: RCEICELL1900P-1

- 4.0 Occupied Bandwidth FCC 2.1049
- 4.1 Test Procedure

The transmitter output was connected to a spectrum analyzer. The Occupied Bandwidth (defined as the 99% Power Bandwidth) was measured with the HP8565E Spectrum Analyzer.

4.2 Test Equipment

Hewlett Packard HP8565E Spectrum Analyzer

4.3 Test Results

See attached plots 4.1. The test result shows that the bandwidth is 1.243 MHz, which is 0.5% less than the theoretical bandwidth for CDMA - 1.25 MHz. The Emission Designator was determined as 1M25F9W

FCC ID: RCEICELL1900P-1

5.0 Out of Band Emissions at Antenna Terminals FCC 2.1051, 24.238

Out of Band Emissions:

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$.

5.1 Test Procedure

According to FCC requirements, the following six frequency Blocks must be considered to show compliance with requirements of out-of-band emissions including emissions on the band-edge frequencies:

BLOCK 1: 1930 – 1945 MHz (A) BLOCK 2: 1945 – 1950 MHz (D) BLOCK 3: 1950 – 1965 MHz (B) BLOCK 4: 1965 – 1970 MHz (E) BLOCK 5: 1970 – 1975 MHz (F) BLOCK 6: 1975 – 1990 MHz (C)

А	D	В	Е	F	С
1930	1945 1950		1965 1970	1975	1990

The following channels/frequencies were selected for out-of-band/band-edge emission tests:

Channel	Frequency, MHz
25	1931.25
275	1943.75
325	1946.25
375	1948.75
425	1951.25
675	1963.75
725	1966.25
775	1968.75
825	1971.25
875	1973.75
925	1976.25
1175	1988.75

The RF output of the transmitter was connected to a spectrum analyzer. For the channels 25, 675 and 1175 scans were taken to show the out-of-band emissions from 10 MHz to 20 GHz, for the other channels scans were taken to show compliance on the band-edge frequencies for each selected blocks.

FCC ID: RCEICELL1900P-1

On frequencies within 1 MHz up or down from the band-edge frequency, the measurements were made with the spectrum analyzer resolution bandwidth (RBW) of 30 kHz; on some frequencies more than 1 MHz away from the band-edge frequency, the spectrum analyzer resolution bandwidth of 300 kHz was used (instead of 1 MHz), and a bandwidth correction factor (BCF) of 10Log[1000/300]=5 dB was applied.

5.2 Test Equipment

HP8565E Spectrum Analyzer

5.3 Test Results

Refer to the following plots in Appendix A:

Channel	Frequency,	Description	Comments	Plot
	MHZ			number
		Scan 10 MHz – 1 GHz		5.1
25	1021.25	Scan I GHz – 1.929 GHz		5.2
25	1931.25	Scan 1.929 GHz – 1.930 GHz	With RBW=30 kHz	5.3
		Scan 1.945 GHz – 1.990 GHz		5.4
		Scan 1.990 GHz – 6.5 GHz		5.5
		Scan 6.5 GHz – 20 GHz		5.6
		Scan 1 GHz – 1.930 GHz		5.7
275	1943.75	Scan 1.945 GHz – 1.946 GHz	With RBW=30 kHz	5.8
		Scan 1.946 GHz – 1.947 GHz	With RBW=300 kHz,	5.9
			BCF=5 dB is applied	
		Scan 1.947 GHz – 1.990 GHz		5.10
		Scan 1.930 GHz – 1.943 GHz		5.11
		Scan 1.943 GHz – 1.944 GHz	With RBW=300 kHz.	5.12
325	1946.25		BCF=5 dB is applied	
		Scan 1.944 GHz – 1.945 GHz	With RBW=30 kHz	5.13
		Scan 1.950 GHz – 1.990 GHz		5.14
		Scan 1.930 GHz – 1.945 GHz		5.15
		Scan 1.950 GHz – 1.951 GHz	With RBW=30 kHz	5.16
375	1948.75	Scan 1 951 GHz – 1 952 GHz	With RBW=300 kHz	5.17
			BCF=5 dB is applied	0.117
		Scan 1 952 GHz – 1 990 GHz		5.18
		Scan 1.930 GHz $-$ 1.930 GHz		5.19
425	1951 25	Scan 1 948 GHz $-$ 1 949 GHz	With RBW=300 kHz	5.20
123	1901.20		BCF=5 dB is applied	5.20
		Scan 1 949 GHz – 1 950 GHz	With RBW=30 kHz	5.21
		Scan 1.950 GHz $=$ 1.990 GHz		5.21
		Scan 10 MHz 1 GHz		5.22
		Scan 1 GH_{Z} = 1 020 GH_{Z}		5.25
		Scan 1 020 GH_{Z} = 1.950 GH_{Z}		5.24
675	1963 75	Scan 1.065 CHz 1.066 CHz	With DDW-20 htt-	5.25
075	1703.75	Scall 1.903 GHZ - 1.900 GHZ	With DDW-200 LU-	5.20
		Scall 1.900 GHZ – 1.90/ GHZ	WITH KBW= 300 KHZ ,	5.27
			BCF=5 dB is applied	

FCC ID: RCEICELL1900P-1

				5 0 0
		Scan 1.967 GHz – 1.990 GHz		5.28
		Scan 1.990 GHz – 6.5 GHz		5.29
		Scan 6.5 GHz – 20 GHz		5.30
Channel	Frequency,	Description	Comments	Plot
	MHz			number
		Scan 1.930 GHz – 1.963 GHz		5.31
725	1966.25	Scan 1.963 GHz – 1.964 GHz	With RBW=300 kHz,	5.32
			BCF=5 dB is applied	
		Scan 1.964 GHz – 1.965 GHz	With RBW=30 kHz	5.33
		Scan 1.970 GHz – 1.990 GHz		5.34
		Scan 1.930 GHz – 1.965 GHz		5.35
		Scan 1.970 GHz – 1.971 GHz	With RBW=30 kHz	5.36
775	1968.75	Scan 1.971 GHz – 1.972 GHz	With RBW=300 kHz,	5.37
			BCF=5 dB is applied	
		Scan 1.972 GHz – 1.990 GHz	**	5.38
-		Scan 1.930 GHz – 1.968 GHz		5.39
		Scan 1.968 GHz – 1.969 GHz	With RBW=300 kHz,	5.40
825	1971.25		BCF=5 dB is applied	
		Scan 1.969 GHz – 1.970 GHz	With RBW=30 kHz	5.41
		Scan 1.975 GHz – 1.990 GHz		5.42
		Scan 1.930 GHz – 1.970 GHz		5.43
875	1973.75	Scan 1.975 GHz – 1.976 GHz	With RBW=30 kHz	5.44
		Scan 1.976 GHz – 1.977 GHz	With RBW=300 kHz	5.45
			BCF=5 dB is applied	
		Scan 1.977 GHz – 1.990 GHz		5.46
-		Scan 1.930 GHz – 1.974 GHz	With RBW=300 kHz.	5.47
925	1976.25		BCF=5 dB is applied	
		Scan 1.974 GHz – 1.975 GHz	With RBW=30 kHz	5.48
		Scan 1 990 GHz $- 2 000$ GHz		5 49
		Scan 10 MHz $- 1$ GHz		5.50
		Scan 1 GHz $=$ 1 930 GHz		5 51
		Scan 1 930 GHz $=$ 1 975 GHz		5 52
1175	1988.75	Scan 1 990 GHz – 1 991 GHz	With RBW=30 kHz	5 53
		Scan 1 991 GHz $= 2.000$ GHz	With RBW=300 kHz	5 54
			BCF=5 dB is applied	5.57
		Scan 2 GHz $- 6.5$ GHz		5 5 5
		$\frac{1}{20112} = \frac{1}{0.30112}$		5.55
1	1	50010.50112 - 200112		5.50

Complies

Passed by 13.8 dB

FCC ID: RCEICELL1900P-1

6.0 Field Strength of Spurious Radiation FCC 2.1053, 24.238

6.1 Test Procedure

A dummy load was connected to the EUT antenna connector. The EUT was placed on a non-conductive turntable in the 10-m anechoic chamber.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic of each of the three fundamental frequency (low, middle, and high channels) was investigated.

For spurious emissions attenuation, the substitution method was used. On each frequency the EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator.

The signal generator output was adjusted to obtain the same reading as from EUT. The EIRP at the spurious emissions frequency was calculated by adding the substitution antenna gain to the recorded signal generator level. The spurious emissions attenuation was calculated as the difference between ERP at the fundamental frequency and at the spurious emissions frequency.

6.2 Test Equipment

EMCO 3115 Horn Antennas HP 8566B Spectrum Analyzer HP 83732A Signal Generator High Pass Filter Preamplifiers

1365 Adams Court, Menlo Park, CA 94025

TELOS Technology, Inc.

FCC ID: RCEICELL1900P-1

6.3 Test Results

Effective Radiated Power (Measured by Substitution Method)

Frequency	Antenna Polariz.	SA Reading (EUT)	Signal Generator Output required to have the same SA Reading as from EUT	ERP *	ERP Limit
MHz		dBm	VgdBm	dBm	dBm
Channel 25 @1931.25 MHz					
5793.75	Н	-77.0	-74.1	-62.9	-13 dBm
Channel 675 @1963.75 MHz					
5891.25	Н	-76.4	-73.1	-61.9	-13 dBm
Channel 1175 @1989.50 MHz					
5968.50	Н	-76.8	-73.8	-62.5	-13 dBm

* ERP is calculated as: $ERP_{(dBm)} = V_{g(dBm)} + G_{(dBd)}$ All other signals were 20 dB or greater below the limit.

Complies Passed by more than 40 dB

FCC ID: RCEICELL1900P-1

7.0 Frequency Stability vs Temperature and Voltage FCC 2.1055

See a separate file "Frequency stability"

FCC ID: RCEICELL1900P-1

8.0 **RF exposure info** FCC 2.1091

The EUT is a device used in mobile application, at least 20 cm from any body part of the user or near by persons.

The maximum conducted power is 0.05 W; antenna gain is about 0 dBi. To show compliance with RF Exposure Requirement, the MPE is calculated.

The maximum Peak EIRP calculated is 0.05 W. The Power Density may be calculated using the formula: $S = EIRP/4\pi D^2$ where: S is Power Density in W/m² D is the distance from the antenna

D is the distance from the antenna.

In the table below, the calculated Power Density at 5-20 cm distances and MPE Limit for general population/uncontrolled exposure are presented.

Distance, m	Power Density, W/m ²	MPE, W/m^2
0.05	1.6	10.0
0.10	0.4	10.0
0.20	0.1	10.0

As can be seen from the data, the MPE is well below the limit at 5 cm and greater.

FCC ID: RCEICELL1900P-1

9.0 List of test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
BI-Log Antenna	EMCO	3143	9509-1160	12	9/19/03
Horn Antenna	EMCO	3115	9170-3712	12	6/17/04
Horn Antenna	EMCO	3115	8812-3049	12	4/08/04
Pre-Amplifier	Miteq	AMF-4D-	799159	12	9/06/03
_	-	001180-24-10P			
Pre-Amplifier	Avantek	AFT-18855	8723H705	12	10/5/03
Spectrum Analyzer	Hewlett Packard	8566B	2416A00317	12	10/29/03
w/85650 QP Adapter			2043A00251		
Spectrum Analyzer Display	Hewlett Packard	85662B	2403A06796	12	10/29/03
w/85650 QP Adapter					
Spectrum Analyzer	Hewlett Packard	8565E	AE9674	12	5/27/04
Signal Generator	Hewlett Packard	83732A	3222A00119	12	3/04/04

FCC ID: RCEICELL1900P-1

10.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3047576	DC	August 30, 2003	Original document

1365 Adams Court, Menlo Park, CA 94025

FCC ID: RCEICELL1900P-1

Appendix A