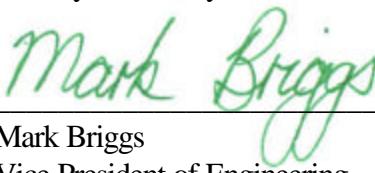


*Electromagnetic Emissions Test Report
and
Request for Class II Permissive Change
pursuant to
FCC Part 15, Subpart C (15.247) DTS Specifications and
Industry Canada RSS 210 Issue 5 for an
Intentional Radiator on the
Airflow Networks
Model: AirHub 101*

FCC ID: RC9-AH100

UPN: 4721A-AH100


GRANTEE: Airflow Networks
455 West Maude Ave.
Sunnyvale, CA. 94085-3517

TEST SITE: Elliott Laboratories, Inc.
684 W. Maude Avenue
Sunnyvale, CA 94086

REPORT DATE: January 20, 2004

FINAL TEST DATE: January 8, January 9 and January 15, 2004

AUTHORIZED SIGNATORY:

Mark Briggs
Vice President of Engineering

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
APPLICATION AND AGREEMENT FOR CERTIFICATION SERVICES	1
TABLE OF CONTENTS	2
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL.....	7
OTHER EUT DETAILS	7
ENCLOSURE.....	7
MODIFICATIONS.....	7
SUPPORT EQUIPMENT.....	8
EUT INTERFACE PORTS	8
EUT OPERATION DURING TESTING.....	8
ANTENNA REQUIREMENTS.....	8
PROPOSED MODIFICATION DETAILS	9
TEST SITE	10
GENERAL INFORMATION.....	10
CONDUCTED EMISSIONS CONSIDERATIONS.....	10
RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM.....	11
INSTRUMENT CONTROL COMPUTER.....	11
LINE IMPEDANCE STABILIZATION NETWORK (LISN).....	11
POWER METER	12
FILTERS/ATTENUATORS.....	12
ANTENNAS.....	12
ANTENNA MAST AND EQUIPMENT TURNTABLE.....	12
INSTRUMENT CALIBRATION.....	12

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	13
CONDUCTED EMISSIONS.....	13
RADIATED EMISSIONS	13
CONDUCTED EMISSIONS FROM ANTENNA PORT	14
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS.....	15
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	16
RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS	16
FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS.....	17
RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS	17
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS.....	18
SAMPLE CALCULATIONS - RADIATED EMISSIONS	19
<i>EXHIBIT 1: Test Equipment Calibration Data</i>	<i>1</i>
<i>EXHIBIT 2: Test Data Log Sheets.....</i>	<i>2</i>
<i>EXHIBIT 3: Test Configuration Photographs.....</i>	<i>3</i>
<i>EXHIBIT 4: Proposed FCC ID Label & Label Location.....</i>	<i>4</i>
<i>EXHIBIT 5: Detailed Photographs of.....</i>	<i>5</i>
<i>Airflow Networks Model AirHub 101 Construction.....</i>	<i>5</i>
<i>EXHIBIT 6: Operator's Manual for.....</i>	<i>6</i>
<i>Airflow Networks Model AirHub 101</i>	<i>6</i>
<i>EXHIBIT 7: Block Diagram of.....</i>	<i>7</i>
<i>Airflow Networks Model AirHub 101</i>	<i>7</i>
<i>EXHIBIT 8: Schematic Diagrams for.....</i>	<i>8</i>
<i>Airflow Networks Model AirHub 101</i>	<i>8</i>
<i>EXHIBIT 9: Theory of Operation for.....</i>	<i>9</i>
<i>Airflow Networks Model AirHub 101</i>	<i>9</i>
<i>EXHIBIT 10: Advertising Literature</i>	<i>10</i>
<i>EXHIBIT 11: RF Exposure Information.....</i>	<i>11</i>

SCOPE

An electromagnetic emissions test has been performed on the Airflow Networks model AirHub 101 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for license-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Airflow Networks model AirHub 101 and therefore apply only to the tested sample. The sample was selected and prepared by Paul Richards of Airflow Networks

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247(a)	6.2.2(o)(b)	Digital Modulation	The proposed change does not affect the information previously reported.		
15.247 (a) (2)	6.2.2(o)(b)	6dB Bandwidth	The proposed change does not affect the information previously reported.		
	RSP 100	99% Bandwidth	The proposed change does not affect the information previously reported.		
15.247 (b) (3)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz	19 dBm (0.087 Watts) EIRP = 0.62 W	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247(d)	6.2.2(o)(b)	Power Spectral Density	The proposed change does not affect the information previously reported.		
15.247(c)	6.2.2(o)(e1)	Spurious Emissions – 30MHz – 26GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Spurious Emissions – 30MHz – 26GHz (8dBi Antenna)	73.2 dBuV/m @ 2483.5 MHz (peak (-0.8dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	The proposed change does not affect the information previously reported.		
	6.6	AC Conducted Emissions			
15.247 (b) (5)		RF Exposure Requirements	Power density at a separation distance of 20cm below the MPE for uncontrolled exposure	Refer to RF exposure exhibit for MPE calculation	Complies
	Table 3	Receiver Spurious Emissions – 30MHz – 10 GHz	-3.8dB @ 2063.0MHz	Receiver spurious emissions	Complies
15.203		RF Connector	Reverse TNC	Non standard connector used	Complies

EIRP calculated using antenna gain of 8.5dBi for the highest EIRP point-to-multipoint system.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The Airflow Networks model AirHub 101 is an 802.11b Access Point which is designed to provide a wireless LAN service in the 2400-2483.5 MHz band. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The EUT can be powered from an external AC-DC adapter rated at 120V/60Hz, 0.5 Amps or via the Ethernet port using power-over-Ethernet.

The sample was received on January 8, 2004 and tested on January 8, January 9 and January 15, 2004. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	Proposed FCC ID #
Airflow Networks AirHub 101 Wireless Hub	-	-
Centurion CAF28777 1dBi Omni Antenna	-	-
Maxrad MP24008XFPTRPC 8.5dBi Patch Antenna	-	-
Hyperlink HJ2409P 8dBi Patch Antenna	-	-

OTHER EUT DETAILS

The EUT can operate on channels with center frequencies from 2412 MHz to 2462 MHz. The EUT has two 10/100 Base-T ethernet interface ports plus the dc power input. One ethernet port is for connection to a switch, the other is intended for connection to a PC.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 15 cm wide by 11 cm deep by 2.5 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

No equipment was used as local support equipment for emissions testing. The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number
Dell	Latitude PP01L	Laptop	CN-06P823-48155-260-6918
Airflow	-	Controller Unit	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
Desktop	Laptop	CAT 5	Unshielded	10
Airswitch	POE Unit ethernet out	CAT 5	Unshielded	10
POE Unit ethernet in	Control Unit	CAT 5	Unshielded	30
Control Unit	PC	Multi Wire	Shielded	1

EUT OPERATION DURING TESTING

The transmitter was configured to transmit continuously on the selected channel.

ANTENNA REQUIREMENTS

The antenna is integrated into the device with no user-access to the rf connector between antenna and circuit board.

PROPOSED MODIFICATION DETAILS

This section details the modifications to the Airflow Networks model AirHub 101 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC and Industry Canada are addressed.

Airflow propose adding external antennas to their system. The change consists of adding two external reverse TNC connectors (to provide for spatial diversity) and any of the following antennas:

Manufacturer / Model	Gain (dBi)	Type
Centurion CAF28777	1	Omni
Maxrad MP24008XFPTRPC	8.5	Patch
Hyperlink HJ2409P	8	Patch

The Centurion and Maxrad antennas were evaluated with the system. These represented the highest gain antennas of each type for the new antennas.

Note that the original antenna was integral to the device and had a gain of 2 dBi.

TEST SITE**GENERAL INFORMATION**

Final test measurements were taken on January 8, January 9 and January 15, 2004 at the Elliott Laboratories Open Area Test Site #2 & 4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION**RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES**EUT AND CABLE PLACEMENT**

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \sqrt{30} P}{3} \text{ microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a) and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watts (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watts (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watts (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level.

FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r = C$$

and

$$C - S = M$$

where:

R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20 \cdot \text{LOG10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

R_r = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 26,500 MHz, 19 and 26 Jan 2004

Engineer: Chris Byleckie, Juan Martinez

Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Spectrum Analyzer 30Hz - 40 GHz	8564E (84125C)	1148	02-Apr-04
Hewlett Packard	High Pass filter, 3.5GHz	84300-80038	1157	11-Sep-04

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T54007 19 Pages

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
		Account Manager:	S.Pelzl, M. Briggs
Contact:	Paul Richards		
Emissions Spec:	FCC, RSS210, VCCI	Class:	B
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Airflow Networks

Model

802.11b Access Point

Date of Last Test: 1/9/2004

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
		Account Manager:	S.Pelzl, M. Briggs
Contact:	Paul Richards		
Emissions Spec:	FCC, RSS210, VCCI	Class:	B
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The EUT is an 802.11b Access Point which is designed to provide a wireless LAN service in the 2400-2483.5 MHz band. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The EUT can be powered from an external AC-DC adapter rated at 120V/60Hz, 0.5 Amps or via the Ethernet port using power-over-Ethernet.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Airflow Networks	Airhub	Wireless Hub	-	-
Centurion	CAF28777	1dBi Omni Antenna	-	-
Maxrad	MP24008XFPTRPC	8.5dBi patch antenna	-	-
Hyperlink	HJ2409P	8dBi patch antenna	-	-

Other EUT Details

The EUT can operate on channels with center frequencies from 2412 MHz to 2462 MHz.

The EUT has two 10/100 Base-T ethernet interface ports plus the dc power input. One ethernet port is for connection to a switch, the other is intended for connection to a PC.

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 15 cm wide by 11 cm deep by 2.5 cm high.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
		Account Manager:	S.Pelzl, M. Briggs
Contact:	Paul Richards		
Emissions Spec:	FCC, RSS210, VCCI	Class:	B
Immunity Spec:	-	Environment:	-

Test Configuration #1 - Radio

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Latitude PP01L	Laptop	CN-06P823-48155-260-6918	-
Airflow	-	Controller Unit	-	-

EUT Interface Cabling and Ports

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
Desktop	Laptop	CAT 5	Unshielded	10
Airswitch	POE Unit ethernet out	CAT 5	Unshielded	10
POE Unit ethernet in	Control Unit	CAT 5	Unshielded	30
Control Unit	PC	Multi Wire	Shielded	1

EUT Operation During Emissions Testing

The transmitter was configured to transmit continuously on the selected channel.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Radiated Spurious Emissions (Centurion Antenna)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to FCC 15.247 and RSS 210 6.2.2(o) specifications.

Date of Test: 1/92004

Config. Used: #1

Test Engineer: Chris Byleckie

Config Change: N/A

Test Location: SVOATS #4

EUT Voltage: 120V/60Hz to external AC-DC adapter

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 10 meters from the EUT with all I/O connections routed in overhead.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via the same length and type of cable that connects the antenna to the circuit board. No corrections were made for this cable.

Ambient Conditions:

Temperature: 15 °C

Rel. Humidity: 81 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
-	Output Power	15.247(b)	Pass	Max Power = 19.4 dBm
1	RE, 30 - 26000 MHz - Spurious Emissions In	FCC Part 15.209 / 15.247(c)	Pass	-3.9dB @ 2678 MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

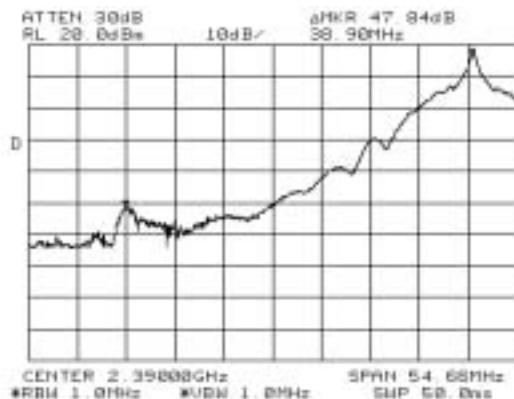
Deviations From The Standard

No deviations were made from the requirements of the standard.

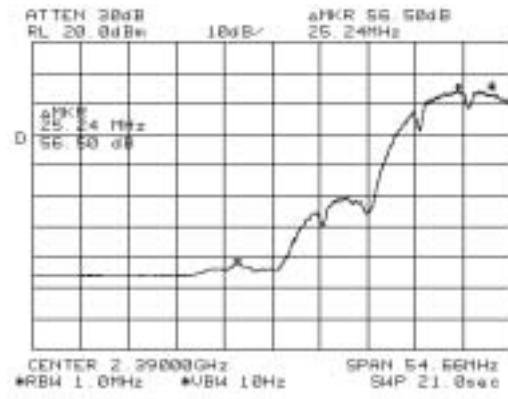
EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:		Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Output Power - Verification of Output Power


Channel	Frequency (MHz)	Output Power	Output Power	
Low	2412	19.40	0.087	Watts
Mid	2437	18.30	0.068	Watts
High	2462	17.50	0.056	Watts

Note 1: Measured using peak power sensor


Run #1a: Radiated Spurious Emissions, 30 - 26000 MHz. Low Channel @ 2412 MHz

	H	V
Fundamental emission level @ 3m in 100kHz RBW:		102.05
Limit for emissions outside of restricted bands:	82.05	dB μ V/m

Low Channel (2412 MHz)

Band Edge Delta (Peak)

Band-edge delta (Average)

Band-Edge Marker Deltas

Peak: 47.8 dB
Average: 56.5 dB

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
2411.005	104.5	V	-	-	AVG	319	1.4
2411.005	114.7	V	-	-	PK	319	1.4
2411.200	94.7	H	-	-	AVG	174	1.8
2411.200	104.7	H	-	-	PK	174	1.8
2390.000	66.9	V	74.0	-7.1	PK	-	-
2390.000	48.0	V	54.0	-6.0	AVG	-	-
2038.000	58.9	H	82.0	-23.2	PK	307.0	1.0
2038.000	58.5	V	82.0	-23.6	PK	0.0	1.0
2252.267	47.0	V	54.0	-7.0	AVG	81.0	1.0
2252.267	57.8	V	74.0	-16.2	PK	81.0	1.0
2253.700	46.9	H	54.0	-7.1	AVG	0.0	1.0
2253.700	58.3	H	74.0	-15.8	PK	0.0	1.0
4824.055	42.9	V	54.0	-11.1	AVG	359.0	1.1
4824.055	50.7	V	74.0	-23.3	PK	359.0	1.1
4824.070	41.6	H	54.0	-12.4	AVG	11.0	1.6
4824.070	50.0	H	74.0	-24.0	PK	11.0	1.6

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental.
Note 2:	LO is 374 MHz below the fundamental frequency. It does not lie in a restricted band. No significant signal observed.
Note 3:	Band-edge measurement made using delta marker method

EMC Test Data

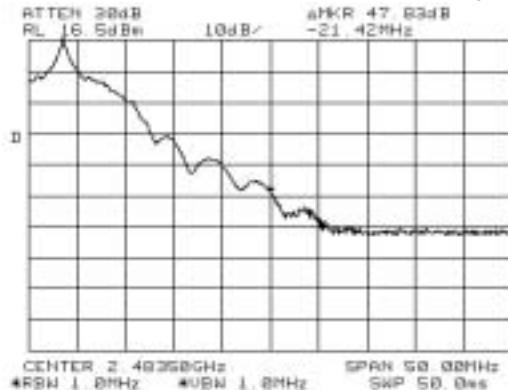
Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
		Account Manager:	S.Pelzl, M. Briggs
Contact:	Paul Richards		
Spec:	FCC, RSS210, VCCI	Class:	N/A

Run #1b: Radiated Spurious Emissions, 30 - 26000 MHz. Center Channel @ 2437 MHz

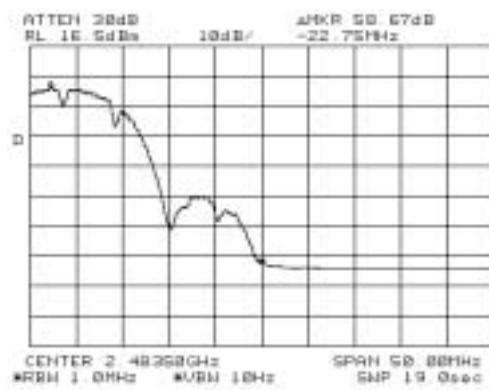
	H	V
Fundamental emission level @ 3m in 100kHz RBW:		100.1
Limit for emissions outside of restricted bands:	80.1	dB μ V/m

Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
4873.900	40.9	H	54.0	-13.1	AVG	23	1.6
4873.900	50.3	H	74.0	-23.7	PK	23	1.6
7312.967	38.0	H	54.0	-16.0	AVG	293	1.5
7312.967	48.8	H	74.0	-25.2	PK	293	1.5
4873.840	43.5	V	54.0	-10.5	AVG	34	1.8
4873.840	50.9	V	74.0	-23.1	PK	34	1.8
7310.460	37.5	V	54.0	-16.5	AVG	278	1.0
7310.460	48.4	V	74.0	-25.6	PK	278	1.0
2371.475	47.6	V	54.0	-6.4	AVG	287	1.0
2371.475	58.7	V	74.0	-15.3	PK	287	1.0
2368.695	47.7	H	54.0	-6.3	AVG	74	1.0
2368.695	59.0	H	74.0	-15.1	PK	74	1.0
2062.975	61.3	V	80.1	61.3	PK	340	1.0
2063.035	57.8	H	80.1	57.8	PK	18	1.0

Note 1: LO is 374 Mhz below the fundamental frequency. It does not lie in a restricted band. No significant signal observed.


EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:		Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A


Run #1c: Radiated Spurious Emissions, 30 - 26000 MHz. High Channel @ 2462 MHz

	H	V
Fundamental emission level @ 3m in 100kHz RBW:		100.2
Limit for emissions outside of restricted bands:	80.2 dB μ V/m	

High Channel (2462MHz)

Band Edge Delta (Peak)

Band-edge delta (Average)

Band-Edge Marker Deltas

Peak: 47.8 dB
Average: 58.6 dB

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
2460.600	102.5	V	-	-	AVG	285	1.3
2460.600	112.8	V	-	-	PK	285	1.3
2460.633	92.0	H	-	-	AVG	23	1.4
2460.633	99.5	H	-	-	PK	23	1.4
2483.500	65.0	V	74.0	-9.0	PK	-	-
2483.500	43.9	V	54.0	-10.1	AVG	-	-
2681.330	49.6	H	54.0	-4.4	AVG	355	1.0
2681.330	60.8	H	74.0	-13.2	PK	355	1.0
2087.610	57.4	H	80.2	-22.8	PK	304	1.8
2678.555	50.1	V	54.0	-3.9	AVG	220	1.0
2678.555	60.9	V	74.0	-13.1	PK	220	1.0
2087.985	59.9	V	80.2	-20.4	PK	334	0.9
4922.600	37.8	V	54.0	-16.2	AVG	0	1.0
4922.600	48.3	V	74.0	-25.7	PK	0	1.0
7387.210	39.4	V	54.0	-14.6	AVG	338	1.0
7387.210	51.2	V	74.0	-22.8	PK	338	1.0
4923.535	37.3	H	54.0	-16.7	AVG	240	1.0
4923.535	49.0	H	74.0	-25.0	PK	240	1.0
7386.115	39.2	H	54.0	-14.8	AVG	1	1.8
7386.115	51.1	H	74.0	-22.9	PK	1	1.8

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental.
Note 2:	Band-edge measurement made using delta marker method
Note 3:	LO is 374 Mhz below the fundamental frequency. It does not lie in a restricted band. No significant signal observed.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Radiated Spurious Emissions (8.5dBi Patch antenna)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to FCC 15.247 and RSS 210 6.2.2(o) specifications.

Date of Test: 1/15/2003

Config. Used: #1

Test Engineer: Jmartinez

Config Change: N/A

Test Location: SVOATS #2

EUT Voltage: 120V/60Hz to external AC-DC adapter

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 10 meters from the EUT with all I/O connections routed in overhead.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via the same length and type of cable that connects the antenna to the circuit board. No corrections were made for this cable.

Ambient Conditions:

Temperature: 11 °C

Rel. Humidity: 89 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 26000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	-0.8dB @ 2483.5 MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

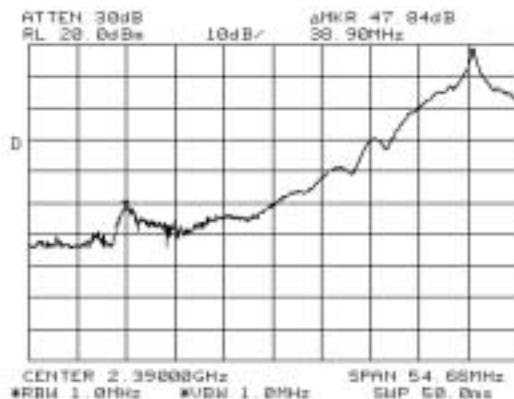
Deviations From The Standard

No deviations were made from the requirements of the standard.

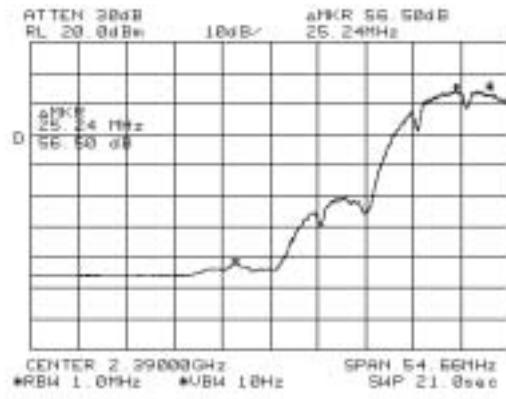
EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Output Power - Verification of Output Power


Channel	Frequency (MHz)	Output Power	Output Power	
Low	2412	19.40	0.087	Watts
Mid	2437	18.30	0.068	Watts
High	2462	17.50	0.056	Watts

Note 1: Measured using peak power sensor


Run #1a: Radiated Spurious Emissions, 30 - 26000 MHz. Low Channel @ 2412 MHz

	H	V
Fundamental emission level @ 3m in 100kHz RBW:		119.1
Limit for emissions outside of restricted bands:	99.1	dB μ V/m

Low Channel (2412 MHz)

Band Edge Delta (Peak)

Band-edge delta (Average)

Band-Edge Marker Deltas

Peak: 47.8 dB
Average: 56.5 dB

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
2411.005	98.2	v	-	-	AVG		Fundamentals
2411.005	111.1	v	-	-	PK		Fundamentals
2411.200	109.5	h	-	-	AVG		Fundamentals
2411.200	119.1	h	-	-	PK		Fundamentals
2390.000	41.7	v	54.0	-12.3	AVG	-	Bandedges
2390.000	63.4	v	74.0	-10.6	PK	-	Bandedges
2390.000	53.0	h	54.0	-1.0	AVG	-	Bandedges
2390.000	71.6	h	74.0	-2.4	PK	-	Bandedges
2038.000	53.3	v	99.1	-45.8	Pk	158.0	1.0
2038.000	50.3	h	99.1	-48.9	Pk	40.0	1.7
2252.267	43.5	v	54.0	-10.5	AVG	0.0	Noise Floor
2252.267	51.2	v	74.0	-22.8	PK	0.0	Noise Floor
2253.700	41.2	h	54.0	-12.8	AVG	0.0	Noise Floor
2253.700	50.2	h	74.0	-23.8	PK	0.0	Noise Floor
4824.000	49.1	h	74.0	-24.9	Pk	0.0	1.2
4824.000	35.0	h	54.0	-19.0	Avg	0.0	1.2
4824.000	45.9	v	74.0	-28.1	Pk	0.0	1.2
4824.000	36.3	v	54.0	-17.7	Avg	0.0	1.2
Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental. No emission detected after the 2nd harmonic that were 20-dB of the limit						
Note 2:	Peak Reading, Average Limit.						

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
		Account Manager:	S.Pelzl, M. Briggs
Contact:	Paul Richards		
Spec:	FCC, RSS210, VCCI	Class:	N/A

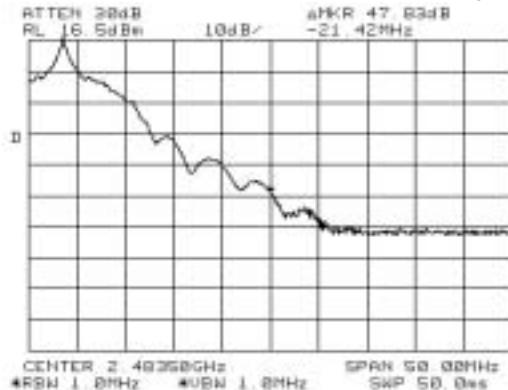
Run #1b: Radiated Spurious Emissions, 30 - 26000 MHz. Center Channel @ 2437 MHz

	H	V
Fundamental emission level @ 3m in 100kHz RBW:	110.18	
Limit for emissions outside of restricted bands:	90.18 dB μ V/m	

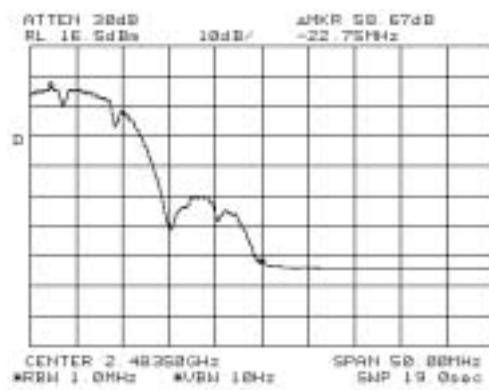
Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
4873.900	51.0	v	74.0	-23.0	Pk	337	1.5
4873.900	40.0	v	54.0	-14.0	Avg	337	1.5
7312.967	54.0	v	74.0	-20.0	Pk	0	1.0
7312.967	40.0	v	54.0	-14.0	Avg	0	1.0
4873.840	49.0	h	74.0	-25.0	Pk	36.0	1.7
4873.840	38.0	h	54.0	-16.0	Avg	36.0	1.7
7310.460	53.4	h	74.0	-20.6	Pk	0.0	1.0
7310.460	40.8	h	54.0	-13.2	Avg	0.0	1.0
2371.475	45.5	h	54.0	-8.5	Pk	0	1.9
2371.475	35.2	v	54.0	-18.8	Pk	0	1.0
2368.695	35.0	h	54.0	-19.0	Pk	0	1.0
2368.695	34.3	v	54.0	-19.7	Pk	0	1.0
2062.975	47.5	h	90.2	-42.7	Pk	36	1.0
2063.035	49.5	v	90.2	-40.7	Pk	10	1.3

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental. No emission detected after the 3rd harmonic that were 20-dB of the limit.

Note 2: Peak Reading, Average Limit.


EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:		Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A


Run #1c: Radiated Spurious Emissions, 30 - 26000 MHz. High Channel @ 2462 MHz

	H	V
Fundamental emission level @ 3m in 100kHz RBW:		121
Limit for emissions outside of restricted bands:	101 dB μ V/m	

High Channel (2462MHz)

Band Edge Delta (Peak)

Band-edge delta (Average)

Band-Edge Marker Deltas

Peak: 47.8 dB
Average: 58.6 dB

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	N/A

Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
2462.000	118.0	v	-	-	Pk	-	-
2462.000	109.5	v	-	-	Avg	-	-
2462.000	110.3	h	-	-	Pk	-	-
2462.000	121.0	h	-	-	Avg	-	-
2483.500	73.2	h	74.0	-0.8	Pk	-	-
2483.500	51.7	h	54.0	-2.3	Avg	-	-
2483.500	70.2	v	74.0	-3.8	Pk	-	-
2483.500	50.9	v	54.0	-3.1	Avg	-	-
2681.330	43.3	h	54.0	-10.8	PK	0	1.0
2681.330	40.8	v	54.0	-13.2	PK	0	1.0
2087.610	49.7	v	80.2	-30.5	PK	310	1.3
2678.555	35.1	h	54.0	-18.9	PK	0	1.0
2678.555	33.4	v	54.0	-20.6	PK	0	1.0
2087.985	51.0	h	80.2	-29.2	PK	268	1.0
4922.600	54.1	v	74.0	-19.9	Pk	24	1.3
4922.600	45.4	v	54.0	-8.6	Avg	24	1.3
7387.210	53.5	h	74.0	-20.5	Pk	0	1.0
7387.210	40.5	h	54.0	-13.5	Avg	0	1.0
4923.535	50.2	h	74.0	-23.8	Pk	54	1.8
4923.535	38.2	h	54.0	-15.8	Avg	54	1.8
7386.115	49.5	v	74.0	-24.5	Pk	0	1.0
7386.115	37.5	v	54.0	-16.5	Avg	0	1.0

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental. No emission detected after the 3rd harmonic that were 20-dB of the limit.

Note 2: Peak Reading, Average Limit.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	B

Radiated Emissions - Receive Mode, Maxrad Antenna

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/15/2004

Config. Used: #1

Test Engineer: Jmartinez

Config Change: EUT in receive mode on specified channel

Test Location: SVOATS #2

EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connections running on top of the groundplane routed overhead.

On the OATS, the measurement antenna was located 3m from the EUT for the frequency range 1 - 18 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the RSS210 specifies the limit as an average measurement. In addition, RSS210 states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 11 °C
Rel. Humidity: 89 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 1000 - 18,000 MHz, Maximized Emissions	RSS 210 Receiver	Pass	-5.7dB @ 2063.0MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	B

Run #1: Maximized readings, 1000 - 18000 MHz

Measurements made at 3m per RSS 210 requirements.

RSS 210 LO: 374 MHz

Frequency	Level	Pol	RSS 210		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/OP/Avg	degrees	meters	
2063.030	54.3	V	60.0	-5.7	Pk	155	1.2	Note 1
2063.090	49.5	H	60.0	-10.5	Pk	10	1.3	Note 1
2437.790	50.5	V	60.0	-9.5	Pk	210	1.2	Note 1
2437.805	38.2	H	60.0	-21.8	Pk	100	1.2	Note 1
2368.965	35.2	V	60.0	-24.8	Pk	0	1.0	Note 1
2369.960	37.1	H	60.0	-22.9	Pk	15	1.0	Note 1

No emissions below 1GHz could be attributed to the receiver, all were from the digital device.

Set received to the middle of the operating band

Note 1: Peak Reading, Average Limit.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	B

Radiated Emissions - Receive Mode, Centurion Antenna

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/8/2004

Config. Used: #1

Test Engineer: Chris Byleckie

Config Change: EUT in receive mode on specified channel

Test Location: SVOATS #4

EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connections running on top of the groundplane routed overhead.

On the OATS, the measurement antenna was located 3m from the EUT for the frequency range 1 - 30 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the RSS210 specifies the limit as an average measurement. In addition, RSS210 states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 15 °C
Rel. Humidity: 81 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 1000 - 6000 MHz, Maximized Emissions	RSS 210 Receiver	Pass	-3.8dB @ 2063.0MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Airflow Networks	Job Number:	J54005
Model:	802.11b Access Point	T-Log Number:	T54007
Contact:	Paul Richards	Account Manager:	S.Pelzl, M. Briggs
Spec:	FCC, RSS210, VCCI	Class:	B

Run #1: Maximized readings, 1000 - 2000 MHz

Measurements made at 3m per RSS 210 requirements.

RSS 210 LO: 374 MHz

Frequency	Level	Pol	RSS 210		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/OP/Avg	degrees	meters	
2063.030	50.2	V	54.0	-3.8	AVG	343	1.1	
2063.090	39.7	H	54.0	-14.3	AVG	57	1.6	
2063.030	52.1	V	74.0	-21.9	PK	343	1.1	
2437.790	31.7	V	54.0	-22.3	AVG	53	1.2	
2437.805	28.2	H	54.0	-25.8	AVG	358	1.0	
2063.090	44.7	H	74.0	-29.3	PK	57	1.6	
2437.790	43.4	V	74.0	-30.6	PK	53	1.2	
2437.805	39.2	H	74.0	-34.8	PK	358	1.0	

No emissions below 1GHz could be attributed to the receiver, all were from the digital device.

All other LO signals were measured in transmit mode.

Signals noted above did not change with channel frequency.

EXHIBIT 3: Test Configuration Photographs

2 Pages

EXHIBIT 4: Proposed FCC ID Label & Label Location

Not included – Compliance label and location remain
unaffected by the proposed changes

***EXHIBIT 5: Detailed Photographs of
Airflow Networks Model AirHub 101 Construction***

Not included – internal and external photographs are
unaffected by the proposed changes

***EXHIBIT 6: Operator's Manual for
Airflow Networks Model AirHub 101***

228 Pages

***EXHIBIT 7: Block Diagram of
Airflow Networks Model AirHub 101***

Not included – System Block Diagram is
unaffected by the proposed changes

***EXHIBIT 8: Schematic Diagrams for
Airflow Networks Model AirHub 101***

Not included – schematics are
unaffected by the proposed changes

***EXHIBIT 9: Theory of Operation for
Airflow Networks Model AirHub 101***

Not included – operational description is
unaffected by the proposed changes

EXHIBIT 10: Advertising Literature

Not included – advertising literature is
unaffected by the proposed changes

EXHIBIT 11: RF Exposure Information

1 Page