

FCC RADIO TEST REPORT

Applicant	:	Elo Touch Solutions, Inc.		
Address	:	670 N. McCarthy Blvd., Suite 100, Milpitas, CA 95035, USA		
Equipment	:	Touch All-in-One Computer		
Model No.	:	ESY22I1D		
Trade Name	:	Elo or Ēļo		
FCC ID	:	RBWESY22I1DNFC		

I HEREBY CERTIFY THAT :

The sample was received on Mar. 01, 2024 and the testing was completed on Jun. 20, 2024 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Approved by:

all have

Mark Liao / Supervisor

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

CERPASS TECHNOLOGY CORP.

Contents

1.	Sumr	nary of Test Procedure and Test Results	4
	1.1	Applicable Standards	4
2.	Test (Configuration of Equipment under Test	5
	2.1	Feature of Equipment under Test	5
	2.2	Test Mode and Test Software	7
	2.3	Description of Test System	7
	2.4	General Information of Test	8
	2.5	Measurement Uncertainty	9
3.	Test E	Equipment and Ancillaries Used for Tests	.10
4.	Test o	of AC Power Line Conducted Emission	.12
	4.1	Test Limit	.12
	4.2	Test Procedures	.12
	4.3	Typical Test Setup	.13
	4.4	Test Result and Data	.14
	4.5	Test Photographs	.18
5.	Test o	of Spurious Emission (Radiated)	.19
	5.1	Test Limit	.19
	5.2	Test Procedures	.20
	5.3	Typical Test Setup	.20
	5.4	Test Result and Data (9kHz ~ 30MHz)	.22
	5.5	Test Result and Data (30MHz ~ 1GHz)	.22
	5.6	Restricted Bands of Operation	.30
	5.7	Test Photographs (30MHz ~ 1GHz)	.31

: RBWESY22I1DNFC

History of this test report

Issued Date	Description
Jun. 24, 2024	Original

1. Summary of Test Procedure and Test Results

1.1 Applicable Standards

ANSI C63.10:2013

. Description of Test	Result
. CO-LOCATION	PASS

*The lab has reduced the uncertainty risk factor from test equipment, environment and staff technicians which according to the standard on contract. Therefore, the test result will only be determined by standard requirement, measurement uncertainty evaluation is not considered.

2. Test Configuration of Equipment under Test

2.1 Feature of Equipment under Test

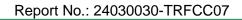
	NFC: 13.553MHz~13.567MHz
	BT / BLE: 2400-2483.5MHz
Operation Frequency Range	802.11b/g/n: 2400-2483.5MHz
	802.11a/n/ac: 5150-5250MHz, 5250-5350MHz,
	5470-5725MHz, 5725-5850MHz
	NFC: 13.56MHz
	BT / BLE: 2402MHz-2480MHz
Center Frequency Range	802.11b/g/n: 2412MHz-2462MHz
	802.11a/n/ac: 5180-5240MHz, 5260-5320MHz,
	5500-5700MHz, 5745-5825MHz
	NFC: ASK
	BT: GFSK, π /4-DQPSK, 8DPSK
	BLE: GFSK
Modulation Type	WLAN:
	802.11b: CCK, DQPSK, DBPSK 802.11g/n: BPSK, QPSK, 16QAM, 64QAM
	802.11a: BPSK, QPSK, 16QAM, 64QAM
	802.11ac: BPSK, QPSK, 16QAM, 64QAM, 256QAM
Modulation Technology	DSSS, OFDM, FHSS, DTS
	BT:
	GFSK: 1Mbps, π /4-DQPSK: 2Mbps, 8DPSK: 3Mbps
	BLE:
	GFSK: 1Mbps
	WLAN:
	2.4GHz:
Data Rate	802.11b: 1, 2, 5.5, 11Mbps
Data Hato	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	802.11n: MCS0 – MCS15, HT20/40
	5GHz:
	802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	802.11n: MCS0 – MCS15, HT20/40
	802.11ac: MCS0 – MCS9, VHT20/40/80
	NFC: Loop Antenna
Antenna Type	BT/BLE/2.4G/5G: Dipole Antenna
	For NFC: 0dBi
	For BT / BLE:
	2400-2480MHz: ANT A: 4.45dBi
	For WLAN:
Antenna Gain	2400-2500MHz: ANT A: 4.45dBi, ANT B: 2.5dBi
	5150-5250MHz: ANT A: 3.79dBi, ANT B: 4.80dBi
	5250-5350MHz: ANT A: 3.62dBi, ANT B: 4.98dBi
	5471-5725MHz: ANT A: 2.12dBi, ANT B: 5.87dBi
	5725-5850MHz: ANT A: 1.87dBi, ANT B: 5.97dBi
	Brand: DELTA Model: ADP-65JH HB
	Brand: BILLION
Adapter	Model: BA090-190474MBX
	Brand: BILLION
	Model: BA070-190342MBX
	Brand: LG
Panel	Model: LM215WF3

CERPASS TECHNOLOGY CORP.

Brand: AUO Model: M215HAN01.2
22in-I-Series-4
SWEP_sdm660la50_v12.047.03.p_01
-

Note:

1. EUT support TPC Function.


2. EUT support Client Mode without radar detection.

3. EUT WLAN 2.4GHz 802.11b and 802.11g 1TX diversity

4. WLAN and BT can simultaneously transmission.

5. For more details, please refer to the User's manual of the EUT.

6. Panel (Brand: LG, Model: LM215WF3) is worst case, hence used at test report.

2.2 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.
- b. The complete test system included Notebook and EUT for RF test.
- c. An executive program, "QRCT ver.4.0.00189.0" under Windows OS system was executed to transmit and receive data via Bluetooth.
- d. An executive program, "QRCT ver.4.0.00189.0" under Windows OS system was executed to transmit and receive data via WLAN.
- e. The following test modes were performed for the test:

Conducted	Conducted Emissions from the AC mains power ports				
Test Mode	Operating Description				
1	BT GFSK CH78 + 2.4G 11n20 CH06 With Adapter				
2	BT GFSK CH78 + 5G 11ac20 CH157 With Adapter				
caused "Te	caused "Test Mode 1,2" generated the worst case, they were reported as the final data.				
Radiation Emissions					
Test Mode	e Operating Description				
1	BT GFSK CH78 + 2.4G 11n20 CH06 With Adapter				
2 BT GFSK CH78 + 5G 11ac20 CH157 With Adapter					
caused "Test Mode 1,2" generated the worst case, they were reported as the final data.					
Note:	$\Delta t = 1$				

1. There are two kinds of test voltage: AC 120V / 60Hz and AC 240V / 60Hz. For AC Power Line Conducted Emission, AC 240V / 60Hz is worst case. For Radiated Spurious Emission, AC 120V / 60Hz is worst case.

2. There are three types of Adapters with the shipment, After engineering evaluation, Model: ADP-65JH HB are worst case, hence, are used at test report.

2.3 Description of Test System

Radiated Emissions							
Equipment	Brand	Model	Length/Type	Power cord/Length/Type			
Notebook	DELL	Latitude E5470	N/A	Adapter / 1.8m / NS			
USB Cable (A to A)	BENEVO	E210567AWM	1m / NS	N/A			
	AC Power Line Conducted Emission						
Equipment	Brand	Model	Length/Type	Power cord/Length/Type			
Notebook	DELL	Latitude E5470	N/A	Adapter / 1.8m / NS			
USB Cable (A to A)	BENEVO	E210567AWM	1m / NS	N/A			

2.4 General Information of Test

	1			
	Cerpass Technology Corporation Test Laboratory			
	Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City 33848,			
	Taiwan (R.O.C.)			
⊠ Test Site	Tel: +886-3-3226-888			
	Fax: +886-3-3226-881			
	FCC	TW1439, TW1079		
	IC	4934E-1, 4934E-2		
Frequency Range	Conducted: from 150kHz to 30 MHz			
Investigated	Radiation: from 30 MHz to 40,000MHz			
Test Distance	The test distance of radiated emission from antenna to EUT is 3 M.			

Test Item	Test Site	Test period	Environmental Conditions	Tested By
RF Conducted	RFCON01-NK	2024/06/20	25.1℃ /46%	Leon Huang
Radiated Emissions	3M02-NK	2024/05/09	23.1°C / 42%	Leon Huang
Radiated Emissions	3M02-NK	2024/05/15	22.1℃ /36%	Leon Huang
AC Power Line	CON02-NK	2024/03/21	21.7°C / 47%	
Conducted Emission	CONUZ-INK	2024/03/21	21.7 C/47%	Leon Huang

2.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Uncertainty
±3.12dB
±3.5dB
±5.1dB
±5.2dB
±2.1dB
±5.4%
±4.4%
±4.5%
±1.1dB
±7.6%
±2.0dB
±3.5%

For 5G

Measurement Item	Uncertainty
AC Power Line Conduction(150K~30MHz)	±3.12dB
Radiated Spurious Emission(9KHz~30MHz)	±3.5dB
Radiated Spurious Emission(30MHz~1GHz)	±5.1dB
Radiated Spurious Emission(1GHz~40GHz)	±5.2dB
6dB Bandwidth	±5.4%
26dB Bandwidth	±4.4%
Occupied Bandwidth	±4.5%
Peak Output Power(Conducted Power Meter)	±1.1dB
Power Spectral Density	±2.0dB
Duty Cycle	±3.5%
Frequency Stability	±0.23KHz

3. Test Equipment and Ancillaries Used for Tests

Test Item	Radiated Emissions								
Test Site	Semi Anechoic Room(3M02-NK)								
Instrument	Manufacturer	Model No	Serial No	Calibration Date	Valid Date				
Bilog Antenna	Schwarzbeck	VULB9168	369	2024/02/19	2025/02/18				
Active Loop Antenna	Schwarzbeck	FMZB 1513	414	2024/01/16	2025/01/15				
Horn Antenna	EMCO	3115	31601	2023/10/18	2024/10/17				
Horn Antenna	EMCO	3116	31974	2023/10/16	2024/10/15				
EMI Receiver	ROHDE & SCHWARZ	ESCI	101423	2023/07/05	2024/07/04				
Spectrum Analyzer	ROHDE & SCHWARZ	FSV 40-N	102151	2023/08/15	2024/08/14				
Preamplifier	Agilent	8449B	3008A01954	2024/03/01	2025/02/28				
Preamplifier	EMC INSTRUMENTS	EMC184045	980065	2023/10/13	2024/10/12				
Preamplifier	EM Electronics corp.	EM330	60659	2024/02/17	2025/02/16				
Cable-4m(9k-3G)	EMEC	RG-223	18274M	2023/07/31	2024/07/30				
Cable-3in1(30M-1G)	HARBOUR INDUSTRIES	LL142	CCE1315	2024/02/23	2025/02/22				
Cable-0.5m(1G-40G)	HUBER SUHNER	SUCOFLEX 104	805443/4	2024/03/05	2025/03/04				
Cable-3m(1G-40G)	HUBER SUHNER	SUCOFLEX 104	805796/4	2024/03/05	2025/03/04				
Cable-8m(1G-26.5G)	WOKEN	WCBA-WCA203SM	CCE1374	2024/03/05	2025/03/04				
Cable-1m(1G-40G)	HUBER SUHNER	HUBER SUHNER / SF102	552450	2023/06/08	2024/06/07				
Cable-3m(1G-40G)	HUBER SUHNER	HUBER SUHNER / SF102	552451	2023/06/08	2024/06/07				
E3	AUDIX	v8.2014-8-6	RK-000529	NA	NA				
High Pass Filter	Warison	WFIL-H3000-18000F-0 3	1	2023/07/03	2024/07/02				
Highpass Filter	WOKEN	WFIL-H7000-18000F-0 1	WR468FWC2B 1	2023/08/18	2024/08/17				

Test Item	RF Conducted				
Test Site	RFCON01-NK				
Instrument	Manufacturer	Model No	Serial No	Calibration Date	Valid Date
Spectrum Analyzer	ROHDE & SCHWARZ	FSP 40	100047	2024/03/01	2025/02/28
Attenuator	KEYSIGHT	8491B	MY39250703	2024/02/20	2025/02/19
Cable-0.5m (30M-40G)	HUBER SUHNER	SUCOFLEX 102	28420/2	2023/10/12	2024/10/11
Power Meter	Anritsu	ML2495A	1224005	2024/02/17	2025/02/16
Power Sensor	Anritsu	MA2411B	1207295	2024/02/17	2025/02/16
Switch Box	Theda	1-4	TW5451159	NA	NA

Test Item	AC Power Line Conducted Emission								
Test Site	CON02-NK								
Instrument	Manufacturer	Model No	Serial No	Calibration Date	Valid Date				
EMI Receiver	ROHDE & SCHWARZ	ESR 7	101906	2023/05/08	2024/05/07				
TWO-LINE V-NETWORK	ROHDE & SCHWARZ	ENV216	102185	2023/08/29	2024/08/28				
Cable-4m(9k-3G)	EMEC	RG-223	18274M	2023/07/31	2024/07/30				
E3	AUDIX	v8.2014-8-6	RK-000536	NA	NA				

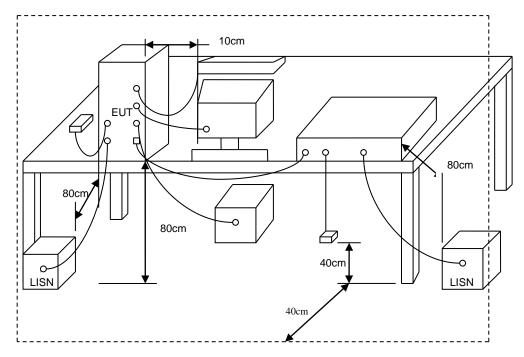
CERPASS TECHNOLOGY CORP.

4. Test of AC Power Line Conducted Emission

4.1 Test Limit

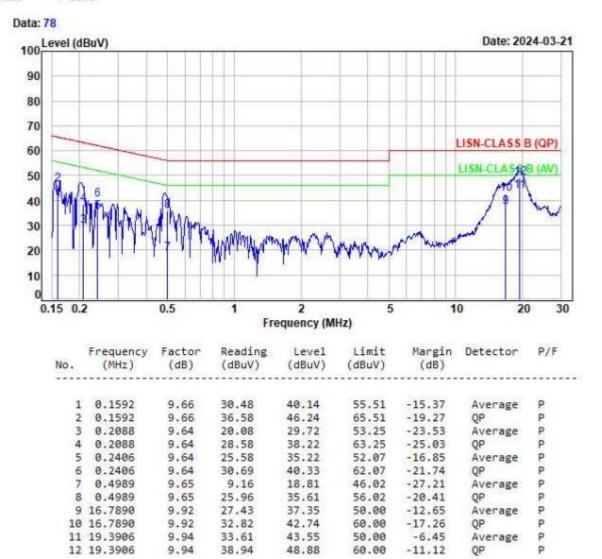
Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz, according to the methods defined in ANSI C63.10-2013. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

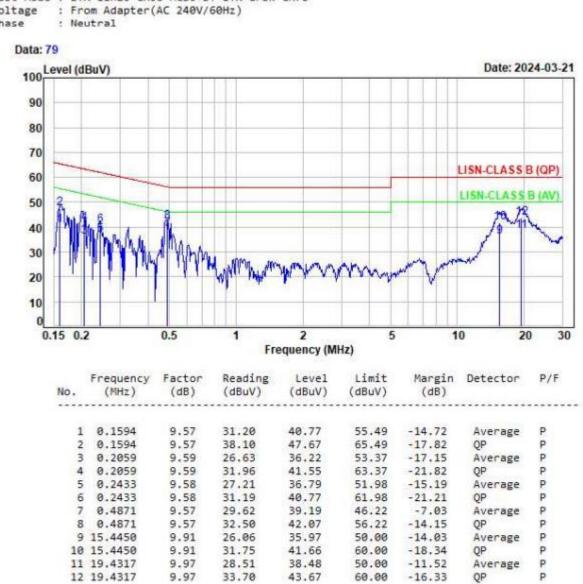
Frequency (MHz)	Quasi Peak (dB µ V)	Average (dB μ V)
0.15 – 0.5	66-56*	56-46*
0.5 – 5.0	56	46
5.0 - 30.0	60	50


*Decreases with the logarithm of the frequency.

4.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.


4.3 Typical Test Setup

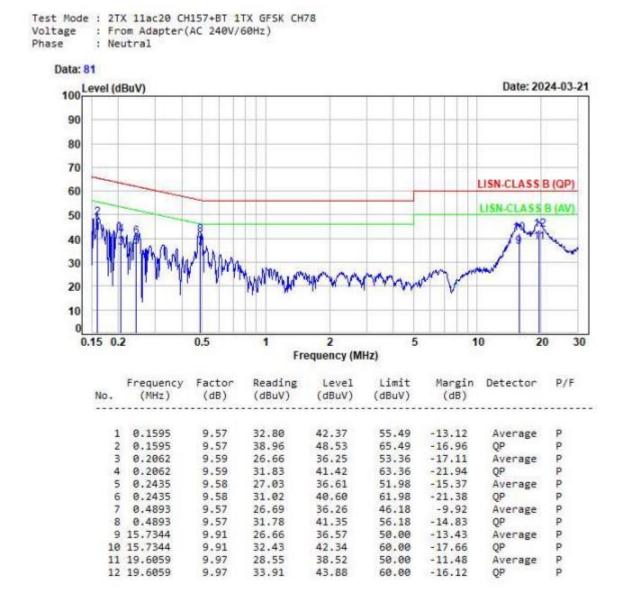

4.4 Test Result and Data

Test Mode : 2TX 11n20 CH06 MCS0+BT 1TX GF5K CH78 Voltage : From Adapter(AC 240V/60Hz) Phase : Line

Note: Level=Reading+Factor Margin=Level-Limit Factor=(LISN or ISN or Current Probe)Factor + Cable Loss

Test Mode : 2TX 11n20 CH06 MCS0+BT 1TX GF5K CH78 Voltage : From Adapter(AC 240V/60Hz) Phase

Note: Level=Reading+Factor Margin=Level-Limit Factor=(LISN or ISN or Current Probe)Factor + Cable Loss


Test Mode : 2TX 11ac20 CH157+BT 1TX GFSK CH78 Voltage : From Adapter(AC 240V/60Hz) : Line Phase Data: 80 100 Level (dBuV) Date: 2024-03-21 90 80 70 LISN-CLASS B (QP) 60 FIAN 50 40 30 20 10 0 0.15 0.2 0.5 2 5 10 20 30 1 Frequency (MHz) Reading Frequency Factor Level Limit Margin Detector P/F (dBuV) (dBuV) No. (MHz) (dB) (dBuV) (dB)

1	0.1604	9.66	32.00	41.66	55.45	-13.79	Average	P
2	0.1604	9.66	38.32	47.98	65.45	-17.47	QP	P
3	0.2046	9.64	29.30	38.94	53.42	-14.48	Average	P
4	0.2046	9.64	34.80	44.44	63.42	-18.98	QP	P
5	0.2468	9.64	22.73	32.37	51.86	-19.49	Average	P
6	0.2468	9.64	27,60	37.24	61.86	-24.62	QP	Ρ
7	0.4964	9.65	12.18	21.83	46.06	-24.23	Average	P
8	0.4964	9.65	26.89	36.54	56.06	-19.52	QP	P
9	16.4896	9.92	27.48	37.40	50.00	-12.60	Average	P
10	16.4896	9.92	32.89	42.81	60.00	-17.19	QP	P
11	19.6717	9.94	33.11	43.05	50.00	-6,95	Average	P
12	19.6717	9.94	38.35	48.29	60.00	-11.71	QP	P

Note: Level=Reading+Factor Margin=Level-Limit

Factor=(LISN or ISN or Current Probe)Factor + Cable Loss

Note: Level=Reading+Factor Margin=Level-Limit

Factor=(LISN or ISN or Current Probe)Factor + Cable Loss

5. Test of Spurious Emission (Radiated)

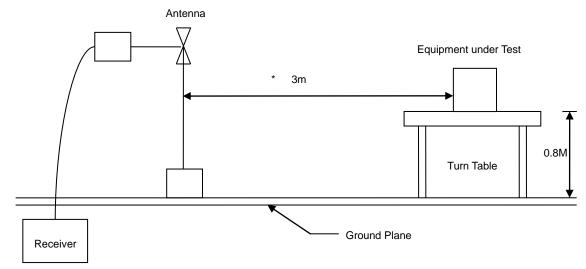
5.1 Test Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

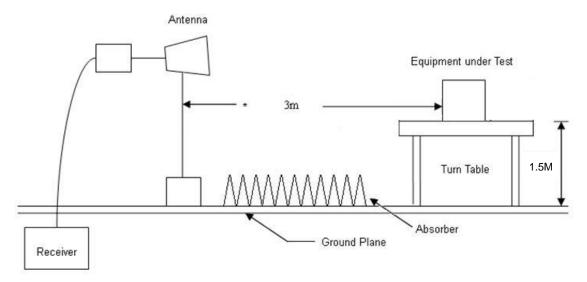
Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

5.2 Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- i. "Cone of radiation" has been considered to be 3dB bandwidth of the measurement antenna.

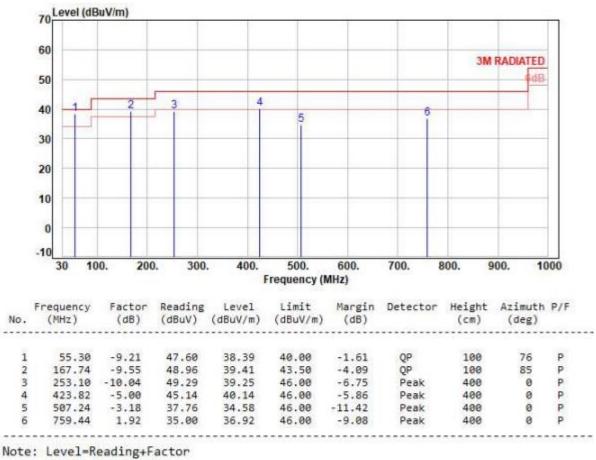

Note: The supporting fixture shall permit orientation of the EUT in each of three orthogonal axis positions such that emissions from the EUT are maximized.

5.3 Typical Test Setup


Below 30MHz test setup

Above 1GHz Test Setup

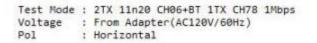
Cerpass Technology Corp.	Issued Date	:	Jun. 24, 2024
T-FD-503-0 Ver 1.6	Page No.	:	21 of 35
	FCC ID.	:	RBWESY22I1DNFC

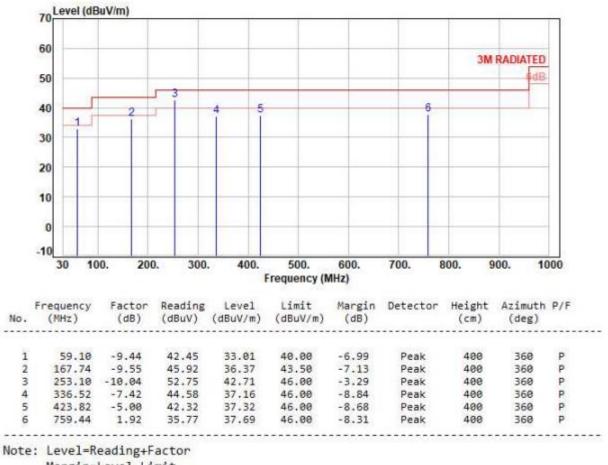


5.4 Test Result and Data (9kHz ~ 30MHz)

The 9kHz - 30MHz spurious emission is under limit 20dB more.

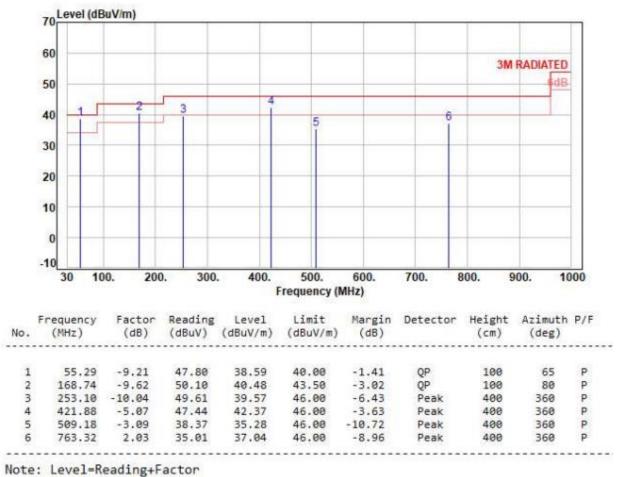
5.5 Test Result and Data (30MHz ~ 1GHz)


```
Test Mode : 2TX 11n20 CH06+BT 1TX CH78 1Mbps
Voltage : From Adapter(AC120V/60Hz)
Pol : Vertical
```



Margin=Level-Limit

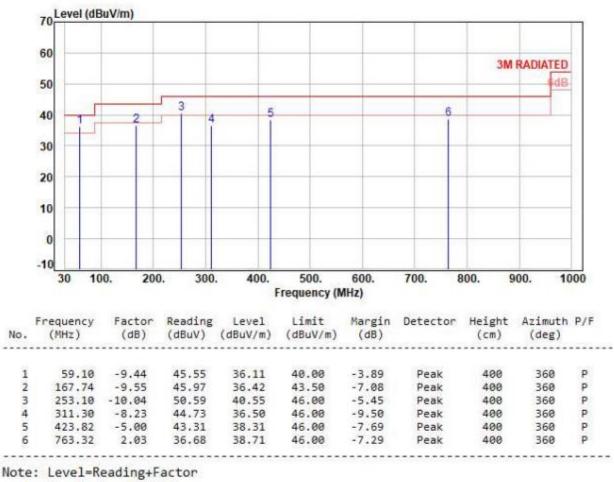
Factor=Antenna Factor + cable loss - Amplifier Factor



Margin=Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

Test Mode : 2TX 11ac20 CH157+BT 1TX CH78 1Mbps Voltage : From Adapter(AC120V/60Hz) Pol : Vertical


Margin=Level-Limit

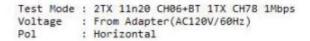
Factor=Antenna Factor + cable loss - Amplifier Factor

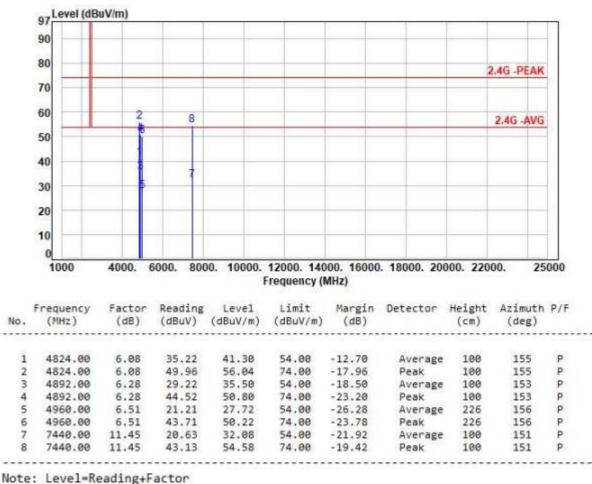
Cerpass Technology Corp.
T-FD-503-0 Ver 1.6

Test Mode : 2TX 11ac20 CH157+BT 1TX CH78 1Mbps Voltage : From Adapter(AC120V/60Hz) Pol : Horizontal

Margin=Level-Limit

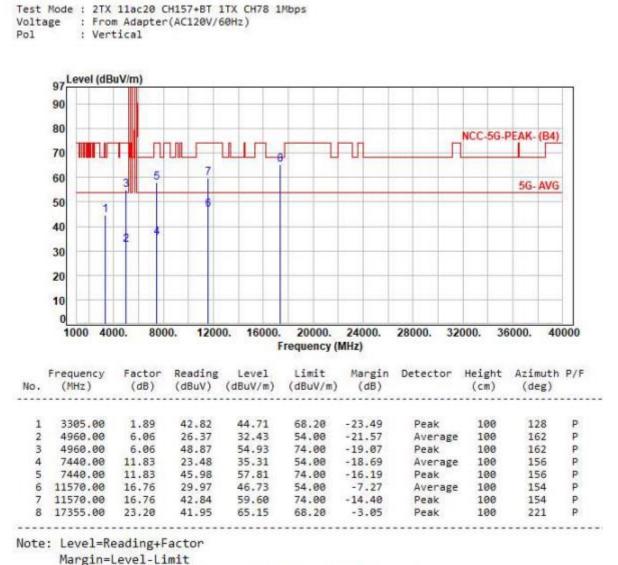
Factor=Antenna Factor + cable loss - Amplifier Factor




5.6 Test Result and Data (1GHz ~ 25GHz)

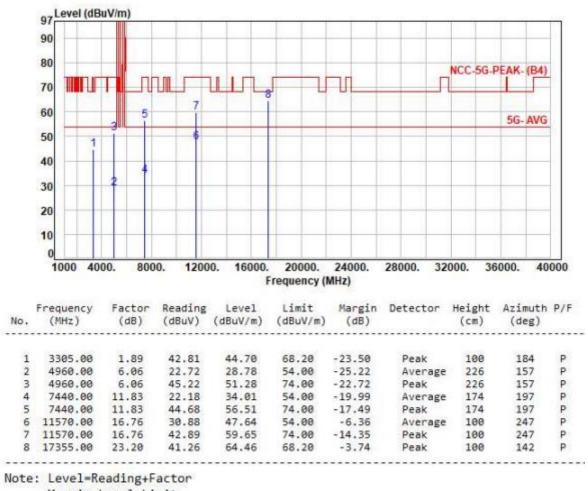
Test Mode : 2TX 11n20 CH06+BT 1TX CH78 1Mbps

2	8						2.4G -PEAK	
2	8							
2	8							
2	8							
								-
							2.4G -AVG	
	1 1 1 1							
		_	-					
4000.	6000. 80				. 18000. 200	00. 220	00. 25	6000
ncv Factor	Reading	Level	Limit	Margin	Detector	Height	Azimuth	P/1
						(cm)		
.00 6.08	37.29	43.37	54.00	-10.63	Average	329	112	p
		57.51			Peak	329	112	P
							152	P
		49.10	74.00	-24.90				P
		27.79	54.00	-26.21				P
.00 6.51		50.29 31.96	74.00 54.00			100	161	P
.00 11.45	20.51					100	131	P
	ncy Factor (dB) .00 6.08 .00 6.08 .00 6.28 .00 6.28 .00 6.28	ncy Factor Reading (dB) (dBuV) .00 6.08 37.29 .00 6.08 51.43 .00 6.28 30.16 .00 6.28 42.82 .00 6.51 21.28	ncy Factor Reading Level (dB) (dBuV) (dBuV/m) .00 6.08 37.29 43.37 .00 6.08 51.43 57.51 .00 6.28 30.16 36.44 .00 6.28 42.82 49.10 .00 6.51 21.28 27.79	Frequency (hcy Factor Reading Level Limit (dB) (dBuV) (dBuV/m) (dBuV/m) .00 6.08 37.29 43.37 54.00 .00 6.08 51.43 57.51 74.00 .00 6.28 30.16 36.44 54.00 .00 6.28 42.82 49.10 74.00 .00 6.51 21.28 27.79 54.00	Frequency (MHz) hcy Factor Reading Level Limit Margin (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) .00 6.08 37.29 43.37 54.00 -10.63 .00 6.08 51.43 57.51 74.00 -16.49 .00 6.28 30.16 36.44 54.00 -17.56 .00 6.28 42.82 49.10 74.00 -24.90 .00 6.51 21.28 27.79 54.00 -26.21	Frequency (MHz) ncy Factor Reading Level Limit Margin Detector (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB) 00 6.08 37.29 43.37 54.00 -10.63 Average 00 6.08 51.43 57.51 74.00 -16.49 Peak 00 6.28 30.16 36.44 54.00 -17.56 Average 00 6.28 42.82 49.10 74.00 -24.90 Peak 00 6.51 21.28 27.79 54.00 -26.21 Average	Frequency (MHz) ncy Factor Reading Level Limit Margin Detector Height (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB) (cm) .00 6.08 37.29 43.37 54.00 -10.63 Average 329 .00 6.08 51.43 57.51 74.00 -16.49 Peak 329 .00 6.28 30.16 36.44 54.00 -17.56 Average 100 .00 6.28 42.82 49.10 74.00 -24.90 Peak 100 .00 6.51 21.28 27.79 54.00 -26.21 Average 100	Frequency (MHz) ncy Factor Reading Level Limit Margin Detector Height Azimuth (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) (dB) (cm) (deg) .00 6.08 37.29 43.37 54.00 -10.63 Average 329 112 .00 6.08 51.43 57.51 74.00 -16.49 Peak 329 112 .00 6.28 30.16 36.44 54.00 -17.56 Average 100 152 .00 6.28 42.82 49.10 74.00 -24.90 Peak 100 152 .00 6.51 21.28 27.79 54.00 -26.21 Average 100 161



Margin=Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor

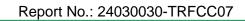


Factor=Antenna Factor + cable loss - Amplifier Factor

Test Mode : 2TX 11ac20 CH157+BT 1TX CH78 1Mbps Voltage : From Adapter(AC120V/60Hz) Pol : Horizontal

Margin=Level-Limit

Factor=Antenna Factor + cable loss - Amplifier Factor



5.7 Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.09000 - 0.11000	16.42000 – 16.42300	399.9 – 410.0	4.500 - 5.250
0.49500 - 0.505**	16.69475 – 16.69525	608.0 - 614.0	5.350 - 5.460
2.17350 - 2.19050	16.80425 – 16.80475	960.0 - 1240.0	7.250 – 7.750
4.12500 - 4.12800	25.50000 - 25.67000	1300.0 – 1427.0	8.025 - 8.500
4.17725 – 4.17775	37.50000 - 38.25000	1435.0 – 1626.5	9.000 - 9.200
4.20725 – 4.20775	73.00000 - 74.60000	1645.5 – 1646.5	9.300 - 9.500
6.21500 - 6.21800	74.80000 – 75.20000	1660.0 – 1710.0	10.600 - 12.700
6.26775 - 6.26825	108.00000 - 121.94000	1718.8 – 1722.2	13.250 – 13.400
6.31175 – 6.31225	123.00000 - 138.00000	2200.0 - 2300.0	14.470 – 14.500
8.29100 - 8.29400	149.90000 - 150.05000	2310.0 – 2390.0	15.350 – 16.200
8.36200 - 8.36600	156.52475 – 156.52525	2483.5 – 2500.0	17.700 – 21.400
8.37625 - 8.38675	156.70000 - 156.90000	2655.0 - 2900.0	22.010 - 23.120
8.41425 – 8.41475	162.01250 - 167.17000	3260.0 - 3267.0	23.600 - 24.000
12.29000 - 12.29300	167.72000 - 173.20000	3332.0 - 3339.0	31.200 - 31.800
12.51975 – 12.52025	240.00000 - 285.00000	3345.8 – 3358.0	36.430 - 36.500
12.57675 – 12.57725	322.00000 - 335.40000	3600.0 - 4400.0	Above 38.6
13.36000 - 13.41000			

Only spurious emissions are permitted in any of the frequency bands listed below:

**: Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

6. Test of Conducted Spurious Emission

6.1 Test Limit

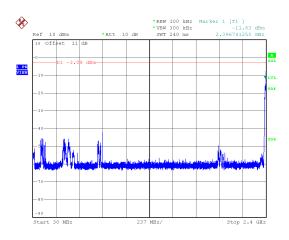
According to the methods defined in ANSI C63.10-2013 Section 11.11.1 Below –20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

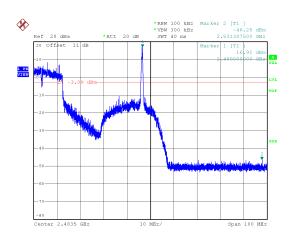
6.2 Test Procedure

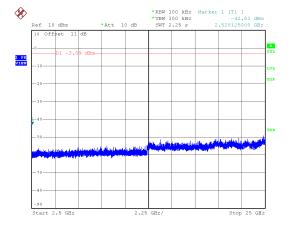
According to the methods defined in ANSI C63.10-2013 Section 11.11.2 & 11.11.3

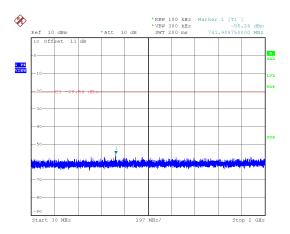
- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.
- d. The band edges was measured and recorded.

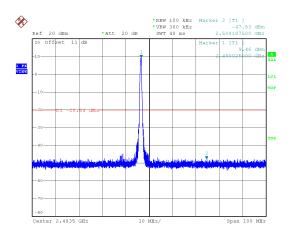
6.3 Test Setup Layout

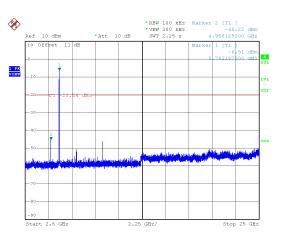



6.4 Test Result and Data


Note: Test plots refers to the following pages.


Modulation Type: BT GFSK CH78 + 2.4G 11n20 CH06





Modulation Type: BT GFSK CH78 + 5G 11ac20 CH157

-----THE END OF REPORT------

Cerpass Technology Corp. T-FD-503-0 Ver 1.6