

SAR TEST REOIRT FOR Bluebird Soft Inc. Windows Business PAD Model No.: BP80 FCC ID: RBF-BP80

Prepared for : Bluebird Soft Inc. SEI Tower 13~14, 467-14, Dogok-dong, Gangnam-gu, Seoul, South Korea.

Prepared By : AUDIX Technology Corporation EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan, R.O.C.

> Tel: (02) 2609-9301, 2609-2133 Fax: (02) 2609-9303

File Number	:	C1M1303024
Report Number	:	EM-F1020208
Date of Test	:	Mar. 05 ~ 14, 2013
Date of Report	:	Mar. 15, 2013

TABLE OF CONTENTS

Description	Page
Test Report Verification	
1.GENERAL INFORMATION	4
1.1.Description of Device (EUT)	4
1.2.Antenna Information	6
1.3.Test Environment	8
1.4.Description of Test Facility	8
1.5.Measurement Uncertainty	9
2.TEST EQUIPMENT	
3.SAR MEASUREMENT SYSTEM	
3.1.DASY5 System Description	11
3.2.DASY5 E-Field Probe	
3.3.Robot	16
3.4.Light Beam Unit	16
3.5.Device Holder	17
3.6.SAM Twin Phantom	17
4.TISSUE SIMULATING LIQUID	
4.1.Tissue Calibration Result	
4.2. Tissue Dielectric Parameters for Head and Body Phantoms	
5.SAR MEASUREMENT PROCEDURE	
5.1.SAR System Check	
5.2.SAR Measurement Procedure	
5.3.SAR Exposure Limits	
5.4.Conducted Power Measurement	
5.5.Exposure Positions Consideration	
5.6.SAR Test Result	
5.7.Simultaneous Multi-band Transmission Analysis	51
5.8.Simultaneous analysis-SPLSR calculation	
6.PHOTOGRAPHS OF MEASUREMENT	

APPENDIX I (Test Equipment Calibration Data)

TEST REPORT VERIFICATION

Applicant EUT I

Bluebird Soft Inc

TI	Description
----	-------------

FCC ID

•	Diucona Son me.		
:	Windows Business	PAD	
:	RBF-BP80		
	(A) Model No.	:	BP80
	(B) Serial No.	:	N/A
	(C) Power Supply	:	DC 19V
	(D) Test Voltage	:	AC 120V, 60Hz (Via AC Adapter)

Measurement Standards Used:

FCC 47 CFR Part 2 (§2.1093) IEEE 1528-2003 FCC OET Bulletin 65 Supplement C, June 2001

(Measurement: KDB 616217 D04v01, KDB 941225 D01v02, KDB 941225 D03v01, KDB 248227 D01, KDB 447498 D01v05)

The device described above was tested by AUDIX Technology Corporation. The measurement results were contained in this test report and AUDIX Technology Corporation was assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliance with the FCC OET Bulletin 65 Supplement C & IEEE 1528 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of AUDIX Technology Corporation.

Date of Test: Mar. 05 ~ 14, 2013

Date of Report: Mar. 15, 2013

Producer:

(Tina Huang/Administrator)

(Ben Cheng/Manager

Signatory:

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Product	Windows Business PAD
Model Number	BP80
Serial Number	N/A
Applicant	Bluebird Soft Inc. SEI Tower 13~14, 467-14, Dogok-dong, Gangnam-gu, Seoul, South Korea.
SAR Evaluation (Total SAR)	SAR 1g : WLAN: 0.639(W/kg) ; WWAN: 1.2(W/kg)
FCC ID	RBF-BP80
Fundamental Range	 802.11b/g: 2412MHz ~ 2462MHz 802.11a: 5180MHz ~ 5240MHz (UNII Band I) and 5260MHz ~ 5320MHz (UNII Band II) and 5500MHz ~ 5700MHz (UNII Band II) and 5745MHz ~ 5825MHz (UNII Band IV) 5250MHz ~ 5350MHz, 5470MHz ~ 5725MHz (DFS Function, Slave/without detection) 802.11n-HT20: 2412MHz ~ 2462MHz and 5180MHz ~ 5240MHz (UNII Band I) and 5260MHz ~ 5320MHz (UNII Band I) and 5260MHz ~ 5320MHz (UNII Band II) and 5260MHz ~ 5300MHz (UNII Band II) and 5260MHz ~ 5300MHz (UNII Band II) and 5500MHz ~ 5700MHz (UNII Band II) and 5745MHz ~ 5825MHz (UNII Band IV) 5250MHz ~ 5350MHz, 5470MHz ~ 5725MHz (DFS Function, Slave/without detection) 802.11n-HT40: 2422MHz ~ 2452MHz and 5190MHz ~ 5230MHz (UNII Band I) and 5270MHz ~ 5310MHz (UNII Band II) and 5510MHz ~ 5670MHz (UNII Band II) and 5510MHz ~ 5795MHz (UNII Band II) and 5510MHz ~ 5795MHz (UNII Band IV) 5250MHz ~ 5350MHz, 5470MHz ~ 5725MHz (DFS Function, Slave/without detection) Bluetooth: 2402MHz ~ 2480MHz (DFS Function, Slave/without detection) Bluetooth: 2402MHz ~ 2480MHz DL: 869MHz to 849MHz GPRS/EGPRS 1900: UL: 1850MHz to 1910MHz DL: 1930MHz to 1990MHz WCDMA200: BC0 850MHz: UL: 824MHz to 849MHz DL: 869MHz to 849MHz

802.11b/g: 11 channels 802.11a: UNII Band I: Achannels	
UNII Band II: 4 channels	
UNII Band III: 8 channels	
UNII Band IV: 4 channels	
802.11n-HT20: 2.4GHz: 11 channels 2.4G	
UNI Band I: 4channels	
UNII Band II: 4 channels	
UNII Band III: 8 channels	
Frequency Channel UNII Band IV: 4 channels	
802.11n-HT40: 2.4GHz: 7 channels	
UNII Band I: 2channels	
UNII Band II: 2 channels	
UNII Band III: 5 channels	
UNII Band IV: 3 channels	
Bluetooth: 79 channels (GFSK, $\pi/4DQPSK$, 8-DPSK)	
GPRS/EGPRS 850: CH 128- CH 251	
GPRS/EGPRS 1900: CH 512-CH 810	
CDMA2000: BC0 850MHz: CH 384-CH1013	
BC1 1900MHz: CH 25-CH1175	
802.11b: DSSS Modulation (DBPSK/DQPSK/CCK)	
802.11g: OFDM Modulation (BPSK/QPSK/16QAM/64QAM	1)
802.11a: OFDM Modulation (BPSK/QPSK/16QAM/64QAM	1)
802.11n: OFDM Modulation (MIMO)	
Radio Technology(BPSK/QPSK/16QAM/64QAM)	
Bluetooth: FHSS (GFSK, $\pi/4$ DQPSK, 8-DPSK)	
GPRS: GMSK	
EGPRS: 8DPSK	
CDMA2000: QPSK	
802.11b: 1/2/5.5/11Mbps	
802.11a/g: 6/9/12/18/24/36/48/54Mbps	
802.11n: up to $300Mbps$	
Data Transfer Rate GSM·DL 1/ <i>Akbps</i> /UL 1/ <i>Akbps</i>	
GPRS: DL 85 6kbps/UL 85 6kbps	
EGPRS:DL 236.8kbps/UL 236.8kpbs	
CDMA2000: 144 kbps now, 307 kbps in the future 1xEV-D0	D:
max 384 kbps - 2.4576Mbps.	
CWT, M/N KPL-040K	
AC Adapter Input: 100-240V~, 50/60Hz, 1.7A ; Output: DC19V, 2.11A	
DC Power Cord: Non-Shielded, Undetached, 1.0m	
AC Power Cord: Non-Shielded, Detached, 1.8m	
Date of Receipt of SampleMar. 01, 2013	
Date of Test Mar. 05 ~ 14, 2013	

1.2. Antenna Information

Antenna Part	Monufactura	Antenna	Peak Gain			
Number	Manufacture	Туре	Frequency	Max Gain		
			2400MHz	1.7dBi		
			2412MHz	2.3dBi		
			2442MHz	3.4dBi		
			2474MHz	2.5dBi		
WLAN			2484MHz	2.5dBi		
			2500MHz	2.4dBi		
	PIDiOn by	DCD	5100MHz	1.1dBi		
Antenna	Bluebird	PCB	5200MHz	-1.1dBi		
			5300MHz	-1.0dBi		
			5400MHz	-1.6dBi		
			5500MHz	-1.8dBi		
			5600MHz	-0.5dBi		
			5725MHz	-0.3dBi		
			5825MHz	1.0dBi		
WLAN (802.11ab/g)/BT Antenna P/N: AMAN402012S	AMOTECH	Chip	2400-2485MHz	2.9dBi		
T01						

Antenna Part	Manufactura	Antenna	Peak Gain			
Number	wanuracture	Туре	Frequency (TX)	Max Gain		
			824MHz	-3.9dBi		
			849MHz	-1.7dBi		
			869MHz	-0.1dBi		
			880MHz	0.8dBi		
			894MHz	1.5dBi		
			915MHz	0.9dBi		
			925MHz	-0.1dBi		
WWAN Antenna	PIDiOn by Bluebird	РСВ	960MHz	-2.4dBi		
			1710MHz	-0.1dBi		
			1785MHz	2.4dBi		
			1810MHz	1.3dBi		
			1850MHz	0.2dBi		
			1880MHz	1.1dBi		
			1910MHz	0.6dBi		
			1920MHz	1.1dBi		
			1930MHz	1.3dBi		
			1980MHz	1.5dBi		
			1990MHz	0.7dBi		
			2110MHz	1.7dBi		
			2170MHz	1.4dBi		

1.3. Test Environment

Ambient conditions in the laboratory:

Item	Require	Actual
Temperature ()	18-25	22 ± 2
Humidity (%RH)	30-70	48 ± 2

1.4. Description of Test Facility

Name of Firm	:	AUDIX Technology Corporation EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan, R.O.C.
Test Site	:	No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan, R.O.C.
NVLAP Lab. Code	:	200077-0
TAF Accreditation No	:	1724

1.5. Measurement Uncertainty

DASY5 Uncertainty								
Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram / 10 gram.								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(Vi) Veff
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	x
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	x
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	x
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	x
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	x
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%	x
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	x
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	x
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	x
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	x
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	x
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	x
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	x
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	x
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	x
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	x
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	x
Combined Std. Uncertainty						±11%	±10.8%	387
Expanded STD Uncertainty						±22%	±21.5%	

2. TEST EQUIPMENT

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Stäubli Robot TX90 XL	Stäubli	TX90	F12/5K9SA1/ A101	N/A	N/A
2.	Controller	SPEAG	CS8c	N/A	N/A	N/A
3.	SAM Twin Phantom	SPEAG	QD000 P40 CD	Tp 1515	N/A	N/A
4.	Device Holder	SPEAG	N/A	N/A	N/A	N/A
5.	Data Acquisition Electronic	SPEAG	DAE4	1337	Sep. 03, 12'	Sep. 02, 13'
6.	E-Field Probe	SPEAG	EX3DV4	3855	Sep. 03, 12'	Sep. 02, 13'
7.	SAR Software	SPEAG	DASY52	V52.8.2.843	N/A	N/A
8.	Network Analyzer	Agilent	E5071C	Y46214331	Sep. 03, 12'	Sep. 02, 13'
9.	Signal Generator	Aglient	N5181A	MY50143917	Sep. 03, 12'	Sep. 02, 13'
10.	Power Meter	Aglient	ML2487A	MY52180007	Sep. 03, 12'	Sep. 02, 13'
11.	Power Sensor	Aglient	N8481	MY5208006	Sep. 03, 12'	Sep. 02, 13'
12.	Dipole Antenna	SPEAG	D2450V2	888	May 02, 12'	May 01, 13'
13.	Dipole Antenna	SPEAG	D5GHzV2	1124	May 04, 12'	May 03, 13'
14.	Dipole Antenna	SPEAG	D835V2	4d136	May 03, 12'	May 02, 13'
16.	Dipole Antenna	SPEAG	D1900V2	5d156	May 09, 12'	May 08, 13'

3. SAR MEASUREMENT SYSTEM

3.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

3.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

3.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

3.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

3.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets.

The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$
$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

3.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	Ex3DV4		
Construction	ymmetrical design with triangular core Built-in shielding against atic charges PEEK enclosure material (resistant to organic solvents, g., DGBE)		
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)		
Dynamic Range	10 μ W/g to 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.		

3.2.1. Isotropic E-Field Probe Specification

3.2.2. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

3.2.3. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

3.2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

3.3. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ♦ 6-axis controller

3.4. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

3.5. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- ♦ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

4. TISSUE SIMULATING LIQUID

4.1. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using Aligent Dielectric Probe Kit and Aligent E5071C Vector Network Analyzer.

Body Tissue Simulate Measurement				
Frequency [MHz] Description		Dielectric Parameters		Tissue Temp.
		ε _r	σ [s/m]	[]
	Reference result	52.7	1.95	N/A
2450MHz	\pm 5% window	50.065 to 55.335	1.8525 to 2.0475	11/11
	Mar. 05, 2013	53.60	1.92	22.0

Body Tissue Simulate Measurement				
Frequency	Description	Dielectric I	Tissue Temp.	
[MHz] Description		ε _r	σ [s/m]	[]
	Reference result	48.2	6.00	N/A
5800MHz	\pm 5% window	45.79 to 50.61	5.70 to 6.30	11/11
	Mar. 07, 2013	48.52	6.15	21.5

Body Tissue Simulate Measurement					
Frequency	Description	Dielectric Parameters		Tissue Temp.	
[MHz]	Hz] Description ϵ_r		σ [s/m]	[]	
	Reference result	55.2	0.97	N/A	
835MHz	\pm 5% window	52.44 to 57.96	0.9215 to 1.0185	11/71	
	Mar. 13, 2013	52.79	0.951	21.8	

Body Tissue Simulate Measurement					
Frequency	equency Dielectric Parameters			Tissue Temp.	
[MHz] Description		ε _r	σ [s/m]	[]	
1900MHz	Reference result \pm 5% window	53.3 50.635 to 55.965	1.52 1.444 to 1.596	N/A	
	Mar. 14, 2013	54.90	1.48	21.8	

4.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	Head		Body	
[MHz]	ε _r	σ [s/m]	ε _r	σ [s/m]
150	52.3	0.76	61.9	0.80
300	445.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

 $(\epsilon_r = relative permittivity, \sigma = conductivity and \rho = 1000 \text{ kg/m}^3)$

5. SAR MEASUREMENT PROCEDURE

5.1. SAR System Check

5.1.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

5.1.2. System Check Result

System Performance Check at WLAN (2450MHz)						
Dipole Kit:	Dipole Kit: D2450V2 (Body)					
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. []	Lab Temp.[]	
2450MHz	Reference result ± 10% window	12.9 11.61 to 14.19	6.02 5.418 to 6.622	N/A	N/A	
Mar. 05, 2013 12.9 5.85 22.0 24.0						
Note: All SAR values are normalized to 1W forward power.						

System Per	System Performance Check at WLAN (5800MHz)					
Dipole Kit:	Dipole Kit: D5GHzV2 (Body)					
Frequency [MHz]DescriptionSAR [w/kg] 1gSAR [w/kg] 10gTissue Temp. []Lab Temp. []						
5800MHz	Reference result ± 10% window	7.41 6.669 to 8.151	2.06 1.854 to 2.266	N/A	N/A	
Mar. 07, 2013 7.58 2.13 21.5 21.0						
Note: All S	Note: All SAR values are normalized to 1W forward power.					

System Per	System Performance Check at GSM (835MHz)					
Dipole Kit:	Dipole Kit: D835V2 (Body)					
Frequency [MHz]DescriptionSAR [w/kg] 1gSAR [w/kg] 10gTissue Temp. []Lab Temp. []						
835MHz	Reference result ± 10% window	2.45 2.205 to 2.695	1.61 1.449 to 1.771	N/A	N/A	
	Mar. 13, 2013	2.26	1.6	21.8	23	
Note: All S	AR values are nor	malized to 1W f	orward power.			

System Performance Check at PCS (1900MHz)							
Dipole Kit:	D1900V2 (Body)						
Frequency [MHz]	Frequency [MHz]DescriptionSAR [w/kg] 1gSAR [w/kg] 10gTissueLab 						
1900MHz	Reference result ± 10% window	10.1 9.09 to 11.11	5.39 4.851 to 5.929	N/A	N/A		
Mar. 14, 2013 10.1 5.2 21.8 23							
Note: All SAR values are normalized to 1W forward power.							

5.1.3. SAR System Check Data

System Performance Check Mode: WLAN (2450MHz)

Date/Time: 3/5/2013 PM 01:52:46

Test Laboratory: Audix_SAR Lab

CW D2450

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:xxx

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ε_r = 50.71; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(7.36, 7.36, 7.36); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/CW 2450/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 19.2 W/kg

Configuration/CW 2450/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 82.284 V/m, Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.85 W/kg Maximum value of SAR (measured) = 14.7 W/kg

System Performance Check Mode: WLAN (5800MHz)

Date/Time: 3/7/2013 AM 09:50:35

Test Laboratory: Audiz_SAR Lab

cw 5800pwr=100mw

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: CW; Frequency: 5800 MHz Medium parameters used: f = 5800 MHz; σ = 6.07 S/m; ϵ_r = 46; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(3.94, 3.94, 3.94); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.9 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 28.921 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 16.2 W/kg

System Performance Check Mode: GSM (835MHz)

Date/Time: 3/13/2013 PM 09:58:24

Test Laboratory: Audiz_SAR Lab

CW835

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:xxx

Communication System: CW: Frequency: 835 MHz Medium parameters used (interpolated): f = 835 MHz; σ = 0.995 S/m; $\varepsilon_{\rm p}$ = 54.785; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- · Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (5x13x1): Measurement grid: dx=15mm. dy=15mm Maximum value of SAR (measured) = 2.62 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.976 V/m; Power Drift = 0.21 dB Peak SAR (extrapolated) = 3.26 W/kg

SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 2.44 W/kg

System Performance Check Mode: PCS (1900MHz)

Date/Time: 3/14/2013 PM 03:36:38

Test Laboratory: Audix_SAR Lab

CW1900

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:xxx

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.57 S/m; ϵ_r = 51.05; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(7.61, 7.61, 7.61); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1 0, 31 0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.3 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 82.756 V/m; Power Drift = -0.32 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.2 W/kg Maximum value of SAR (measured) = 11.2 W/kg

simum value of SAR (measured) = 11.2 W/kg

5.2. SAR Measurement Procedure

The Dasy5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

- σ: represents the simulated tissue conductivity
- p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5.3. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Limits for General Population/Uncontrolled Exposure (W/kg)

5.4. Conducted Power Measurement

5.4.1. WLAN Function

Test Date: Mar. 04, 2013 Temperature: 24

Humidity: 46%

Type of Network		Channel	Frequency (MHz)	Average Output Power (dBm)
		CH 1	2412	17.86
802.	11b	CH 6	2437	19.86
		CH 11	2462	19.04
		CH 1	2412	16.12
802.	11g	CH 6	2437	19.90
		CH 11	2462	15.92
		CH 36	5180	11.12
	UNII Band I	CH 40	5200	11.38
		CH 48	5240	11.36
	UNII Band II	CH 52	5260	11.38
		CH 56	5280	11.42
802 110		CH 64	5320	11.61
802.11a	UNII	CH 100	5500	11.37
	Band	CH 116	5580	11.26
	III	CH 140	5700	11.14
	UNII	CH 149	5745	11.74
	Band	CH 157	5785	11.62
	IV	CH 165	5825	11.59

Type of Network		Channal	Frequency	Average Output Power (dBm)			
		Channel	(MHz)	Chain 0	Chain 1	Total	
		CH 1	2412	12.21	12.44	15.34	
802.1 HT	1n- 20	CH 6	2437	16.03	16.21	19.13	
	_ •	CH 11	2462	11.58	11.68	14.64	
		CH 36	5180	8.82	8.32	11.59	
	UNII Band I	CH 40	5200	8.61	8.42	11.53	
	Dana I	CH 48	5240	8.54	8.56	11.56	
	UNII	CH 52	5260	8.38	8.16	11.28	
	Band	CH 56	5280	8.25	8.11	11.19	
802.11n-	II	CH 64	5320	8.36	8.24	11.31	
HT20	UNII	CH 100	5500	8.41	8.19	11.31	
	Band	CH 116	5580	8.36	8.26	11.32	
	III	CH 140	5700	8.36	8.19	11.29	
	UNII Band IV	CH 149	5745	8.75	8.56	11.67	
		CH 157	5785	8.64	8.43	11.55	
		CH 165	5825	8.81	8.54	11.69	
		CH 3	2422	9.24	9.11	12.19	
802.1 HT	1n- 40	CH 6	2437	14.02	14.29	17.17	
		CH 9	2452	11.13	11.27	14.21	
	UNII	CH 38	5190	8.54	8.26	11.41	
	Band I	CH 46	5230	8.49	8.21	11.36	
	UNII	CH 54	5270	8.61	8.44	11.54	
	Band II	CH 62	5310	8.63	8.52	11.59	
802.11n- HT40	UNII	CH 102	5510	8.58	8.37	11.49	
11170	Band	CH 118	5590	8.75	8.56	11.67	
	III	CH 134	5670	8.69	8.51	11.61	
	UNII	CH 151	5755	8.84	8.62	11.74	
	IV	CH 159	5795	8.77	8.46	11.63	

5.4.2. GSM/EGPRS Function

Channel	GSM850 Conducted RF output power (dBm)					
Mode	CH 128	CH 190	CH 251			
GPRS (1UL Slot)	24.35	24.22	24.47			
GPRS (2UL Slot)	23.47	23.61	23.75			
EGPRS	23.41	23.32	23.50			

Channel	GSM1900 Conducted RF output power (dBm)					
Mode	CH 512	CH 661	CH 810			
GPRS (1UL Slot)	23.64 23.56		24.55			
GPRS (2UL Slot)	23.55	23.32	23.61			
EGPRS	24.25	24.31	24.36			

5.4.3. CDMA2000 Function

		Test Case		BC0 (850MHz) Conducted RF output power (dBm)		
Mode	#	FWD REV RC/TAP RC/TAP		CH 1013	CH 384	CH 777
	1	RC1	RC1(SO2)	24.45	24.43	24.29
1.v	2	RC1	RC1(SO55)	24.52	24.48	24.32
	3	RC2	RC2(SO9)	24.51	24.35	24.21
IX	4	RC2	RC2(SO55)	24.55	24.52	24.32
	5	RC3	RC3(SO55)	24.53	24.61	24.56
	6	RC3	RC3(SO32)	24.20	24.35	24.43
	7a		RTAP rate=9.6kbps	24.41	24.28	24.20
1 5450	7b	FTAP	RTAP rate=19.2kbps	24.42	24.41	24.18
IXEVDO Rel0	7c	Rate=307kbps (2 slot	RTAP rate=38.4kbps	24.36	24.45	24.27
Kelo	7d	QPSK)	RTAP rate=76.8kbps	24.47	24.27	24.20
	7e		RTAP rate=153.6kbps	24.48	24.51	24.54
	8a		RETAP=pauload size=128	24.31	24.51	24.35
	8b		RETAP=pauload size=256	24.4	24.49	24.36
	8c		RETAP=pauload size=512	24.31	24.47	24.3
	8d		RETAP=pauload size=768	24.38	24.45	24.31
	8e	FTAP	RETAP=pauload size=1024	24.26	24.35	24.16
1xEVDO	8f	Rate=307kbps (2 slot, ACK	RETAP=pauload size=1536	24.35	24.36	24.35
RelA	8g	channel is transmitted at	RETAP=pauload size=2548	24.47	24.51	24.46
	8h	all the slots)	RETAP=pauload size=3072	24.36	24.44	24.33
	8i		RETAP=pauload size=4096	24.48	24.45	24.34
	8j		RETAP=pauload size=6144	24.42	24.41	24.36
	8k		RETAP=pauload size=8192	24.43	24.46	24.37
	81		RETAP=pauload size=12288	24.31	24.46	24.35

5.5. Exposure Positions Consideration

<Windows Business PAD>

5.6. SAR Test Result

5.6.1. WLAN Function

Test Date: Mar. 05, 2013 Temperature : 24

Humidity : 25%

Liquid Temperature : 22Depth of Liquid: > 15cm									
Test Mode: 2.4GHz									
Test Antenn		Freque	ency	Conducted power	SAR 1g	Limit			
Position Body	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)			
	802.11b								
Bottom Face	Fixed	6	2437	19.86	0.639	1.6			
Edge 3 Side	Fixed	6	2437	19.86	0.576	1.6			

Test Mode: 2.4GHz, 802.11b, CH 2437, Bottom Face

Date/Time: 3/5/2013 PM 08:15:52

Test Laboratory: Audix_SAR Lab

802.11b ch6

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: 802.11 b; Frequency: 2437 MHz Medium parameters used (interpolated): f = 2437 MHz; σ = 2.013 S/m; $e_{\rm f}$ = 50.739; p = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(7.36, 7.36, 7.36); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.850 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.662 V/m; Power Drift = -1.18 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.639 W/kg; SAR(10 g) = 0.337 W/kg Maximum value of SAR (measured) = 0.909 W/kg

Test Mode: 2.4GHz, 802.11b, CH 2437, Edge 3 Side

Date/Time: 3/5/2013 PM 10:36:58

Test Laboratory: Audix_SAR Lab

B_2437_edge

DUT: Windows Business PAD; Type: BP80; Serial: Communication System: 802.11b; Frequency: 2437 MHz Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.013$ S/m; $\varepsilon_c = 50.739$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(7.36, 7.36, 7.36); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/B_2437_Back/Area Scan (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1 395 W/kg

Configuration/B 2437 Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 8.854 V/m; Power Drift = 0.28 dB Peak SAR (extrapolated) = 1.590 W/kg SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.272 W/kg Maximum value of SAR (measured) = 1.435 W/kg

Test Date: Mar. 07, 2013 Temperature : 21 Humidity : 47%

Liquid Temperature : 21.5Depth of Liquid: > 15cm								
Test Mode: 5GHz (UNII Band IV)								
Test	Antenna	Frequency		Conducted power	SAR 1g	Limit		
Position Body	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)		
	802.11a							
Bottom Face	Fixed	149	5745	11.74	0.595	1.6		
Edge 3 Side	Fixed	149	5745	11.74	0.383	1.6		

Test Mode: 5GHz (UNII Band IV), 802.11a, 5745MHz, Bottom Face

Date/Time: 3/7/2013 AM 11:45:51

Test Laboratory: Audix_SAR Lab

802.11a

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: 5G_A; Frequency: 5745 MHz Medium parameters used (interpolated): f = 5745 MHz; σ = 6.213 S/m; ϵ_r = 48.02; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(3.94, 3.94, 3.94); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (9x11x1): Measurement grid: dx=10mm. dy=10mm Maximum value of SAR (measured) = 1.08 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.214 V/m; Power Drift = 3.80 dB Peak SAR (extrapolated) = 2.95 W/kg SAR(1 g) = 0.595 W/kg; SAR(10 g) = 0.157 W/kg Marine what of SAB (extrapolated) = 1.11 W/an

Maximum value of SAR (measured) = 1.71 W/kg

Test Mode: 5GHz (UNII Band IV), 802.11a, 5745MHz, Edge 3 Side

Date/Time: 3/7/2013 PM 01:17:36

Test Laboratory: Audix_SAR Lab

802.11a

DUT: Windows Business PAD; Type: BP80; Serial:

 $\begin{array}{l} \mbox{Communication System: 5G_A; Frequency: 5745 MHz} \\ \mbox{Medium parameters used: } f=5745 MHz; $\sigma=6.213 S/m; $\epsilon_r=48.02; $\rho=1000 kg/m^3$ \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)} \\ \end{array}$

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(4.28, 4.28, 4.28); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/a 5745_Edge/Area Scan (8x13x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.651 W/kg

Configuration/a 5745_Edge/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4nm, dy=4mm, dz=1.4mm Reference Value = 8.328 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.136 W/kg Maximum value of SAR (measured) = 0.749 W/kg

5.6.2. GSM/PCS & CDMA2000 Function

Test Date: Mar. 13, 2013	Temperature : 23	H
Test Date: Mar. 14, 2013	Temperature : 22	H

Humidity : 48% Humidity : 50%

Liquid Temperature : 21.8Depth of Liquid: > 15cm						
Test Mode: GSM8	850					
Test	Antenna	Freque	ency	Conducted power	SAR 1g	Limit
Position Body	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)
		C	PRS			
	Fixed	128	842.2	24.35	1.04	1.6
Bottom Face	Fixed	189	836.6	24.22	1.09	1.6
	Fixed	251	848.6	24.47	1.10	1.6
Edge 1 Side	Fixed	251	848.6	24.47	0.98	1.6
Test Mode: PCS1	900					
Test	Antenna	Frequency		Conducted power	SAR 1g	Limit
Position Body	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)
		C	PRS			
	Fixed	512	1850.2	23.64	1.20	1.6
Bottom Face	Fixed	661	1880.0	23.56	1.13	1.6
	Fixed	810	1909.8	24.55	1.15	1.6
Edge 1 Side	Fixed	512	1850.2	23.64	0.864	1.6
Test Mode: CDM	A2000					
		BC0 (850MHz)			
	Fixed	384	836.52	24.61	1.083	1.6
Bottom Face	Fixed	777	848.31	24.56	1.147	1.6
	Fixed	1013	824.70	24.53	0.912	1.6
Edge 1 Side	Fixed	777	848.31	24.56	0.782	1.6

Test Mode: GSM850, GPRS, CH 128, Bottom Face

Date/Time: 3/13/2013 PM 10:24:03

Test Laboratory: Audiz_SAR Lab

GSM_ch128

DUT: Windows Business PAD; Type: BP80; Serial: Communication System: Generic GSM; Frequency: 824.2 MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978$ S/m; $\epsilon_r = 54.827$; $\rho = 1000$ kg/m³ Phantom section. Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.57 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.064 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.868 W/kg Maximum value of SAR (measured) = 1.61 W/kg

Test Mode: GSM850, GPRS, CH 189, Bottom Face

Date/Time: 3/13/2013 PM 10:39:00

Test Laboratory: Audix_SAR Lab

GSM_ch189

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: Generic GSM; Frequency: 836.6 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.997$ S/m; $\epsilon_r = 54.777$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.69 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.155 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.832 W/kg Maximum value of SAR (measured) = 1.70 W/kg

Test Mode: GSM850, GPRS, CH 251, Bottom Face

Test Laboratory: Audix_SAR Lab

GSM ch251

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: Generic GSM; Frequency: 848.6 MHz Medium parameters used (interpolated): f = 848.6 MHz; σ = 1.009 S/m; ϵ_r = 54.708; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm. dy=15mm Maximum value of SAR (measured) = 1.48 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.909 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 1.10 W/kg; SAR(10 g) = 0.707 W/kg Maximum value of SAR (measured) = 1.45 W/kg

Date/Time: 3/13/2013 PM 10:51:59

Test Mode: GSM850, GPRS, CH 251, Edge 1 Side

Date/Time: 3/14/2013 AM 09:42:58

Test Laboratory: Audix_SAR Lab

GSM_ch251_EDGE

DUT: Windows Business PAD; Type: BP80; Serial: Communication System: Generic GSM; Frequency: 848.6 MHz Medium parameters used (interpolated): f = 848.6 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 54.708$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- · Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- · DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm. dy=15mm Maximum value of SAR (measured) = 1.35 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.468 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.13 W/kg SAR(1 g) = 0.98 W/kg; SAR(10 g) = 0.638 W/kg Maximum value of SAR (measured) = 1.38 W/kg

Test Mode: PCS1900, GPRS, CH 512, Bottom Face

Test Laboratory: Audix_SAR Lab

PCS1900 CH512

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: Generic GSM; Frequency: 1850.2 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53 \text{ S/m}$; $\epsilon_r = 51.24$; $\rho = 1000 \text{ kg/m}^3$ Phantom section Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(7.61, 7.61, 7.61); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
 Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.70 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid dx=8mm, dy=8mm, dz=5mm Reference Value = 18.312 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.08 W/kg SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.673 W/kg Maximum value of SAR (measured) = 1.63 W/kg

Test Mode: PCS1900, GPRS, CH 661, Bottom Face

Date/Time: 3/14/2013 PM 04:12:37

Test Laboratory: Audix_SAR Lab

PCS1900 CH661

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: Generic GSM; Frequency: 1880 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.57$ S/m; $e_f = 51.14$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(7.61, 7.61, 7.61); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- · Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.54 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid dx=8mm, dy=8mm, dz=5mm Reference Value = 17.923 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.582 W/kg Maximum value of SAR (measured) = 1.67 W/kg

Test Mode: PCS1900, GPRS, CH 810, Bottom Face

Date/Time: 3/14/2013 PM 04:29:0

Test Laboratory: Audix_SAR Lab

PCS1900 CH810

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: Generic GSM; Frequency: 1909.8 MHz Medium parameters used: f = 1909.8 MHz; $\sigma = 1.6$ S/m; $\epsilon_r = 51.04$; $\rho = 1000$ kg/m³ Phantom section Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(7.61, 7.61, 7.61); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.52 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid dx=8mm, dy=8mm, dz=5mm Reference Value = 17.037 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 2.08 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.579 W/kg

Maximum value of SAR (measured) = 1.70 W/kg

Test Mode: PCS1900, GPRS, CH 512, Edge 1 Side

Date/Time: 3/14/2013 PM 05:34:31

Test Laboratory: Audix_SAR Lab

PCS1900 CH512 EDGE

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: Generic GSM; Frequency: 1850.2 MHz Medium parameters used: f = 1850.2 MHz; σ = 1.53 S/m; s_r = 51.24; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(7.61, 7.61, 7.61); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.208 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid dx=8mm, dy=8mm, dz=5mm Reference Value = 11.017 V/m; Power Drift = 0.47 dB Peak SAR (extrapolated) = 1.667 W/kg SAR(1 g) = 0.864 W/kg; SAR(10 g) = 0.374 W/kg Maximum value of SAR (measured) = 1.189 W/kg

Test Mode: CDMA2000, BC0(850MHz), CH 384, Bottom Face

Date/Time: 3/14/2013 PM 02:04:02

Test Laboratory Audix_SAR Lab

CDMA2000 CH384

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: CDMA2000(1xRTT,RC3); Frequency: 836.52 MHz Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.997$ S/m; $\varepsilon_r = 54.777$; $\rho = 1000$ kg/m³ Phantom section Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
 DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.79 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dz=5mm Reference Value = 25.267 V/m; Power Drift = -0.41 dB Peak SAR (extrapolated) = 1.876 W/kg

SAR(1 g) = 1.083 W/kg; SAR(10 g) = 0.630 W/kg Maximum value of SAR (measured) = 1.575 W/kg

Test Mode: CDMA2000, BC0(850MHz), CH 777, Bottom Face

Date/Time 3/14/2013 PM 02:49 41

Test Laboratory: Audix_SAR Lab

CDMA2000 CH777

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: CDMA2000(1xPTT,RC3); Frequency: \$48.31 MHz Median parameters used (interpolated); f = \$48.31 MHz; g = 1.008 S/m; e_y = 54.71; p = 1000 km/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- · Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0; 31.0
- + Electronics DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom ELI v5.0, Type: QDOVA002AA, Serial TP:1170
- DASY52 52.8 4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.544 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dz=5mm Reference Value = 23.545 V/m; Power Drift = -1.04 dB Peak SAR (estrapolated) = 1.776 W/kg SAR(1 g) = 1.147 W/kg; SAR(10 g) = 0.379 W/kg Maximum value of SAR (measured) = 1.635 W/kg

Test Mode: CDMA2000, BC0(850MHz), CH 1013, Bottom Face

Date/Time: 3/14/2013 PM 02:38:39

Test Laboratory: Audix_SAR Lab

CDMA2000 CH1013

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: CDMA2000(1xRTT,RC3); Frequency: 824.7 MHz Medium parameters used (interpolated): f = 824.7 MHz; σ = 0.979 S/m; $\epsilon_{\rm p}$ = 54.826; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.90 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.266 V/m; Power Drift = -0.58 dB Peak SAR (extrapolated) = 1.98 W/kg SAR(1 g) = 0.912 W/kg; SAR(10 g) = 0.511 W/kg

Maximum value of SAR (measured) = 1.61 W/kg

Test Mode: CDMA2000, BC0(850MHz), CH 777, Bottom Face

Date/Time: 3/14/2013 PM 03:06:47

Test Laboratory: Audix_SAR Lab

CDMA2000 CH777 edge

DUT: Windows Business PAD; Type: BP80; Serial:

Communication System: CDMA2000(1xRTT,RC3); Frequency: 848.31 MHz Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 1.008$ S/m; $\epsilon_r = 54.71$; $\rho = 1000$ kg/m³ Phantom section Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration

- Probe: EX3DV4 SN3855; ConvF(9.78, 9.78, 9.78); Calibrated: 5/9/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 11.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 5/7/2012
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1170
 DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Configuration/Unnamed procedure 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.22 W/kg

Configuration/Unnamed procedure 2/Zoom Scan (4x4x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.468 V/m; Power Drift = 1.06 dB Peak SAR (extrapolated) = 1.60 W/kg SAR(1 g) = 0.782 W/kg; SAR(10 g) = 0.313 W/kg Maximum value of SAR (measured) = 1.47 W/kg

No.	Applicable Simultaneous Transmission Combination
1.	GSM850 + WLAN 2.4G (802.11b)
2.	GSM850 + WLAN 5G (802.11a)
3.	PCS1900 + WLAN 2.4G (802.11b)
4.	PCS1900 + WLAN 5G (802.11a)
5.	CDMA2000 + WLAN 2.4G (802.11b)
6.	CDMA2000 + WLAN 5G (802.11a)

5.7. Simultaneous Multi-band Transmission Analysis

Note:

- 1. The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01v05, simultaneous transmission SAR is compliant if,
 - a. Scalar SAR summation < 1.6W/kg
 b. SRLSR = (SAR₁+SAR₂)^{1.5} / (min separation distance, mm), and the peak separation distance is determined from the square root of $[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR location in the zoom scan
 - c. Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg

Band	Position	Gap (cm)	1g SAR(W/Kg)	Pair SAR Sum(W/Kg)	3D Distance (mm)	SPLSR	Simultaneous SAR
GSM850	Bottom Face	0	1.10		138.4	0.017	not required
WLAN 2.4GHz (802.11b)		0	0.639	1.739			
				•			

5.8. Simultaneous analysis-SPLSR calculation

Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.

Band	Position	Gap (cm)	1g SAR(W/Kg)	Pair SAR Sum(W/Kg)	3D Distance (mm)	SPLSR	Simultaneous SAR
GSM850	Bottom Face	0	1.10	1.695	125.7	0.018	not required
WLAN 5GHz (802.11a)		0	0.595				
Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.							

Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.

Band	Position	Gap (cm)	1g SAR(W/Kg)	Pair SAR Sum(W/Kg)	3D Distance (mm)	SPLSR	Simultaneous SAR
PCS1900	Bottom Face	0	1.20	1.839	129.5	0.019	not required
WLAN 2.4GHz (802.11b)		0	0.639				
Note: Cimultoneous CAD is not required while CDI CD (0.04 or Dain CAD Sum (1.0W/Wa							

Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.

Band	Position	Gap (cm)	1g SAR(W/Kg)	Pair SAR Sum(W/Kg)	3D Distance (mm)	SPLSR	Simultaneous SAR
PCS1900	Bottom Face	0	1.20	1.795	116.4	0.021	not required
WLAN 5GHz (802.11a)		0	0.595				
Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.							

Band	Position	Gap (cm)	1g SAR(W/Kg)	Pair SAR Sum(W/Kg)	3D Distance (mm)	SPLSR	Simultaneous SAR
CDMA 2000 BC0	Bottom Face	0	1.147	1.786	131.4	0.018	not required
WLAN 2.4GHz (802.11b)		0	0.639				
Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.							

Band	Position	Gap (cm)	1g SAR(W/Kg)	Pair SAR Sum(W/Kg)	3D Distance (mm)	SPLSR	Simultaneous SAR
CDMA 2000 BC0	Bottom Face	0	1.147	1.742	115.9	0.020	not required
WLAN 5GHz (802.11a)		0	0.595				

Note: Simultaneous SAR is not required while SPLSR<0.04 or Pair SAR Sum <1.6W/Kg.

6. PHOTOGRAPHS OF MEASUREMENT

Test Position: Bottom Face

Test Position: Edge Side

Depth of the Liquid in the Phantom-Zoom In

FCC ID:RBF-BP80 APPENDIX I

APPENDIX I

Test Equipment Calibration Data