

GTS Global United Technology Services Co., Ltd.

Report No.: GTS201809000149F02

# FCC Report (Bluetooth)

| Applicant:                          | Shenzhen Jingwah Information Technology Co., Ltd.                     |
|-------------------------------------|-----------------------------------------------------------------------|
| Address of Applicant:               | 4F, Bldg 4, Jinghua Square, No.1 Huafa North<br>Road, Shenzhen, China |
| Manufacturer/Factory:               | Shenzhen Jingwah Information Technology Co., Ltd.                     |
| Address of<br>Manufacturer/Factory: | 4F, Bldg 4, Jinghua Square, No.1 Huafa North<br>Road, Shenzhen, China |
| Equipment Under Test (E             | EUT)                                                                  |
| Product Name:                       | Tablet PC                                                             |
| Model No.:                          | M10500                                                                |
| Trade Mark:                         | PACKARD BELL                                                          |
| FCC ID:                             | RBD-M1016V2                                                           |
| Applicable standards:               | FCC CFR Title 47 Part 15 Subpart C Section 15.247                     |
| Date of sample receipt:             | September 22, 2018                                                    |
| Date of Test:                       | September 23, 2018-November 01, 2018                                  |
| Date of report issued:              | November 02, 2018                                                     |
| Test Result :                       | PASS *                                                                |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



**Robinson Lo** Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.



#### 2 Version

| Version No. | Date              | Description |
|-------------|-------------------|-------------|
| 00          | November 02, 2018 | Original    |
|             |                   |             |
|             |                   |             |
|             |                   |             |
|             |                   |             |

Prepared By:

Bill. yuan

Date:

November 02, 2018

November 02, 2018

Project Engineer

Check By:

Date: ren Б

Reviewer



# 3 Contents

|   |                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | age                                                |
|---|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1 | cov                                                             | ER PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                  |
| 2 | VER                                                             | SION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                  |
|   |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 3 | CON                                                             | TENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                  |
| 4 | TES                                                             | T SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                  |
| 5 | GEN                                                             | ERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                  |
|   | 5.1                                                             | GENERAL DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                  |
|   | 5.2                                                             | TEST MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
|   | 5.3                                                             | DESCRIPTION OF SUPPORT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
|   | 5.4                                                             | TEST FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |
|   | 5.5                                                             | TEST LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                  |
| 6 | TES                                                             | T INSTRUMENTS LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                  |
|   |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 7 | TES                                                             | T RESULTS AND MEASUREMENT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                 |
| 7 | TES<br>7.1                                                      | Image: Constraint of the second state of the second sta |                                                    |
| 7 |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                 |
| 7 | 7.1                                                             | ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>11                                           |
| 7 | 7.1<br>7.2                                                      | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>11<br>14<br>16                               |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5                                 | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>11<br>14<br>16<br>18                         |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6                          | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>11<br>14<br>16<br>18<br>20                   |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.6.1                 | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES<br>Conducted Emission Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>11<br>14<br>16<br>18<br>20                   |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.6.1<br>7.6.2        | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES<br>Conducted Emission Method<br>Radiated Emission Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>11<br>14<br>16<br>18<br>20<br>21             |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.6.1<br>7.6.2<br>7.7 | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES<br>Conducted Emission Method<br>Radiated Emission Method<br>SPURIOUS EMISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>11<br>14<br>16<br>18<br>20<br>21<br>21<br>23 |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.6.2<br>7.7<br>7.7.1 | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES<br>Conducted Emission Method<br>Radiated Emission Method<br>SPURIOUS EMISSION<br>Conducted Emission Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>11<br>14<br>16<br>20<br>21<br>21<br>23       |
| 7 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.6.1<br>7.6.2<br>7.7 | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES<br>Conducted Emission Method<br>Radiated Emission Method<br>SPURIOUS EMISSION<br>Conducted Emission Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>11<br>14<br>16<br>20<br>21<br>21<br>23       |
| 8 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.6.2<br>7.7<br>7.7.2 | ANTENNA REQUIREMENT<br>CONDUCTED EMISSIONS<br>CONDUCTED OUTPUT POWER<br>CHANNEL BANDWIDTH<br>POWER SPECTRAL DENSITY<br>BAND EDGES<br>Conducted Emission Method<br>Radiated Emission Method<br>SPURIOUS EMISSION<br>Conducted Emission Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>11<br>14<br>16<br>20<br>21<br>23<br>23<br>25 |



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Output Power           | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| Test Item                           | Frequency Range         Measurement Uncertainty |                                   | Notes |
|-------------------------------------|-------------------------------------------------|-----------------------------------|-------|
| Radiated Emission                   | 9kHz ~ 30MHz ± 4.54dB                           |                                   | (1)   |
| Radiated Emission                   | 30MHz ~ 1000MHz                                 | ± 5.34dB                          | (1)   |
| Radiated Emission                   | 1GHz ~ 26.5GHz                                  | ± 5.34dB                          | (1)   |
| AC Power Line Conducted<br>Emission | 0.15MHz ~ 30MHz                                 | ± 3.44dB                          | (1)   |
| Note (1): The measurement unce      | ertainty is for coverage factor of k            | =2 and a level of confidence of 9 | 95%.  |



# 5 General Information

# 5.1 General Description of EUT

| Product Name:        | Tablet PC                         |  |
|----------------------|-----------------------------------|--|
| Model No.:           | M10500                            |  |
| Test sample(s) ID:   | GTS201809000149-1                 |  |
| Sample(s) Status:    | Engineer sample                   |  |
| Serial No.:          | S125489NC                         |  |
| Hardware version:    | RC-S107I                          |  |
| Software version:    | Android 8.1.0                     |  |
| Operation Frequency: | 2402MHz~2480MHz                   |  |
| Channel Numbers:     | 40                                |  |
| Channel Separation:  | 2MHz                              |  |
| Modulation Type:     | GFSK                              |  |
| Antenna Type:        | Integral Antenna                  |  |
| Antenna Gain:        | 0dBi(Declare by applicant)        |  |
| Power Supply:        | Adapter                           |  |
|                      | Model:TPA-46050150UU              |  |
|                      | Input: AC 100-240V, 50/60Hz, 0.3A |  |
|                      | Output:DC 5.0V, 1500mA            |  |
|                      | Battery: DC 3.7V, 5000mAh, 18.5Wh |  |



| Operation F | Operation Frequency each of channel |         |           |         |           |         |           |  |  |  |
|-------------|-------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|--|--|
| Channel     | Frequency                           | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |  |  |
| 1           | 2402MHz                             | 11      | 2422MHz   | 21      | 2442MHz   | 31      | 2462MHz   |  |  |  |
| 2           | 2404MHz                             | 12      | 2424MHz   | 22      | 2444MHz   | 32      | 2464MHz   |  |  |  |
|             |                                     | ·       |           | •       |           | · .     |           |  |  |  |
| 9           | 2418MHz                             | 19      | 2438MHz   | 29      | 2458MHz   | 39      | 2478MHz   |  |  |  |
| 10          | 2420MHz                             | 20      | 2440MHz   | 30      | 2460MHz   | 40      | 2480MHz   |  |  |  |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2440MHz   |
| The Highest channel | 2480MHz   |



# 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

### 5.3 Description of Support Units

#### None.

#### 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

#### • Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

# 5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960



# 6 Test Instruments list

| Rad  | Radiated Emission:                     |                                |                             |                  |                        |                            |  |  |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|--|
| ltem | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 03 2015          | July. 02 2020              |  |  |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 27 2018          | June. 26 2019              |  |  |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 27 2018          | June. 26 2019              |  |  |  |
| 5    | Double -ridged<br>waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 27 2018          | June. 26 2019              |  |  |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 27 2018          | June. 26 2019              |  |  |  |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |  |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 27 2018          | June. 26 2019              |  |  |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 27 2018          | June. 26 2019              |  |  |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 27 2018          | June. 26 2019              |  |  |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 27 2018          | June. 26 2019              |  |  |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 27 2018          | June. 26 2019              |  |  |  |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 27 2018          | June. 26 2019              |  |  |  |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 27 2018          | June. 26 2019              |  |  |  |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 27 2018          | June. 26 2019              |  |  |  |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 27 2018          | June. 26 2019              |  |  |  |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 27 2018          | June. 26 2019              |  |  |  |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 27 2018          | June. 26 2019              |  |  |  |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 27 2018          | June. 26 2019              |  |  |  |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 27 2018          | June. 26 2019              |  |  |  |



| Conc | Conducted Emission       |                             |                      |                  |                        |                            |  |  |  |
|------|--------------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|--|--|
| ltem | Test Equipment           | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |
| 1    | Shielding Room           | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.16 2014            | May.15 2019                |  |  |  |
| 2    | EMI Test Receiver        | R&S                         | ESCI 7               | GTS552           | June. 27 2018          | June. 26 2019              |  |  |  |
| 3    | Coaxial Switch           | ANRITSU CORP                | MP59B                | GTS225           | June. 27 2018          | June. 26 2019              |  |  |  |
| 4    | Artificial Mains Network | SCHWARZBECK<br>MESS         | NSLK8127             | GTS226           | June. 27 2018          | June. 26 2019              |  |  |  |
| 5    | Coaxial Cable            | GTS                         | N/A                  | GTS227           | June. 27 2018          | June. 26 2019              |  |  |  |
| 6    | EMI Test Software        | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |  |  |
| 7    | Thermo meter             | KTJ                         | TA328                | GTS233           | June. 27 2018          | June. 26 2019              |  |  |  |
| 8    | Absorbing clamp          | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | June. 27 2018          | June. 26 2019              |  |  |  |

| RF C | RF Conducted Test:                                   |              |                  |            |                        |                            |  |  |  |
|------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|--|--|--|
| ltem | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |
| 1    | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | June. 27 2018          | June. 26 2019              |  |  |  |
| 2    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |  |  |
| 3    | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS533     | June. 27 2018          | June. 26 2019              |  |  |  |
| 4    | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | June. 27 2018          | June. 26 2019              |  |  |  |
| 5    | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | June. 27 2018          | June. 26 2019              |  |  |  |
| 6    | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | June. 27 2018          | June. 26 2019              |  |  |  |
| 7    | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | June. 27 2018          | June. 26 2019              |  |  |  |
| 8    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |  |  |
| 9    | Programmable Constant<br>Temp & Humi<br>Test Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | June. 27 2018          | June. 26 2019              |  |  |  |

| Gene | General used equipment:            |              |           |               |                        |                            |  |  |  |
|------|------------------------------------|--------------|-----------|---------------|------------------------|----------------------------|--|--|--|
| ltem | Test Equipment                     | Manufacturer | Model No. | Inventory No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |
| 1    | Humidity/ Temperature<br>Indicator | KTJ          | TA328     | GTS243        | June. 27 2018          | June. 26 2019              |  |  |  |
| 2    | Barometer                          | ChangChun    | DYM3      | GTS255        | June. 27 2018          | June. 26 2019              |  |  |  |



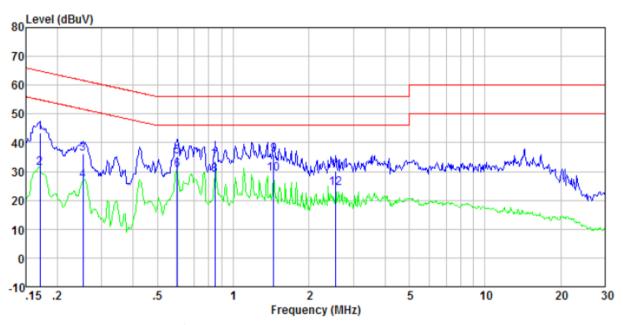
# 7 Test results and Measurement Data

# 7.1 Antenna requirement

|  | Antenna requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |  |  |  |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  | Standard requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FCC Part15 C Section 15.203 /247(c)                                                                                                                                                                                                          |  |  |  |
|  | <b>15.203 requirement:</b><br>An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. |                                                                                                                                                                                                                                              |  |  |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |  |  |  |
|  | 15.247(c) (1)(i) requiremen                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t:                                                                                                                                                                                                                                           |  |  |  |
|  | operations may employ trans                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi. |  |  |  |
|  | E.U.T Antenna:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |  |  |  |
|  | The antenna is integral ante                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nna, the best case gain of the antenna is 0dBi                                                                                                                                                                                               |  |  |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |  |  |  |



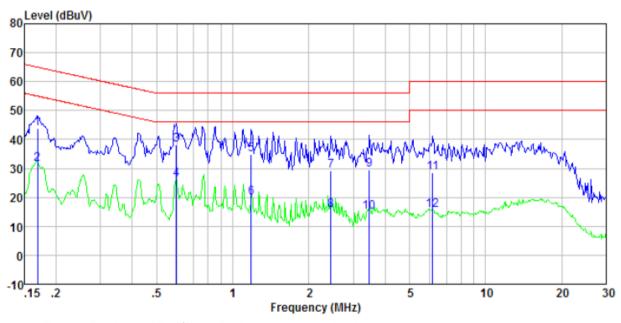
# 7.2 Conducted Emissions


| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                         |                                                 |                                         |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                    | ANSI C63.10:2013                                |                                         |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                     |                                                 |                                         |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                             |                                                 |                                         |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                             | weep time=auto                                  |                                         |  |  |
| Limit:                |                                                                                                                                                                                                                                                                                     | Limit (c                                        | dBuV)                                   |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                               | Quasi-peak                                      | Average                                 |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                            | 66 to 56*                                       | 56 to 46*                               |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                               | 56                                              | 46                                      |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                | 60                                              | 50                                      |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                      | n of the frequency.                             |                                         |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                     |                                                 | -                                       |  |  |
|                       | AUX         Equipment         E.U.T         Test table/Insulation plane         Remark:         E.U.T: Equipment Under Test         LISN: Line Impedence Stabilization Network         Test table height=0.8m                                                                       | EMI<br>Receiver                                 |                                         |  |  |
| Test procedure:       | Test procedure:1. The E.U.T and simulators are connected to the main power the<br>line impedance stabilization network (L.I.S.N.). This provides<br>500hm/50uH coupling impedance for the measuring equipment<br>2. The peripheral devices are also connected to the main power<br> |                                                 |                                         |  |  |
|                       | <ul> <li>photographs).</li> <li>3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2</li> </ul>                                                                                                                   | d the maximum emission all of the interface cab | on, the relative<br>les must be changed |  |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                    |                                                 |                                         |  |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                    | Refer to section 5.2 for details                |                                         |  |  |
| Test voltage:         | AC 120V, 60Hz                                                                                                                                                                                                                                                                       |                                                 |                                         |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                |                                                 |                                         |  |  |

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



#### Measurement data


| Mode:           | Transmitting mode | Test by: | Bill |
|-----------------|-------------------|----------|------|
| Temp./Hum.(%H): | 26℃/56%RH         | Probe:   | Line |



| Freq<br>MHz                                                  | Reading<br>level<br>dBuV                                                      | LISN/ISN<br>factor<br>dB/m                                           | Cable<br>loss<br>dB                                                          | Level<br>dBuV                                                                 | Limit<br>level<br>dBuV                                                                          | Over<br>limit<br>dB                                                                    | Remark                                                                 |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0.17<br>0.25<br>0.25<br>0.60<br>0.60<br>0.84<br>0.84<br>1.45 | 42.94<br>30.84<br>35.57<br>26.25<br>34.85<br>30.04<br>32.98<br>28.45<br>35.43 | 0.40<br>0.40<br>0.40<br>0.29<br>0.29<br>0.23<br>0.23<br>0.23<br>0.20 | 0.09<br>0.09<br>0.10<br>0.10<br>0.12<br>0.12<br>0.12<br>0.14<br>0.14<br>0.14 | 43.43<br>31.33<br>36.07<br>26.75<br>35.26<br>30.45<br>33.35<br>28.82<br>35.79 | 64.94<br>54.94<br>61.64<br>51.64<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00 | -21.51<br>-23.61<br>-25.57<br>-24.89<br>-20.74<br>-15.55<br>-22.65<br>-17.18<br>-20.21 | QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP |
| 1.45<br>2.55<br>2.55                                         | 28.90<br>29.76<br>23.86                                                       | 0.20<br>0.20<br>0.20                                                 | 0.16<br>0.18<br>0.18                                                         | 29.26<br>30.14<br>24.24                                                       | $46.00 \\ 56.00 \\ 46.00$                                                                       | -16.74<br>-25.86<br>-21.76                                                             | Average<br>QP<br>Average                                               |



| Mode:           | Transmitting mode | Test by: | Bill    |
|-----------------|-------------------|----------|---------|
| Temp./Hum.(%H): | 26°C/56%RH        | Probe:   | Neutral |



| Fre<br>ME | level    | LISN/ISN<br>factor<br>dB/m | Cable<br>loss<br>dB | Level<br>dBuV | Limit<br>level<br>dBuV | Over<br>limit<br>dB | Remark  |
|-----------|----------|----------------------------|---------------------|---------------|------------------------|---------------------|---------|
| 0.1       | 7 43.35  | 0.40                       | 0.09                | 43.84         | 64.99                  | -21.15              | QP      |
| 0.1       | 7 31.01  | 0.40                       | 0.09                | 31.50         | 54.99                  | -23.49              | Average |
| 0.6       | 37.73    | 0.29                       | 0.12                | 38.14         | 56.00                  | -17.86              | QP      |
| 0.6       | 0 25.77  | 0.29                       | 0.12                | 26.18         | 46.00                  | -19.82              | Average |
| 1.1       | 8 34.42  | 0.20                       | 0.16                | 34.78         | 56.00                  | -21.22              | QP      |
| 1.1       | 8 19.68  | 0.20                       | 0.16                | 20.04         | 46.00                  | -25.96              | Average |
| 2.4       | 15 28.81 | 0.20                       | 0.18                | 29.19         | 56.00                  | -26.81              | QP      |
| 2.4       | 15.29    | 0.20                       | 0.18                | 15.67         | 46.00                  | -30.33              | Average |
| 3.4       | 7 29.19  | 0.20                       | 0.18                | 29.57         | 56.00                  | -26.43              | QP      |
| 3.4       | 14.65    | 0.20                       | 0.18                | 15.03         | 46.00                  | -30.97              | Average |
| 6.1       | 9 28.09  | 0.20                       | 0.18                | 28.47         | 60.00                  | -31.53              | QP      |
| 6.1       | 9 15.26  | 0.20                       | 0.18                | 15.64         | 50.00                  | -34.36              | Average |

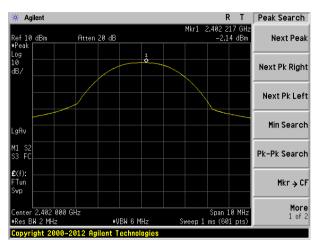
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

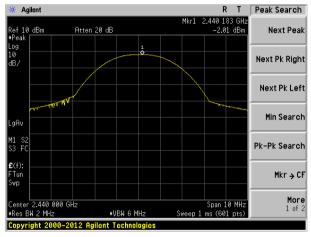


# 7.3 Conducted Output Power

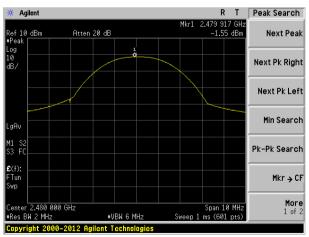
| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                          |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                    |  |  |
| Limit:            | 30dBm                                                                       |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |
| Test results:     | Pass                                                                        |  |  |


#### **Measurement Data**

| Test channel | Peak Output Power (dBm) | Limit(dBm) | Result |
|--------------|-------------------------|------------|--------|
| Lowest       | -2.14                   |            |        |
| Middle       | -2.01                   | 30.00      | Pass   |
| Highest      | -1.55                   |            |        |




#### Test plot as follows:


#### Report No.: GTS201809000149F02



Lowest channel



Middle channel



Highest channel

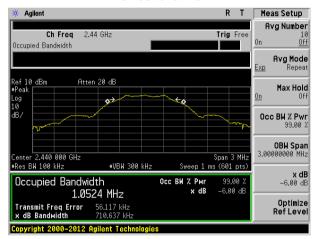


# 7.4 Channel Bandwidth

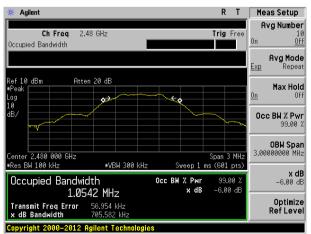
| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                          |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                    |  |  |
| Limit:            | >500KHz                                                                     |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |
| Test results:     | Pass                                                                        |  |  |

#### **Measurement Data**

| Test channel | Channel Bandwidth (MHz) | Limit(KHz) | Result |  |
|--------------|-------------------------|------------|--------|--|
| Lowest       | 0.704                   |            |        |  |
| Middle       | 0.711                   | >500       | Pass   |  |
| Highest      | 0.706                   |            |        |  |




#### Test plot as follows:


#### Report No.: GTS201809000149F02

| 🔆 Agilent                                     |                             |                                    | R      | Т    | Meas Setup                        |
|-----------------------------------------------|-----------------------------|------------------------------------|--------|------|-----------------------------------|
| Ch Freq 2.<br>Occupied Bandwidth              | 402 GHz                     |                                    | Trig   | Free | Avg Number<br>10<br>On <u>Off</u> |
|                                               |                             |                                    |        |      | Avg Mode<br>Exp Repeat            |
| #Peak                                         | n 20 dB                     |                                    |        |      | Max Hold<br>On Off                |
| 10<br>dB/                                     |                             |                                    | ~      |      | Occ BW % Pwr<br>99.00 %           |
| Center 2.402 000 GHz                          |                             |                                    | Span 3 |      | <b>OBW Span</b><br>3.00000000 MHz |
| •Res BW 100 kHz<br>Occupied Bandwig<br>1 0G   | •VBW 300 k<br>Jth<br>36 MHz | Hz Sweep 1<br>Occ BW % Pwr<br>x dB | 99.    | 00 % | <b>x dB</b><br>–6.00 dB           |
| 그.아그<br>Transmit Freq Error<br>x dB Bandwidth |                             |                                    |        |      | Optimize<br>RefLeve               |
| Copyright 2000-2012 A                         | igilent Technolo            | gies                               |        |      |                                   |

Lowest channel



Middle channel

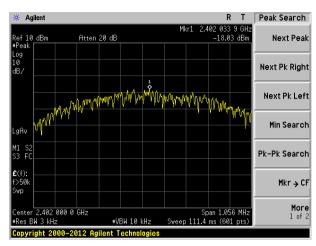


Highest channel

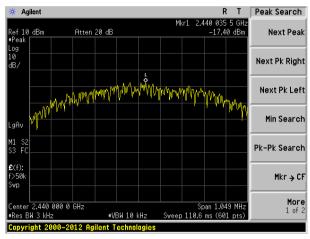


# 7.5 Power Spectral Density

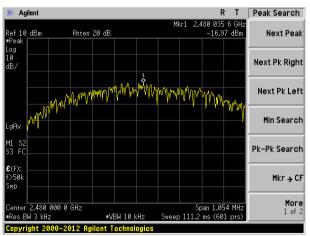
| Test Requirement: | FCC Part15 C Section 15.247 (e)                                             |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                    |  |  |
| Limit:            | 8dBm/3kHz                                                                   |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |
| Test results:     | Pass                                                                        |  |  |


#### **Measurement Data**

| Test channel | Power Spectral Density<br>(dBm/3kHz) | Limit(dBm/3kHz) | Result |  |
|--------------|--------------------------------------|-----------------|--------|--|
| Lowest       | -18.03                               |                 | Pass   |  |
| Middle       | -17.40                               | 8.00            |        |  |
| Highest      | -16.97                               |                 |        |  |




#### Test plot as follows:


#### Report No.: GTS201809000149F02



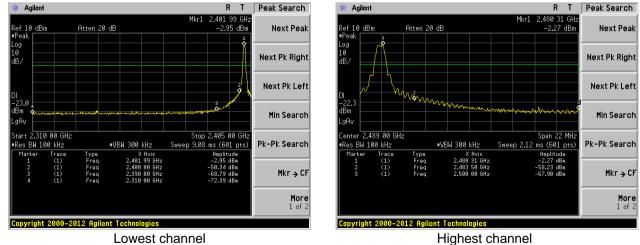
Lowest channel



Middle channel



Highest channel




# 7.6 Band edges

# 7.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

#### Test plot as follows:





### 7.6.2 Radiated Emission Method

| Test Requirement:               | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section 15.209                                                                                                                                                                                     | and 15.205                                                                                                                                                                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                             |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:                    | ANSI C63.10:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )13                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                             |  |
| Test Frequency Range:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    | e tested, only                                                                                                                                                                                                     | the worst ba                                                                                                                                                                                        | nd's (2310MHz to                                                                                                                                                                            |  |
|                                 | 2500MHz) data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | was showed.                                                                                                                                                                                        | -                                                                                                                                                                                                                  |                                                                                                                                                                                                     | ,                                                                                                                                                                                           |  |
| Test site:                      | Measurement Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                             |  |
| Receiver setup:                 | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detector                                                                                                                                                                                           | RBW                                                                                                                                                                                                                | VBW                                                                                                                                                                                                 | Value                                                                                                                                                                                       |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                               | 1MHz                                                                                                                                                                                                               | 3MHz                                                                                                                                                                                                | Peak                                                                                                                                                                                        |  |
|                                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMS                                                                                                                                                                                                | 1MHz                                                                                                                                                                                                               | 3MHz                                                                                                                                                                                                | Average                                                                                                                                                                                     |  |
| Limit:                          | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    | Limit (dBuV/                                                                                                                                                                                                       |                                                                                                                                                                                                     | Value                                                                                                                                                                                       |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    | 54.0                                                                                                                                                                                                               |                                                                                                                                                                                                     | Average                                                                                                                                                                                     |  |
|                                 | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GHz -                                                                                                                                                                                              | 74.0                                                                                                                                                                                                               |                                                                                                                                                                                                     | Peak                                                                                                                                                                                        |  |
|                                 | Tum Table-<br><150cm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                                    | Antenna-<br>4m >+                                                                                                                                                                                   |                                                                                                                                                                                             |  |
| Test Procedure:                 | <ul> <li>determine the</li> <li>2. The EUT was<br/>antenna, whi<br/>tower.</li> <li>3. The antenna<br/>ground to de<br/>horizontal an<br/>measuremen</li> <li>4. For each sus<br/>and then the<br/>and the rota<br/>the maximum</li> <li>5. The test-rece</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t a 3 meter ca<br>e position of the<br>s set 3 meters<br>ch was mount<br>height is varie<br>termine the m<br>d vertical pola<br>it.<br>pected emiss<br>antenna was<br>table was turn<br>n reading. | amber. The tak<br>he highest rac<br>s away from the<br>ted on the top<br>ed from one me<br>aximum value<br>arizations of the<br>ton, the EUT<br>tuned to heigh<br>hed from 0 deg<br>was set to Pea<br>Maximum Hole | ble was rotate<br>liation.<br>The interference<br>of a variable<br>neter to four r<br>of the field s<br>the antenna ar<br>was arranged<br>the from 1 me<br>grees to 360<br>k Detect Fund<br>d Mode. | ed 360 degrees to<br>e-receiving<br>-height antenna<br>meters above the<br>strength. Both<br>re set to make the<br>d to its worst case<br>eter to 4 meters<br>degrees to find<br>action and |  |
|                                 | <ul> <li>6. If the emission limit specified the EUT would 10dB margin average method.</li> <li>7. The radiation And found the found the</li></ul> | In level of the<br>d, then testing<br>ld be reported<br>would be re-t<br>nod as specifi<br>measuremen<br>e X axis posit                                                                            | could be stop<br>d. Otherwise the<br>ested one by<br>ed and then runts are perforr<br>ioning which in                                                                                                              | oped and the<br>ne emissions<br>one using pe<br>eported in a c<br>ned in X, Y, 2<br>t is worse cas                                                                                                  | DdB lower than the<br>peak values of<br>that did not have<br>eak, quasi-peak or<br>data sheet.<br>Z axis positioning.<br>se, only the test                                                  |  |
| Test Instruments:               | <ul> <li>6. If the emission limit specified the EUT would 10dB margin average meth</li> <li>7. The radiation And found th worst case meth</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In level of the<br>d, then testing<br>ld be reported<br>would be re-t<br>nod as specifi<br>measuremen<br>e X axis posit<br>node is record                                                          | could be stop<br>d. Otherwise the<br>ested one by<br>ed and then re-<br>nts are perforr<br>ioning which in<br>ed in the repo                                                                                       | oped and the<br>ne emissions<br>one using pe<br>eported in a c<br>ned in X, Y, 2<br>t is worse cas                                                                                                  | peak values of<br>that did not have<br>eak, quasi-peak or<br>data sheet.<br>Z axis positioning.                                                                                             |  |
| Test Instruments:<br>Test mode: | <ul> <li>6. If the emission limit specified the EUT would 10dB margin average method.</li> <li>7. The radiation And found the found the</li></ul> | In level of the<br>d, then testing<br>ld be reported<br>would be re-t<br>nod as specifi<br>measuremen<br>e X axis posit<br>node is record<br>6.0 for details                                       | could be stop<br>d. Otherwise the<br>ested one by<br>ed and then re-<br>nts are perforr<br>ioning which in<br>ed in the reports                                                                                    | oped and the<br>ne emissions<br>one using pe<br>eported in a c<br>ned in X, Y, 2<br>t is worse cas                                                                                                  | peak values of<br>that did not have<br>eak, quasi-peak or<br>data sheet.<br>Z axis positioning.                                                                                             |  |



#### **Measurement Data**

Test channel:

| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 38.91                   | 27.59                       | 5.38                  | 30.18                    | 41.70             | 74.00                  | -32.30                | Horizontal   |
| 2400.00            | 55.13                   | 27.58                       | 5.39                  | 30.18                    | 57.92             | 74.00                  | -16.08                | Horizontal   |
| 2390.00            | 39.08                   | 27.59                       | 5.38                  | 30.18                    | 41.87             | 74.00                  | -32.13                | Vertical     |
| 2400.00            | 56.74                   | 27.58                       | 5.39                  | 30.18                    | 59.53             | 74.00                  | -14.47                | Vertical     |
| Average value:     |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency          | Read                    | Antenna                     | Cable                 | Preamp                   | Level             | Limit Line             | Over                  | Polarization |

Lowest

| Frequency<br>(MHz) | Level<br>(dBuV) | Factor<br>(dB/m) | Loss<br>(dB) | Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Limit<br>(dB) | Polarization |
|--------------------|-----------------|------------------|--------------|----------------|-------------------|------------------------|---------------|--------------|
| 2390.00            | 30.36           | 27.59            | 5.38         | 30.18          | 33.15             | 54.00                  | -20.85        | Horizontal   |
| 2400.00            | 41.36           | 27.58            | 5.39         | 30.18          | 44.15             | 54.00                  | -9.85         | Horizontal   |
| 2390.00            | 30.02           | 27.59            | 5.38         | 30.18          | 32.81             | 54.00                  | -21.19        | Vertical     |
| 2400.00            | 42.63           | 27.58            | 5.39         | 30.18          | 45.42             | 54.00                  | -8.58         | Vertical     |

# Test channel:

| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 40.57                   | 27.53                       | 5.47                  | 29.93                    | 43.64             | 74.00                  | -30.36                | Horizontal   |
| 2500.00            | 40.49                   | 27.55                       | 5.49                  | 29.93                    | 43.60             | 74.00                  | -30.40                | Horizontal   |
| 2483.50            | 40.75                   | 27.53                       | 5.47                  | 29.93                    | 43.82             | 74.00                  | -30.18                | Vertical     |
| 2500.00            | 41.11                   | 27.55                       | 5.49                  | 29.93                    | 44.22             | 74.00                  | -29.78                | Vertical     |

Highest

#### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 2483.50            | 33.16                   | 27.53                       | 5.47                  | 29.93                    | 36.23             | 54.00                  | -17.77                | Horizontal   |
| 2500.00            | 31.72                   | 27.55                       | 5.49                  | 29.93                    | 34.83             | 54.00                  | -19.17                | Horizontal   |
| 2483.50            | 34.04                   | 27.53                       | 5.47                  | 29.93                    | 37.11             | 54.00                  | -16.89                | Vertical     |
| 2500.00            | 31.31                   | 27.55                       | 5.49                  | 29.93                    | 34.42             | 54.00                  | -19.58                | Vertical     |

#### Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

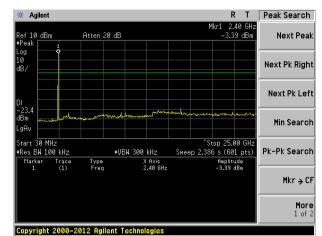
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

З. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.



# 7.7 Spurious Emission

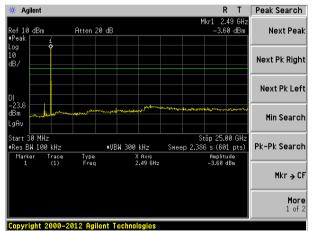
# 7.7.1 Conducted Emission Method


| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

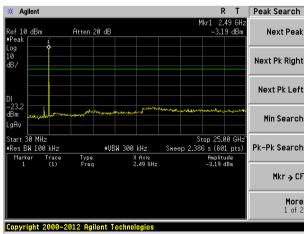


# Test plot as follows:

Lowest channel


### Report No.: GTS201809000149F02




30MHz~25GHz

### Middle channel

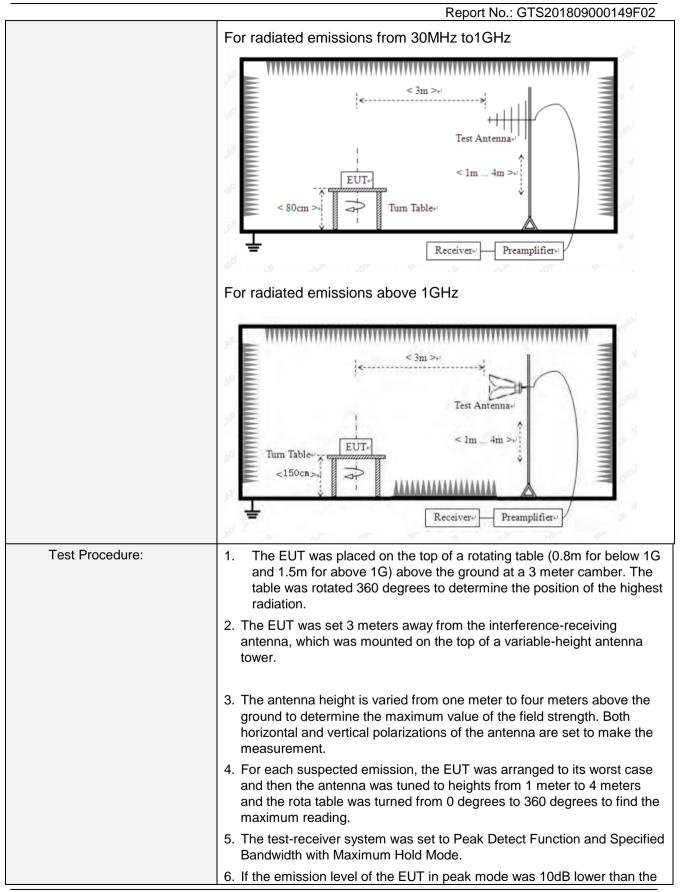
Highest channel



30MHz~25GHz






Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 7.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Section | on 15.209     |        |        |                         |
|-----------------------|----------------------|---------------|--------|--------|-------------------------|
| Test Method:          | ANSI C63.10:2013     |               |        |        |                         |
| Test Frequency Range: | 9kHz to 25GHz        |               |        |        |                         |
| Test site:            | Measurement Distan   | ce: 3m        |        |        |                         |
| Receiver setup:       |                      |               |        |        |                         |
|                       | Frequency            | Detector      | RBW    | VBW    | Value                   |
|                       | 30MHz-1GHz           | Quasi-peak    | 120KHz | 300KHz | Quasi-peak              |
|                       |                      | Peak          | 1MHz   | 3MHz   | Peak                    |
|                       | Above 1GHz           | RMS           | 1MHz   | 3MHz   | Average                 |
|                       | Frequency            | Limit (u\     | //m)   | Value  | Measurement<br>Distance |
|                       | 30MHz-88MHz          | 100           | 100    |        |                         |
|                       | 88MHz-216MHz         | 150           |        | QP     |                         |
|                       | 216MHz-960MHz        | z 200         |        | QP     | <b>2</b> m              |
|                       | 960MHz-1GHz          | 500           |        | QP     | 3m                      |
|                       | Above 1GHz           | 500           | A      | verage |                         |
|                       |                      | 5000          |        | Peak   |                         |
| Test setup:           | For radiated emiss   | ions from 9kH | ****   | lz     |                         |





Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

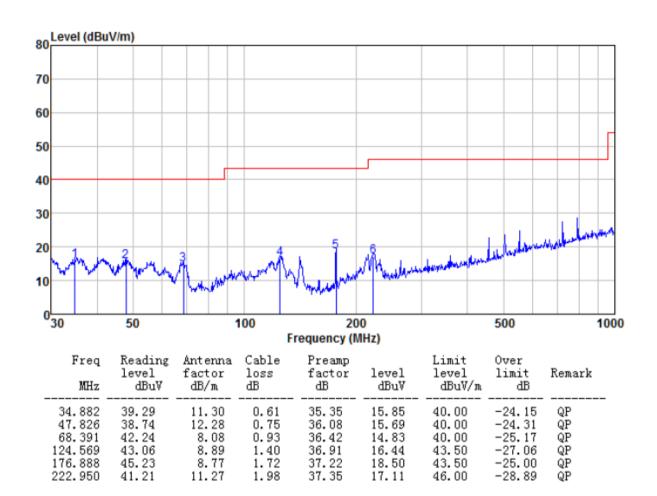


|                   | Report No.: GTS201809000149F02                                            |
|-------------------|---------------------------------------------------------------------------|
|                   | limit specified, then testing could be stopped and the peak values of the |
|                   | EUT would be reported. Otherwise the emissions that did not have 10dB     |
|                   | margin would be re-tested one by one using peak, quasi-peak or            |
|                   | average method as specified and then reported in a data sheet.            |
| Test Instruments: | Refer to section 6.0 for details                                          |
| Test mode:        | Refer to section 5.2 for details                                          |
| Test voltage:     | AC 120V, 60Hz                                                             |
| Test results:     | Pass                                                                      |

#### Measurement data:

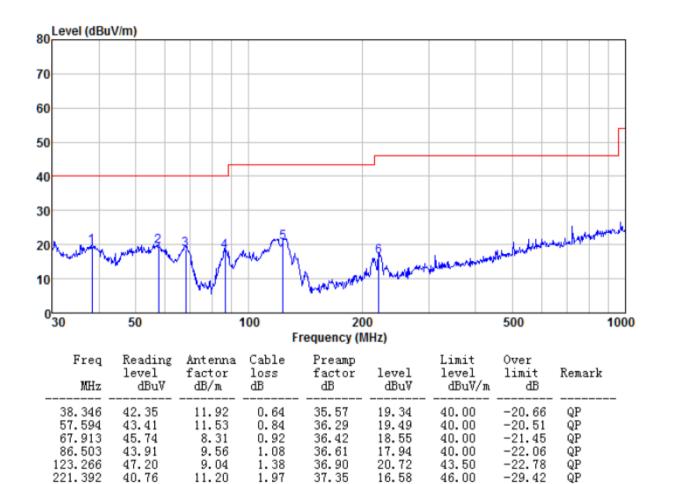
#### Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.




#### Below 1GHz

| Mode:           | Transmitting mode | Test by:      | Bill       |
|-----------------|-------------------|---------------|------------|
| Temp./Hum.(%H): | 26℃/56%RH         | Polarziation: | Horizontal |





| Mode:           | Transmitting mode | Test by:      | Bill     |
|-----------------|-------------------|---------------|----------|
| Temp./Hum.(%H): | 26℃/56%RH         | Polarziation: | Vertical |





#### Above 1GHz

# Report No.: GTS201809000149F02

| Test channel       | Test channel: Lowest    |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4804.00            | 34.10                   | 31.78                       | 8.60                  | 32.09                    | 42.39             | 74.00                  | -31.61                | Vertical     |
| 7206.00            | 29.71                   | 36.15                       | 11.65                 | 32.00                    | 45.51             | 74.00                  | -28.49                | Vertical     |
| 9608.00            | 29.58                   | 37.95                       | 14.14                 | 31.62                    | 50.05             | 74.00                  | -23.95                | Vertical     |
| 12010.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14412.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4804.00            | 37.74                   | 31.78                       | 8.60                  | 32.09                    | 46.03             | 74.00                  | -27.97                | Horizontal   |
| 7206.00            | 31.18                   | 36.15                       | 11.65                 | 32.00                    | 46.98             | 74.00                  | -27.02                | Horizontal   |
| 9608.00            | 28.70                   | 37.95                       | 14.14                 | 31.62                    | 49.17             | 74.00                  | -24.83                | Horizontal   |
| 12010.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14412.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4804.00            | 23.52                   | 31.78                       | 8.60                  | 32.09                    | 31.81             | 54.00                  | -22.19                | Vertical     |
| 7206.00            | 18.76                   | 36.15                       | 11.65                 | 32.00                    | 34.56             | 54.00                  | -19.44                | Vertical     |
| 9608.00            | 18.03                   | 37.95                       | 14.14                 | 31.62                    | 38.50             | 54.00                  | -15.50                | Vertical     |
| 12010.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14412.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4804.00            | 27.40                   | 31.78                       | 8.60                  | 32.09                    | 35.69             | 54.00                  | -18.31                | Horizontal   |
| 7206.00            | 20.72                   | 36.15                       | 11.65                 | 32.00                    | 36.52             | 54.00                  | -17.48                | Horizontal   |
| 9608.00            | 17.50                   | 37.95                       | 14.14                 | 31.62                    | 37.97             | 54.00                  | -16.03                | Horizontal   |
| 12010.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14412.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel       | Test channel: Middle    |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4880.00            | 33.99                   | 31.85                       | 8.67                  | 32.12                    | 42.39             | 74.00                  | -31.61                | Vertical     |
| 7320.00            | 29.63                   | 36.37                       | 11.72                 | 31.89                    | 45.83             | 74.00                  | -28.17                | Vertical     |
| 9760.00            | 29.51                   | 38.35                       | 14.25                 | 31.62                    | 50.49             | 74.00                  | -23.51                | Vertical     |
| 12200.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14640.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4880.00            | 37.60                   | 31.85                       | 8.67                  | 32.12                    | 46.00             | 74.00                  | -28.00                | Horizontal   |
| 7320.00            | 31.09                   | 36.37                       | 11.72                 | 31.89                    | 47.29             | 74.00                  | -26.71                | Horizontal   |
| 9760.00            | 28.62                   | 38.35                       | 14.25                 | 31.62                    | 49.60             | 74.00                  | -24.40                | Horizontal   |
| 12200.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14640.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4880.00            | 23.43                   | 31.85                       | 8.67                  | 32.12                    | 31.83             | 54.00                  | -22.17                | Vertical     |
| 7320.00            | 18.69                   | 36.37                       | 11.72                 | 31.89                    | 34.89             | 54.00                  | -19.11                | Vertical     |
| 9760.00            | 17.97                   | 38.35                       | 14.25                 | 31.62                    | 38.95             | 54.00                  | -15.05                | Vertical     |
| 12200.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14640.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4880.00            | 27.29                   | 31.85                       | 8.67                  | 32.12                    | 35.69             | 54.00                  | -18.31                | Horizontal   |
| 7320.00            | 20.64                   | 36.37                       | 11.72                 | 31.89                    | 36.84             | 54.00                  | -17.16                | Horizontal   |
| 9760.00            | 17.43                   | 38.35                       | 14.25                 | 31.62                    | 38.41             | 54.00                  | -15.59                | Horizontal   |
| 12200.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14640.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "\*", means this data is the too weak instrument of signal is unable to test.

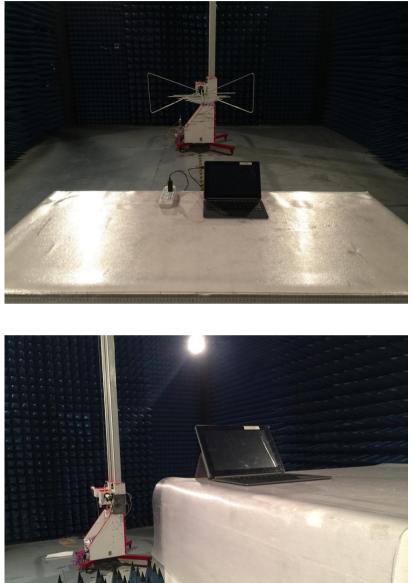
3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel       | Fest channel: Highest   |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4960.00            | 34.14                   | 31.93                       | 8.73                  | 32.16                    | 42.64             | 74.00                  | -31.36                | Vertical     |
| 7440.00            | 29.73                   | 36.59                       | 11.79                 | 31.78                    | 46.33             | 74.00                  | -27.67                | Vertical     |
| 9920.00            | 29.60                   | 38.81                       | 14.38                 | 31.88                    | 50.91             | 74.00                  | -23.09                | Vertical     |
| 12400.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14880.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4960.00            | 37.78                   | 31.93                       | 8.73                  | 32.16                    | 46.28             | 74.00                  | -27.72                | Horizontal   |
| 7440.00            | 31.21                   | 36.59                       | 11.79                 | 31.78                    | 47.81             | 74.00                  | -26.19                | Horizontal   |
| 9920.00            | 28.72                   | 38.81                       | 14.38                 | 31.88                    | 50.03             | 74.00                  | -23.97                | Horizontal   |
| 12400.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14880.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4960.00            | 23.54                   | 31.93                       | 8.73                  | 32.16                    | 32.04             | 54.00                  | -21.96                | Vertical     |
| 7440.00            | 18.77                   | 36.59                       | 11.79                 | 31.78                    | 35.37             | 54.00                  | -18.63                | Vertical     |
| 9920.00            | 18.04                   | 38.81                       | 14.38                 | 31.88                    | 39.35             | 54.00                  | -14.65                | Vertical     |
| 12400.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14880.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4960.00            | 27.42                   | 31.93                       | 8.73                  | 32.16                    | 35.92             | 54.00                  | -18.08                | Horizontal   |
| 7440.00            | 20.73                   | 36.59                       | 11.79                 | 31.78                    | 37.33             | 54.00                  | -16.67                | Horizontal   |
| 9920.00            | 17.51                   | 38.81                       | 14.38                 | 31.88                    | 38.82             | 54.00                  | -15.18                | Horizontal   |
| 12400.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14880.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor


2. "\*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 8 Test Setup Photo

Radiated Emission





**Conducted Emission** 



# 9 EUT Constructional Details

Reference to the test report No. GTS201809000149F01

-----End-----