

Global United Technology Services Co., Ltd.

Report No.: GTS201806000094F02

FCC Report (Bluetooth)

Shenzhen Jingwah Information Technology Co., Ltd. **Applicant:**

4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, **Address of Applicant:**

Shenzhen, China

Manufacturer/Factory: Shenzhen Jingwah Information Technology Co., Ltd.

4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Address of

Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: VR Headset

Model No.: CVR-155A, FV200, CVR-155-A

FCC ID: RBD-CVR155A

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: June 07, 2018

Date of Test: June 08-28, 2018

Date of report issued: June 29, 2018

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 29, 2018	Original

Prepared By:	Bill. Yvan	Date:	June 29, 2018
	Project Engineer		
Check By:	Andy wa	Date:	June 29, 2018

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
	5.6 ADDITIONAL INSTRUCTIONS	
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	11
	7.1 ANTENNA REQUIREMENT	11
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	
	7.5 Power Spectral Density	
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	
8	TEST SETUP PHOTO	34
9	EUT CONSTRUCTIONAL DETAILS	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	VR Headset
Model No.:	CVR-155A, FV200, CVR-155-A
Test Model No:	CVR-155A
	identical in the same PCB layout, interior structure and electrical circuits. model name for commercial purpose.
Serial No.:	005VRSXIC5
Test sample(s) ID:	GTS201806000094-1
Sample(s) Status	Engineer sample
Hardware version:	FV200_MAINPCB_VER2.3
Software version:	FV208_170810_Update
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Internal Antenna
Antenna Gain:	0.79dBi(Max.), for TX/RX (2.4G Bluetooth and WLAN)
	2.30dBi(Max.), for TX/RX (5G,5.8G WLAN)
Power Supply:	10-Port 60W USB AC Charger
	Input: AC100-240V, 50/60Hz, 1.3A
	Output: DC 5 to 2.4A*5 or DC 5V to 1A*10
	Or
	Battery: DC 3.8V, 4000mAh

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
		• !	•	• !	• !	• :	•	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode	Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.					
Test Software Name	Ampak RFTestTool,VER:5.3					
Mode	Channel	Frequency (MHz)	Level Set			
GFSK	CH01	2402				
	CH20	CH20 2440				
	CH40	2480				

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		

Conduc	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

Cond	Conducted:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

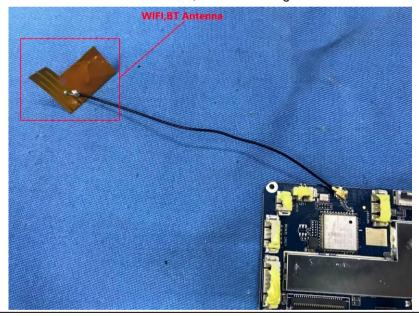
Gene	General used equipment:							
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Inventory No. Cal.Date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019		
2 Barometer		ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

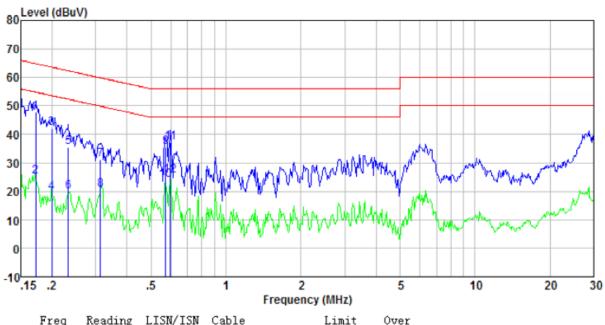

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

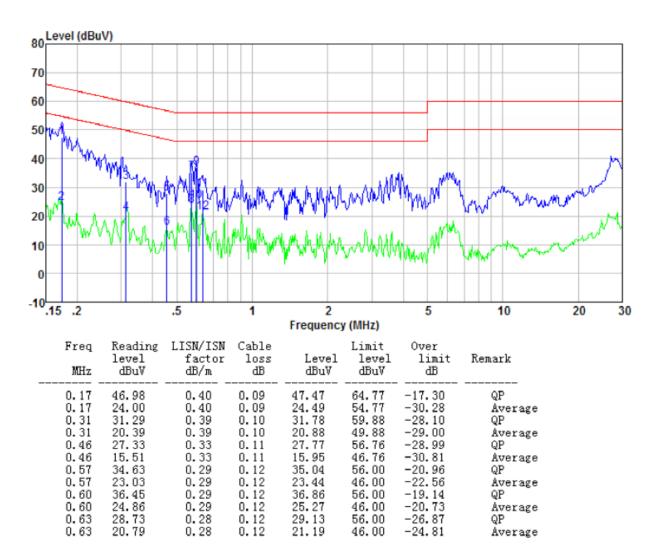
The antenna is internal antenna, the best case gain of the antenna is 0.79dBi


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Fraguency range (MUT)	Limit (c	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Took ookuni	* Decreases with the logarithm	i or the frequency.				
Test setup:	Reference Plane		•			
	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.					
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHProbe:Line



Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.17	47.32	0.40	0.09	47.81	64.86	-17.05	QP
0.17	24.73	0.40	0.09	25.22	54.86	-29.64	Average
0.20	41.50	0.40	0.11	42.01	63.62	-21.61	QP
0.20	18.92	0.40	0.11	19.43	53.62	-34.19	Average
0.23	34.83	0.40	0.11	35.34	62.35	-27.01	QP
0.23	19.32	0.40	0.11	19.83	52.35	-32.52	Average
0.31	30.79	0.39	0.10	31.28	59.88	-28.60	QP
0.31	20.02	0.39	0.10	20.51	49.88	-29.37	Average
0.57	34.95	0.29	0.12	35.36	56.00	-20.64	QP
0.57	23.33	0.29	0.12	23.74	46.00	-22.26	Average
0.60	36.90	0.29	0.12	37.31	56.00	-18.69	QP
0.60	25.21	0.29	0.12	25.62	46.00	-20.38	Average

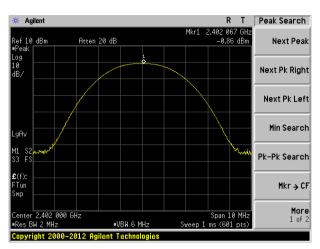
Report No.: GTS201806000094F02

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHProbe:Neutral

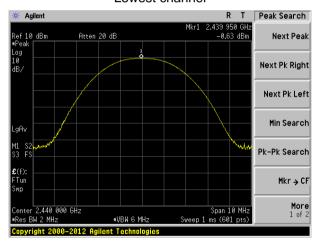
Notes:

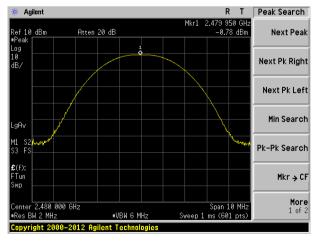
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data


Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.86		
Middle	-0.63	30.00	Pass
Highest	-0.78		

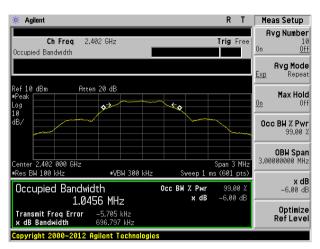

Test plot as follows:

Lowest channel

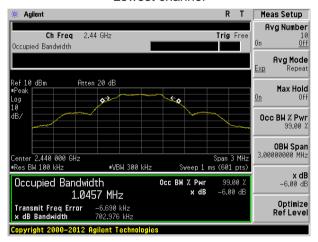
Middle channel

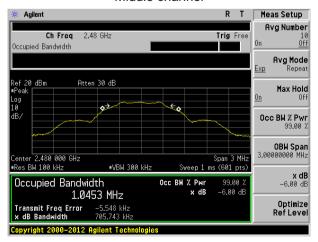
Highest channel

7.4 Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.697		
Middle	0.703	>500	Pass
Highest	0.706		


Test plot as follows:

Lowest channel

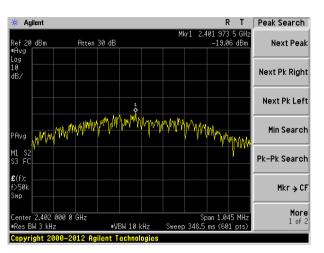
Middle channel

Highest channel

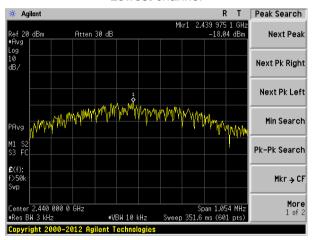


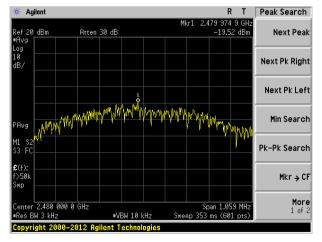
7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-19.06		
Middle	-18.04	8.00	Pass
Highest	-19.52		

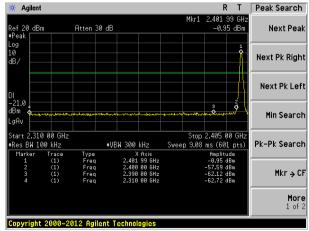


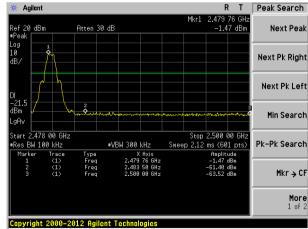

Test plot as follows:

Lowest channel

Middle channel

Highest channel




7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10:20	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	ind's (2310MHz to			
Test site:	Measurement D							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Abaya 4CU-	Peak	1MHz	3MHz	Peak			
	Above 1GHz	RMS	1MHz	3MHz	Average			
Limit:	Freque	ency	Limit (dBuV	,	Value			
	Above 1	GHz	54.0 74.0		Average Peak			
Test setup:	Tum Table*	?		Antenna- Antenna- Antenna- Preamplifie	T+1			
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emissic limit specified the EUT wou 10dB margin average met 7. The radiation	t a 3 meter case position of the set 3 meters chewas mount height is varietermine the moderation of the set of	mber. The tall he highest race away from the ed on the toped from one naximum value rizations of the fon, the EUT tuned to height as set to Peal Maximum Hole EUT in peak could be stoped. Otherwise the ested one by ed and then rats are performed and to the stoped and then rats are performed and the stoped and then rats are performed and the stoped and then rats are performed and the stoped and	ole was rotated diation. The interference of a variable meter to four report of the field see antenna are was arranged hits from 1 meters to 360 at Detect Fund Mode, mode was 10 pped and the emissions one using period in X, Y, X, and the diation of the emissions one diation X, Y, X, and the emissions of the emissions one diation X, Y, X, and X,	ed 360 degrees to ce-receiving theight antenna meters above the strength. Both re set to make the did to its worst case eter to 4 meters degrees to find metion and DdB lower than the peak values of that did not have eak, quasi-peak or			
Test Instruments:	Refer to section	node is record		л с.				
Test mode:	Refer to section							
		5.2 IOI detalls)					
Test results:	Pass							

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	37.49	27.61	5.36	30.18	40.28	74.00	-33.72	Horizontal
2390.00	40.44	27.59	5.38	30.18	43.23	74.00	-30.77	Horizontal
2400.00	56.88	27.58	5.39	30.18	59.67	74.00	-14.33	Horizontal
2310.00	37.68	27.61	5.36	30.18	40.47	74.00	-33.53	Vertical
2390.00	40.75	27.59	5.38	30.18	43.54	74.00	-30.46	Vertical
2400.00	58.65	27.58	5.39	30.18	61.44	74.00	-12.56	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	30.74	27.61	5.36	30.18	33.53	54.00	-20.47	Horizontal
2390.00	31.54	27.59	5.38	30.18	34.33	54.00	-19.67	Horizontal
2400.00	42.63	27.58	5.39	30.18	45.42	54.00	-8.58	Horizontal
2310.00	30.95	27.61	5.36	30.18	33.74	54.00	-20.26	Vertical
2390.00	31.31	27.59	5.38	30.18	34.10	54.00	-19.90	Vertical
2400.00	44.05	27.58	5.39	30.18	46.84	54.00	-7.16	Vertical

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.25	27.53	5.47	29.93	45.32	74.00	-28.68	Horizontal
2500.00	41.89	27.55	5.49	29.93	45.00	74.00	-29.00	Horizontal
2483.50	42.69	27.53	5.47	29.93	45.76	74.00	-28.24	Vertical
2500.00	42.65	27.55	5.49	29.93	45.76	74.00	-28.24	Vertical

Average value:

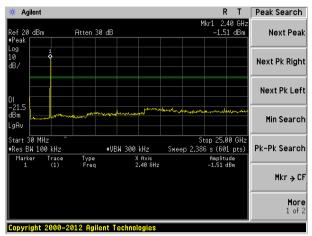
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.34	27.53	5.47	29.93	37.41	54.00	-16.59	Horizontal
2500.00	32.69	27.55	5.49	29.93	35.80	54.00	-18.20	Horizontal
2483.50	35.35	27.53	5.47	29.93	38.42	54.00	-15.58	Vertical
2500.00	32.41	27.55	5.49	29.93	35.52	54.00	-18.48	Vertical

Remark:

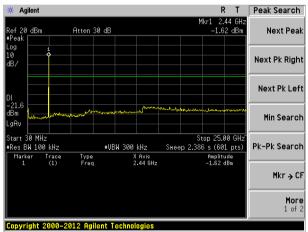
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

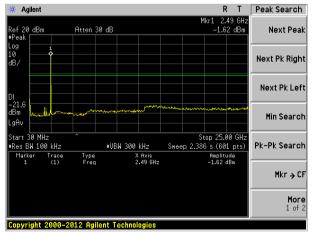
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Test plot as follows:


Lowest channel

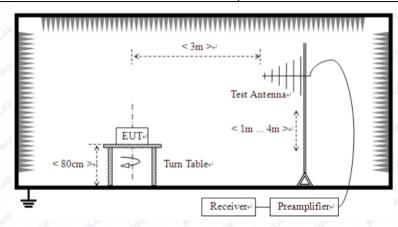
Report No.: GTS201806000094F02

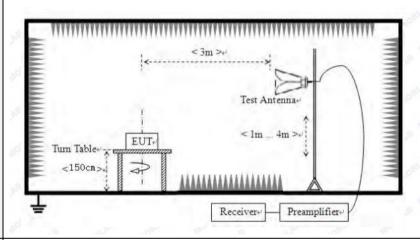

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz


30MHz~25GHz


7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209											
Test Method:	ANSI C63.10:2013											
Test Frequency Range:	9kHz to 25GHz											
Test site:	Measurement Distance: 3m											
Receiver setup:	Frequency		Detector	RB	W	VBW	Value					
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600Hz	Quasi-peak					
	150KHz-30MHz	Qi	uasi-peak	9KI	Ηz	30KHz	Quasi-peak					
	30MHz-1GHz	Qi	uasi-peak	100k	(Hz	300KHz	Z Quasi-peak					
	Above 1GHz		Peak	1MI	Hz	3MHz	Peak					
	Above 1GHz		Peak	1MI	Hz	10Hz	Average					
Limit:	Frequency		Limit (u\	//m)	V	/alue	Measurement Distance					
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m					
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	300m					
	1.705MHz-30MH	lz	30			QP	30m					
	30MHz-88MHz		100			QP						
	88MHz-216MHz	<u> </u>	150		QP							
	216MHz-960MH	Z				QP	3m					
	960MHz-1GHz		500		QP							
	Above 1GHz		500		Average							
	7.5070 10112		5000)	F	Peak						
Test setup:	For radiated emission Tum Table < 80cm > 1	EUI	< 3m	*****	······································	Preamplifier						
	For radiated emission	ns fr	om 30MHz	For radiated emissions from 30MHz to1GHz								

For radiated emissions above 1GHz

Test Procedure:

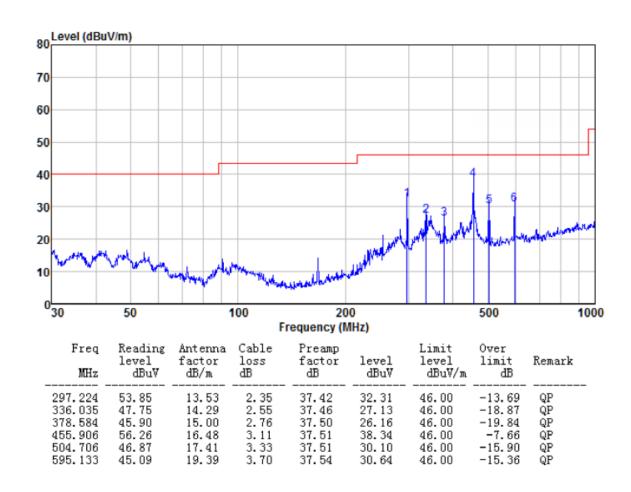
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

	Report No.: GTS201806000094F02
	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

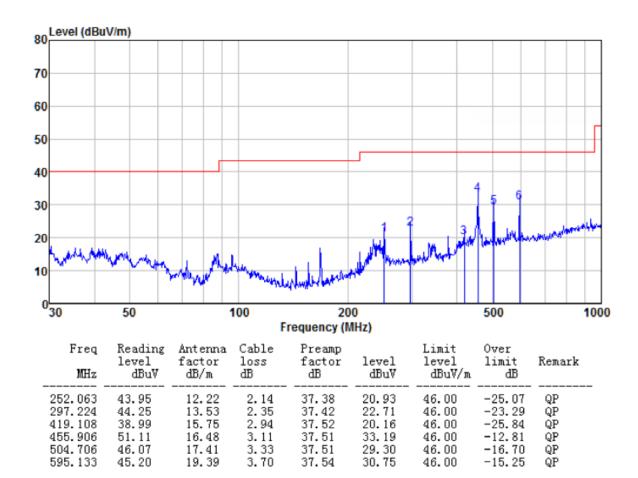
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ Below 1GHz

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHPolarziation:Horizontal

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHPolarziation:Vertical

■ Above 1GHz

Report No.: GTS201806000094F02

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.43	31.78	8.60	32.09	44.72	74.00	-29.28	Vertical
7206.00	31.25	36.15	11.65	32.00	47.05	74.00	-26.95	Vertical
9608.00	30.95	37.95	14.14	31.62	51.42	.42 74.00		Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.53	31.78	8.60	32.09	48.82	74.00	-25.18	Horizontal
7206.00	32.93	36.15	11.65	32.00	48.73	74.00	-25.27	Horizontal
9608.00	30.29	37.95	14.14	31.62	50.76	74.00	-23.24	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Average var	40.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.41	31.78	8.60	32.09	33.70	54.00	-20.30	Vertical
7206.00	20.03	36.15	11.65	32.00	35.83	54.00	-18.17	Vertical
9608.00	19.17	37.95	14.14	31.62	39.64	54.00	-14.36	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.54	31.78	8.60	32.09	37.83	54.00	-16.17	Horizontal
7206.00	22.15	36.15	11.65	32.00	37.95	54.00	-16.05	Horizontal
9608.00	18.82	37.95	14.14	31.62	39.29	54.00	-14.71	Horizontal
12010.00	*			_		54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	nnel: Middle							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	36.68	31.85	8.67	32.12	45.08	74.00	-28.92	Vertical
7320.00	31.42	36.37	11.72	31.89	47.62	74.00	-26.38	Vertical
9760.00	31.10	38.35	14.25	31.62	52.08	74.00	-21.92	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	40.84	31.85	8.67	32.12	49.24	74.00	-24.76	Horizontal
7320.00	33.12	36.37	11.72	31.89	49.32	74.00	-24.68	Horizontal
9760.00	30.47	38.35	14.25	31.62	51.45	74.00	-22.55	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:				_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	25.63	31.85	8.67	32.12	34.03	54.00	-19.97	Vertical
7320.00	20.18	36.37	11.72	31.89	36.38	54.00	-17.62	Vertical
9760.00	19.30	38.35	14.25	31.62	40.28	54.00	-13.72	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	29.79	31.85	8.67	32.12	38.19	54.00	-15.81	Horizontal
7320.00	22.31	36.37	11.72	31.89	38.51	54.00	-15.49	Horizontal
9760.00	18.98	38.35	14.25	31.62	39.96	54.00	-14.04	Horizontal

Remark:

12200.00

14640.00

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

Horizontal

54.00

54.00

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	est channel: Highest								
Peak value:				'					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	<u>.</u> ⊢ L€	evel uV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.53	31.93	8.73	32.16	6 45	5.03	74.00	-28.97	Vertical
7440.00	31.32	36.59	11.79	31.78	3 47	7.92	74.00	-26.08	Vertical
9920.00	31.01	38.81	14.38	31.88	3 52	2.32	74.00	-21.68	Vertical
12400.00	*						74.00		Vertical
14880.00	*						74.00		Vertical
4960.00	40.66	31.93	8.73	32.16	6 49	9.16	74.00	-24.84	Horizontal
7440.00	33.01	36.59	11.79	31.78	3 49	9.61	74.00	-24.39	Horizontal
9920.00	30.36	38.81	14.38	31.88	3 51	1.67	74.00	-22.33	Horizontal
12400.00	*						74.00		Horizontal
14880.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r dBi	evel uV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.56	31.93	8.73	32.16	34	1.06	54.00	-19.94	Vertical
7440.00	20.14	36.59	11.79	31.78	36	6.74	54.00	-17.26	Vertical
9920.00	19.26	38.81	14.38	31.88	3 40).57	54.00	-13.43	Vertical
12400.00	*						54.00		Vertical
14880.00	*						54.00		Vertical
4960.00	29.71	31.93	8.73	32.16	38	3.21	54.00	-15.79	Horizontal
7440.00	22.26	36.59	11.79	31.78	38	3.86	54.00	-15.14	Horizontal
9920.00	18.93	38.81	14.38	31.88	3 40).24	54.00	-13.76	Horizontal
12400.00	*						54.00		Horizontal
14880.00	*						54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201806000094F01

-----End-----