

FCC Report (Bluetooth)

Applicant:	Shenzhen Jingwah Information Technology Co., Ltd.
Address of Applicant:	4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Shenzhen, China
Manufacturer/Factory:	Shenzhen Jingwah Information Technology Co., Ltd.
Address of Manufacturer/Factory:	4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Shenzhen, China
Equipment Under Test (E	EUT)
Product Name:	VR Headset
Model No.:	CVR-155A, FV200, CVR-155-A
FCC ID:	RBD-CVR155A
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	June 07, 2018
Date of Test:	June 08-28, 2018
Date of report issued:	June 29, 2018
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above. *

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	June 29, 2018	Original

Bill. yuan June 29, 2018 Prepared By: Date: Project Engineer June 29, 2018 Check By: wa Date:

Reviewer

3 Contents

1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	 5.1 GENERAL DESCRIPTION OF EUT	
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	11
	7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED PEAK OUTPUT POWER 7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER 7.7 DWELL TIME 7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 7.9 BAND EDGE 7.9.1 Conducted Emission Method 7.9.2 Radiated Emission Method 7.10 SPURIOUS EMISSION 7.10.1 Conducted Emission Method 7.10.2 Radiated Emission Method	12 15 19 23 27 28 30 31 31 35 37 37 39
8	TEST SETUP PHOTO	47
9	EUT CONSTRUCTIONAL DETAILS	49

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
9kHz ~ 30MHz	± 4.34dB	(1)
30MHz ~ 1000MHz	± 4.24dB	(1)
1GHz ~ 26.5GHz	± 4.68dB	(1)
0.15MHz ~ 30MHz	± 3.45dB	(1)
	9kHz ~ 30MHz 30MHz ~ 1000MHz 1GHz ~ 26.5GHz	9kHz ~ 30MHz ± 4.34dB 30MHz ~ 1000MHz ± 4.24dB 1GHz ~ 26.5GHz ± 4.68dB

5 General Information

5.1 General Description of EUT

Product Name:	VR Headset				
Model No.:	CVR-155A, FV200, CVR-155-A				
Test Model No:	CVR-155A				
	identical in the same PCB layout, interior structure and electrical circuits. model name for commercial purpose.				
Test sample(s) ID:	GTS201806000094-1				
Serial No.:	005VRSXIC5				
Sample(s) Status	Engineer sample				
Hardware version:	FV200_MAINPCB_VER2.3				
Software version:	FV208_170810_Update				
Operation Frequency:	2402MHz~2480MHz				
Channel numbers:	79				
Channel separation:	1MHz				
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK				
Antenna Type:	Internal Antenna				
Antenna gain:	0.79dBi(Max.), for TX/RX (2.4G Bluetooth and WLAN) 2.30dBi(Max.), for TX/RX (5G,5.8G WLAN)				
Power supply:	10-Port 60W USB AC Charger				
	Input: AC100-240V, 50/60Hz, 1.3A				
	Output: DC 5 to 2.4A*5 or DC 5V to 1A*10				
	Or				
	Battery: DC 3.8V, 4000mAh				

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

	Transmitting mode	Keep the EUT in continuously transmitting mode.				
	Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report ju shows that condition's data.					
5.3	Description of Supp	ort Units				
	None.					
5.4	4 Test Facility					
	 The test facility is recognized, certified, or accredited by the following organizations: FCC —Registration No.: 381383 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018. Industry Canada (IC) —Registration No.: 9079A-2 The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016. 					
5.5	Test Location					
	All tests were performed a	at:				
		/ Services Co., Ltd. F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, , Guangdong, China 518102				

Tel: 0755-27798480

Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.					
Test Software Name	Ampak RFTestTool,VER:5.3				
Mode	Channel	Frequency (MHz)	Level Set		
GFSK, π/4-DQPSK, 8-	CH01	2402	TX level :		
DPSK	2441	Maximum			
	ινιαλιπιμπ				

6 Test Instruments list

Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019

Conduct	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	КТЈ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

Cond	Conducted:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019

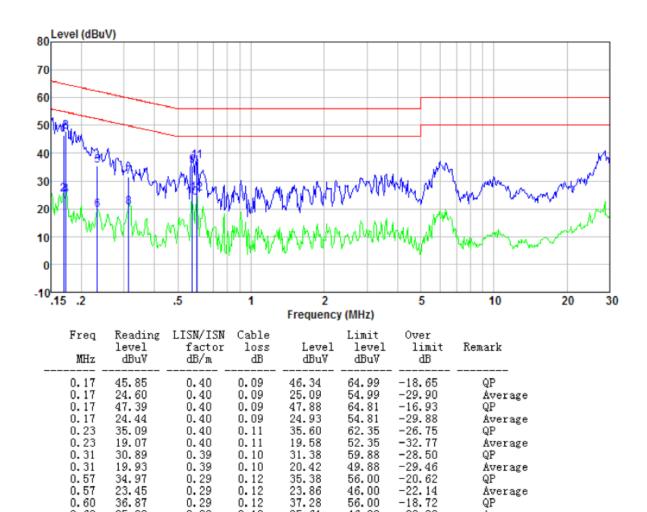
Gene	General used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

7.1	Antenna requirement			
	Standard requirement:	FCC Part15 C Section 15.203 /247(c)		
	15.203 requirement:			
	responsible party shall be us antenna that uses a unique	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.		
	15.247(c) (1)(i) requiremen	nt:		
	operations may employ tran	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.		
	E.U.T Antenna:			
	The antenna is internal antenna, the best case gain of the antenna is 0.79dBi			


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv					
Limit:		BuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test setup:	Reference Plane		-			
	AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	er			
Test procedure:	 The E.U.T and simulators are connected to the main power throug line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power thro LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup ar photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be characterized. 					
	according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.2 Conducted Emissions

Measurement data:

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Probe:	Line

0.29

0.29

0.12

25.61

36.87

25.20

0.60

Average

Average

QP

-18.72

-20.39

56.00

46.00

Mode:		Transmit	ing mode			Те	est by:	Bill		
Temp./Hum.(%I	H):	26℃/56%	RH			Pr	obe:	Neutral		
70 60 50 ym 40 30 2 20 10 0			Malin	ANG AND A	V. MA	ywww.	Myny Maria	han man	domber of	/* /*
-10 <mark>.15</mark>	.2		.5	1	2 Frequency	(MHz)	5	10	20	30
	Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark		
	0.17 0.23 0.23 0.32 0.32 0.57 0.57 0.60 0.60 0.63 0.63	46.72 25.04 36.68 17.47 31.23 22.14 32.62 19.62 36.47 24.89 28.85 16.77	0.40 0.40 0.40 0.39 0.39 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.2	0.09 0.09 0.11 0.11 0.10 0.12 0.12 0.12 0.12 0.12	47.21 25.53 37.19 17.98 31.72 22.63 33.03 20.03 36.88 25.30 29.25 17.17	$\begin{array}{c} 64.94\\ 54.94\\ 62.44\\ 52.44\\ 59.80\\ 49.80\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\end{array}$	-17.73 -29.41 -25.25 -34.46 -28.08 -27.17 -22.97 -19.12 -20.70 -26.75 -28.83	QP Average QP Average QP Average QP Average QP Average QP Average QP		

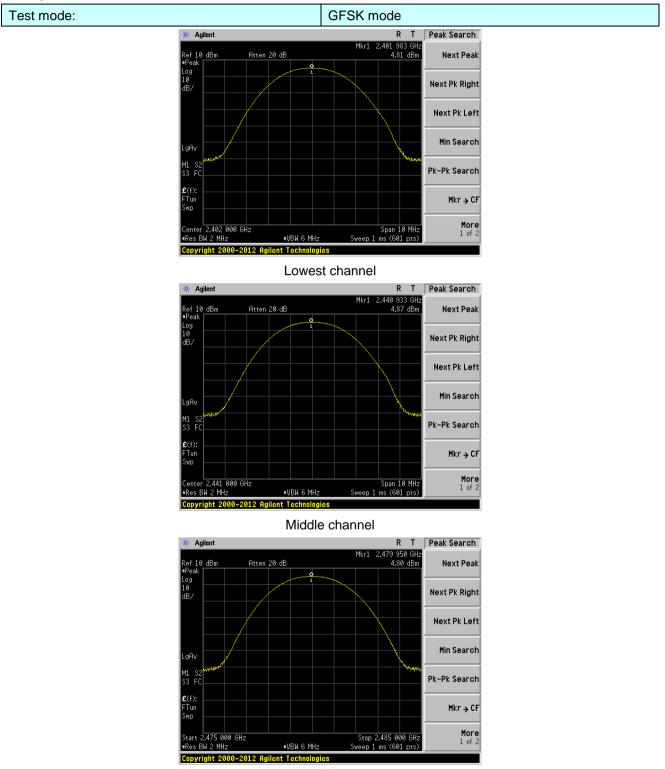
Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

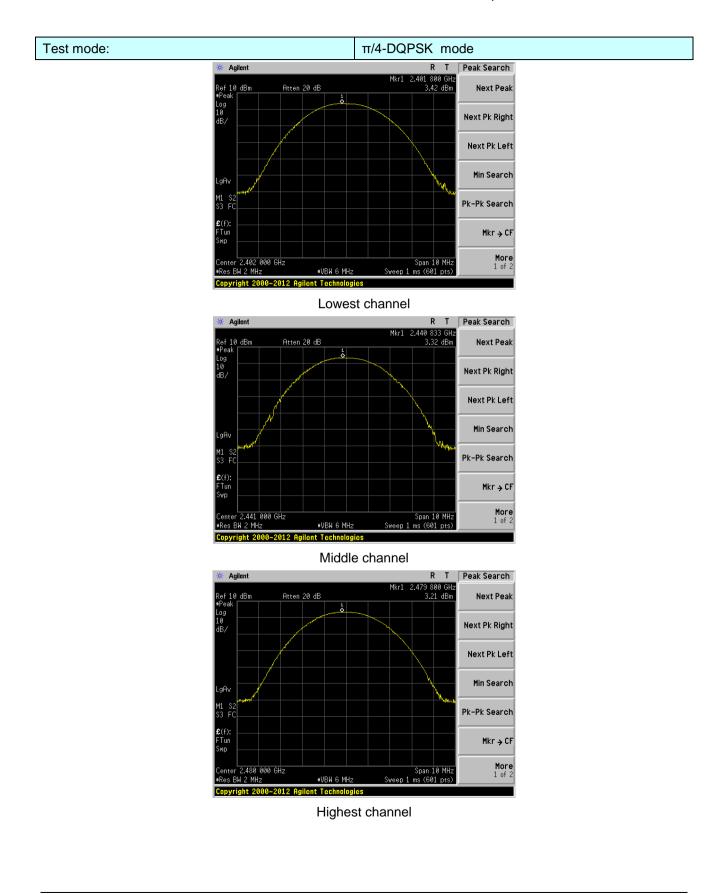
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

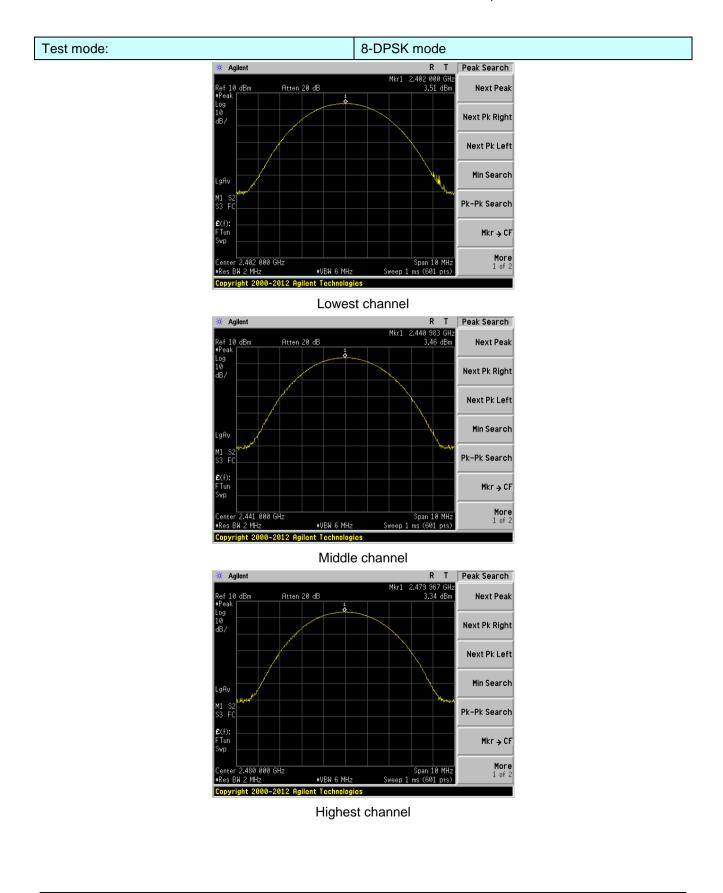
3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	30dBm(for GFSK),20.97dBm(for EDR)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	


7.3 Conducted Peak Output Power

Measurement Data


Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	4.81		
GFSK	Middle	4.87	30.00	Pass
	Highest	4.80		
	Lowest	3.42		
π/4-DQPSK	Middle	3.32	20.97	Pass
	Highest	3.21		
	Lowest	3.51		
8-DPSK	Middle	3.46	20.97	Pass
	Highest	3.34		

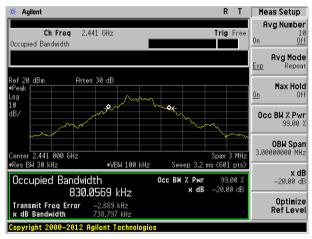

Test plot as follows:

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.746	
GFSK	Middle	0.739	Pass
	Highest	0.743	
	Lowest	1.121	
π/4-DQPSK	Middle	1.117	Pass
	Highest	1.117	
	Lowest	1.162	
8-DPSK	Middle	1.164	Pass
	Highest	1.167	

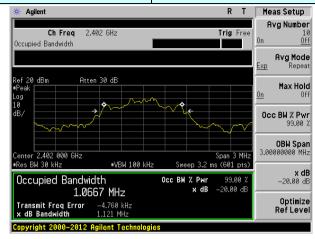


Test plot as follows:

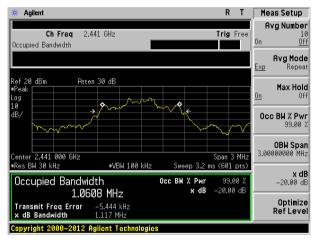
Test mode:

	GFSK mode	
* Agilent	RT	Meas Setup
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free	Avg Number 10 On <u>Off</u>
		Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB #Peak Log 10	<u></u>	Max Hold On Off
dB/	M. SE	Occ BW % Pwr 99.00 %
Center 2.402 000 GHz •Res BW 30 kHz •VBW 100 kHz	Span 3 MHz Sweep 3.2 ms (601 pts)	OBW Span 3.00000000 MHz
Occupied Bandwidth 831.2093 kHz	Осс ВЖ % Рыг 99.00 % х dB -20.00 dB	x dB -20.00 dB
Transmit Freq Error -4.820 kHz × dB Bandwidth 745.677 kHz		Optimize RefLevel

Lowest channel



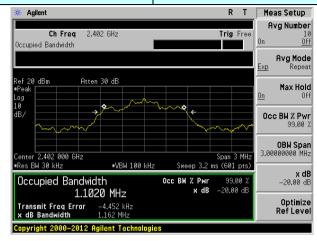
Middle channel



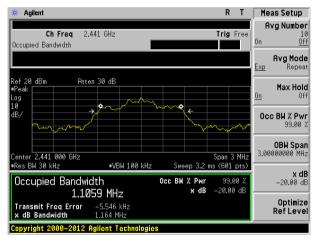
Test mode:

π/4-DQPSK mode

Lowest channel



Middle channel



Test mode:

8-DPSK mode

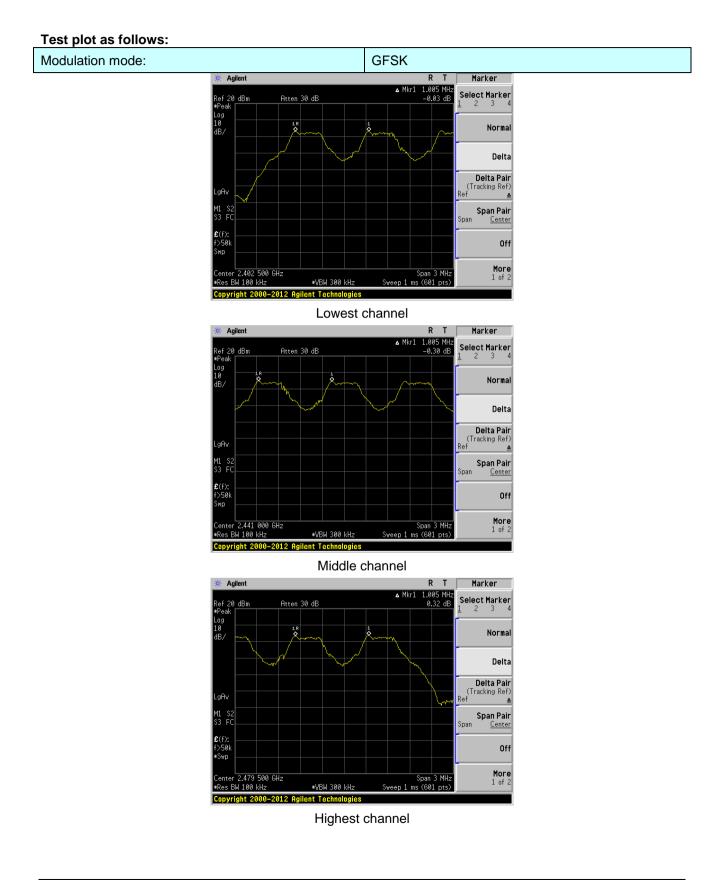
Lowest channel

Middle channel

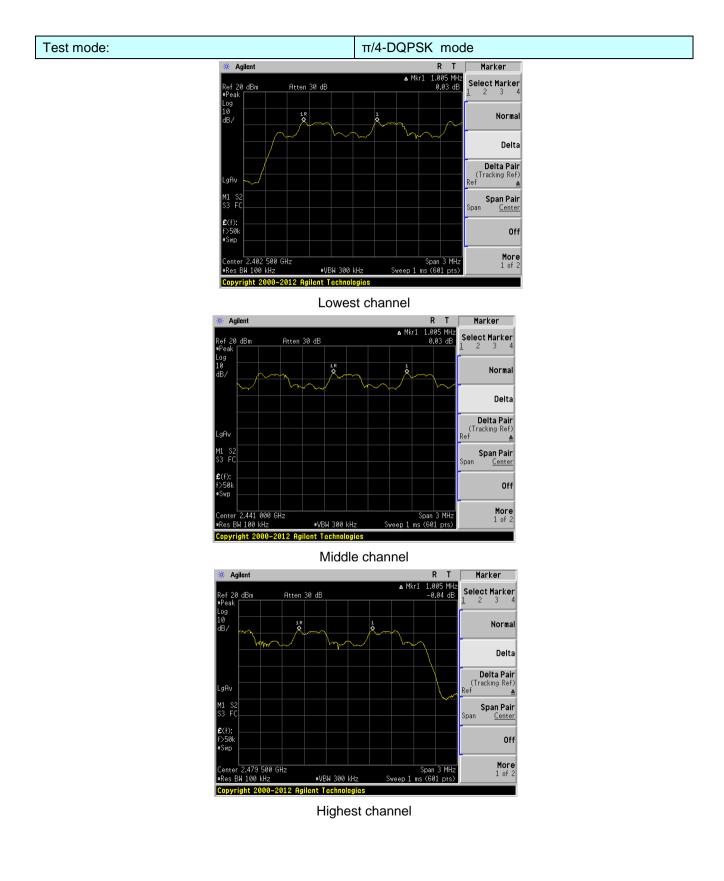
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK: 20dB bandwidth π /4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.5 Carrier Frequencies Separation

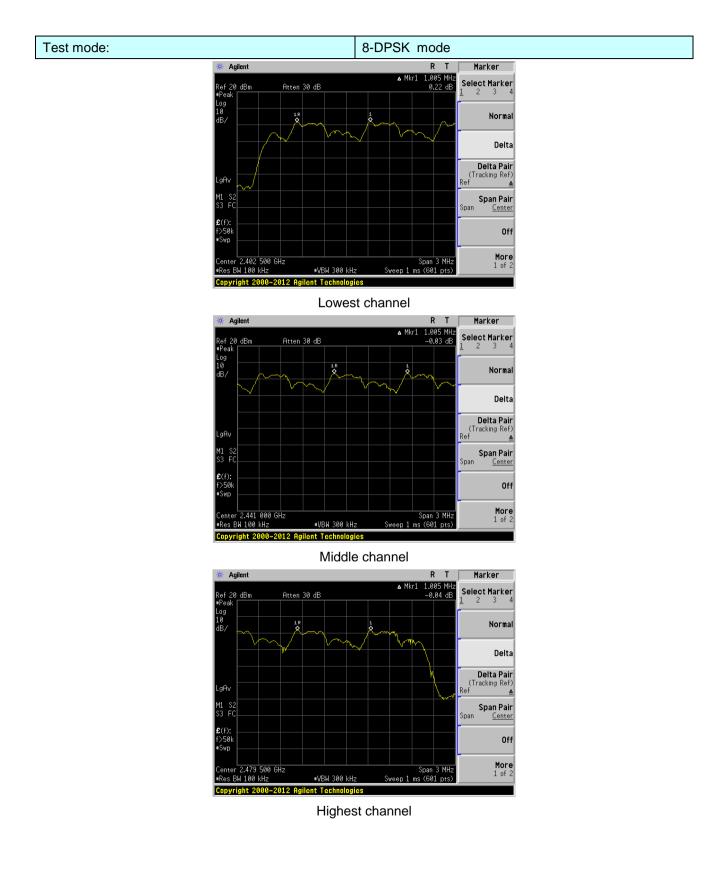
Measurement Data


Mode	Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result
	Lowest	1005	746	Pass
GFSK	Middle	1005	746	Pass
	Highest	Highest 1005		Pass
	Lowest	1005	747	Pass
π/4-DQPSK	Middle	1005	747	Pass
	Highest	1005	747	Pass
	Lowest	1005	778	Pass
8-DPSK	Middle	1005	778	Pass
	Highest	1005	778	Pass

Note: According to section 7.4


Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)		
GFSK	746	746		
π/4-DQPSK	1121	747		
8-DPSK	1167	778		

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



· · · · · · · · · · · · · · · ·	
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

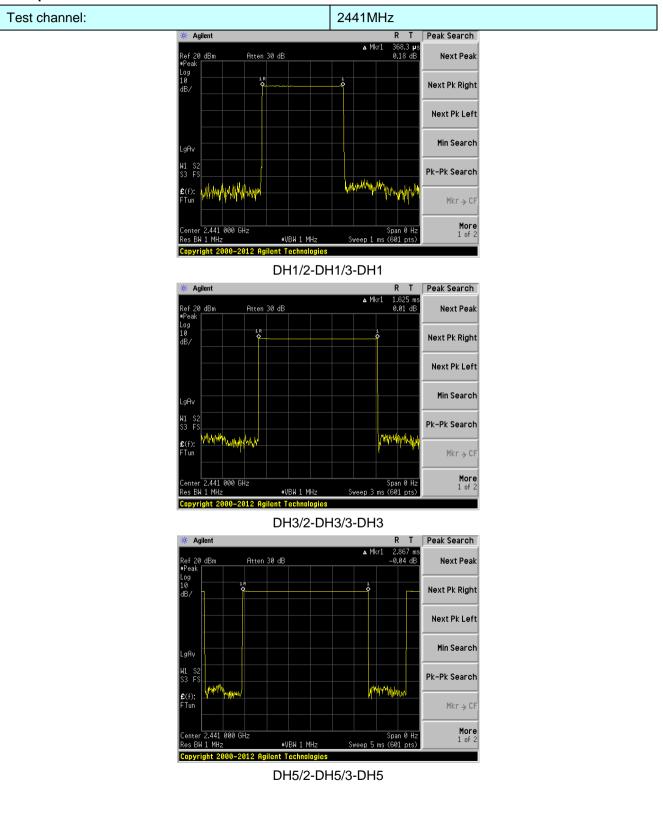
🔆 Agilent				RT	Marker
Ref 20 dBm ■Peak	Atten 30 dB		Mkr2 2.47	79 88 GHz 3.65 dBm	Select Marker
Log 1 10 dB/ 110		YARAANYA MAYAMAYA MA	YWWWWW	WWW	Norma
					Delta
LgAv					Delta Pai (Tracking Ref Ref
Start 2.400 00 GH ■Res BW 100 kHz	≉VBk		Sweep 8 ms (Span Pai Span Cente
Marker Trace 1 (1) 2 (1)	Type Freq Freq	X Axis 2.401 81 GHz 2.479 88 GHz	3.	olitude 30 dBm 35 dBm	Of
					More 1 of 2

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak			
Limit:	0.4 Second			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1/2-DH1/3-DH1	117.86	400	Pass
2441MHz	DH3/2-DH3/3-DH3	260.00	400	Pass
2441MHz	DH5/2-DH5/3-DH5	305.81	400	Pass


The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

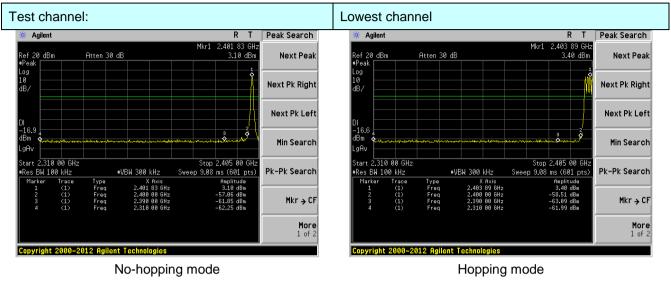
Test channel: 2441MHz as blow

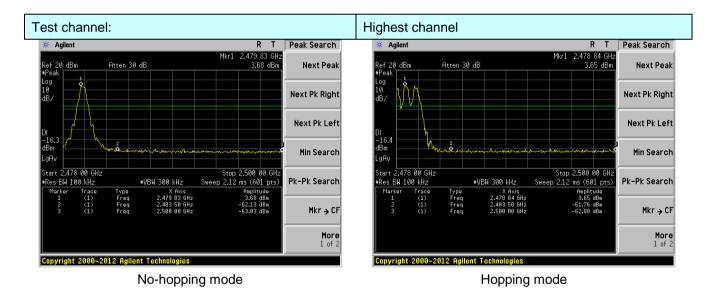
DH1/2-DH1/3-DH1 time slot=0.3683(ms)*(1600/ (2*79))*31.6=117.86ms DH3/2-DH3/3-DH3 time slot=1.625(ms)*(1600/ (4*79))*31.6=260.00ms DH5/2-DH5/3-DH5 time slot=2.867(ms)*(1600/ (6*79))*31.6=305.81ms

Test plot as follows:

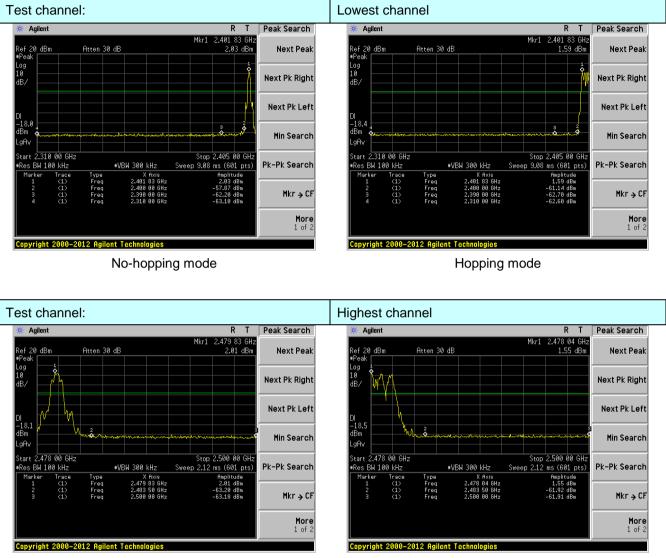
	Pseudorandom Frequency Hopping Sequence						
	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)/g/h requirement:					
	a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.						
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping whichever is greater, provided the systems operate with an output power no greater than 125 mW. The shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom hopping frequencies. Each frequency must be used equally on the average by each transmitter. The receivers shall have input bandwidths that match the hopping channel bandwidths of their correspondency must be used equally on the transmitter of the system.							
	each transmission. However, the comply with all of the regulation information) stream. In addition,	spectrum systems are not required to employ all available hopping chanr te system, consisting of both the transmitter and the receiver, must be de to in this section should the transmitter be presented with a continuous da , a system employing short transmission bursts must comply with the def must distribute its transmissions over the minimum number of hopping cl	esigned t ata (or finition of				
	recognize other users within the hopsets to avoid hopping on occ	ence within a frequency hopping spread spectrum system that permits the e spectrum band so that it individually and independently chooses and ac cupied channels is permitted. The coordination of frequency hopping sys ss purpose of avoiding the simultaneous occupancy of individual hopping tters is not permitted.	dapts its stems in				
	EUT Pseudorandom Freque	ency Honning Sequence					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9					
	The pseudorandom sequence n added in a modulo-two addition begins with the first ONE of 9 cc	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 puence: $2^9 - 1 = 511$ bits					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: $2^9 \cdot 1 = 511$ bits (non-inverted signal)					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 puence: $2^9 - 1 = 511$ bits					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi	ift Register for Generation of the PRBS sequence					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom F	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 juence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow:					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom F 0 2 4 6	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 juence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow:					
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom F 0 2 4 6 Each frequency used equally or	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 1 73 75 77	ence				
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom F 0 2 4 6 Each frequency used equally or The system receivers have input	may be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 uence: 2 ⁹ -1 = 511 bits (non-inverted signal)	ence				
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom F 0 2 4 6 Each frequency used equally or The system receivers have input transmitters and shift frequencies	nay be generated in a nine-stage shift register whose 5th and 9th stage of stage. And the result is fed back to the input of the first stage. The seque onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 nuence: 2 ⁹ - 1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77 1 73 75 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ponding				

7.9 Band Edge

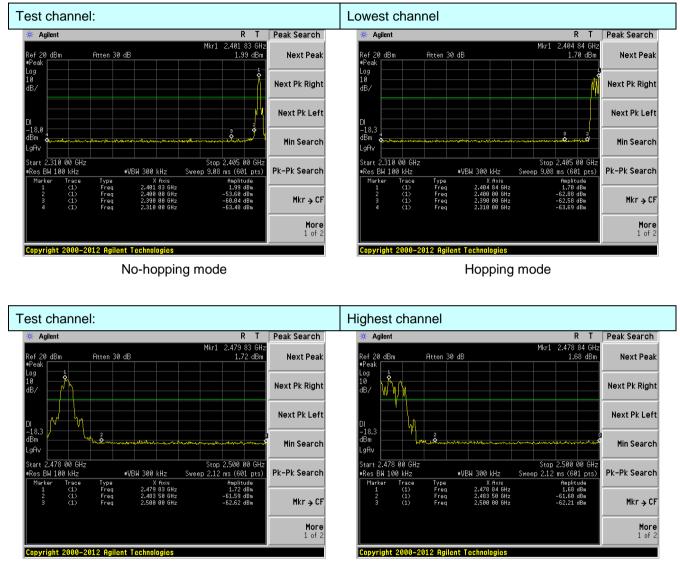

7.9.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:


GFSK Mode:

π/4-DQPSK Mode:


No-hopping mode

Hopping mode

8-DPSK Mode:

Report No.: GTS201806000094F01

No-hopping mode

Hopping mode

Test Method: Test Frequency Range: Test site: Receiver setup:	2500MHz) data	ct bands were was showed. istance: 3m	e tested, only	the worst	band's (2310MHz to				
Test site:	2500MHz) data Measurement D Frequency	was showed. istance: 3m	e tested, only	the worst	band's (2310MHz to				
	Frequency			All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Receiver setup:		Detector	Measurement Distance: 3m						
	Above 1GHz								
		Above 1GHz Peak 1MHz 3MHz F							
	Peak 1MHz 10Hz Average								
Limit:	Frequency Limit (dBuV/m @3m) Remark								
	Above 1GHz 54.00 Aver 74.00 Pea								
Test setup:	Image: Second								
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 								
Test Instruments:	Refer to section	nod as specifie							
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								

7.9.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remark:

1. During the test, pre-scan the GFSK, π/4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

which it is worse case.									
Test channel: Lowest									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	37.65	27.61	5.36	30.18	40.44	74.00	-33.56	Horizontal	
2390.00	44.24	27.59	5.38	30.18	47.03	74.00	-26.97	Horizontal	
2400.00	60.23	27.58	5.39	30.18	63.02	74.00	-10.98	Horizontal	
2310.00	37.31	27.61	5.36	30.18	40.10	74.00	-33.90	Vertical	
2390.00	44.92	27.59	5.38	30.18	47.71	74.00	-26.29	Vertical	
2400.00	62.41	27.58	5.39	30.18	65.20	74.00	-8.80	Vertical	
Average va	lue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	30.83	27.61	5.36	30.18	33.62	54.00	-20.38	Horizontal	
2390.00	34.48	27.59	5.38	30.18	37.27	54.00	-16.73	Horizontal	
2400.00	42.80	27.58	5.39	30.18	45.59	54.00	-8.41	Horizontal	
2310.00	30.75	27.61	5.36	30.18	33.54	54.00	-20.46	Vertical	
2390.00	34.53	27.59	5.38	30.18	37.32	54.00	-16.68	Vertical	
2400.00	44.58	27.58	5.39	30.18	47.37	54.00	-6.63	Vertical	
Test channe	el:			High	nest				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.50	46.51	27.53	5.47	29.93	49.58	74.00	-24.42	Horizontal	
2500.00	45.42	27.55	5.49	29.93	48.53	74.00	-25.47	Horizontal	
2483.50	47.58	27.53	5.47	29.93	50.65	74.00	-23.35	Vertical	
2500.00	46.55	27.55	5.49	29.93	49.66	74.00	-24.34	Vertical	
Average va	lue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.50	37.33	27.53	5.47	29.93	40.40	54.00	-13.60	Horizontal	
2500.00	35.13	27.55	5.49	29.93	38.24	54.00	-15.76	Horizontal	
2483.50	38.65	27.53	5.47	29.93	41.72	54.00	-12.28	Vertical	
2500.00	35.17	27.55	5.49	29.93	38.28	54.00	-15.72	Vertical	

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

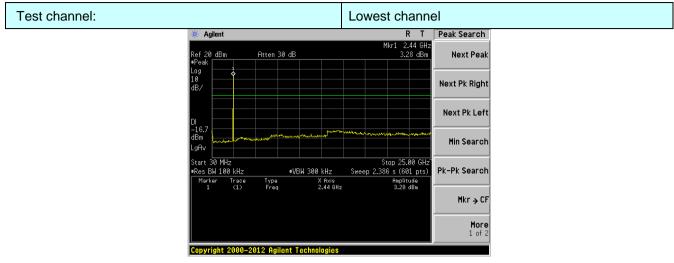
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

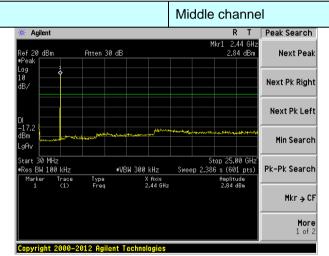
7.10 Spurious Emission

7.10.1 Conducted Emission Method

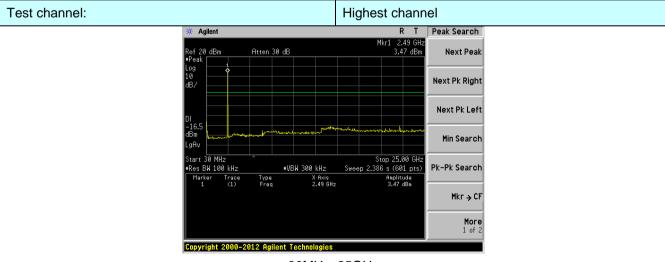
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						


Remark:

During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

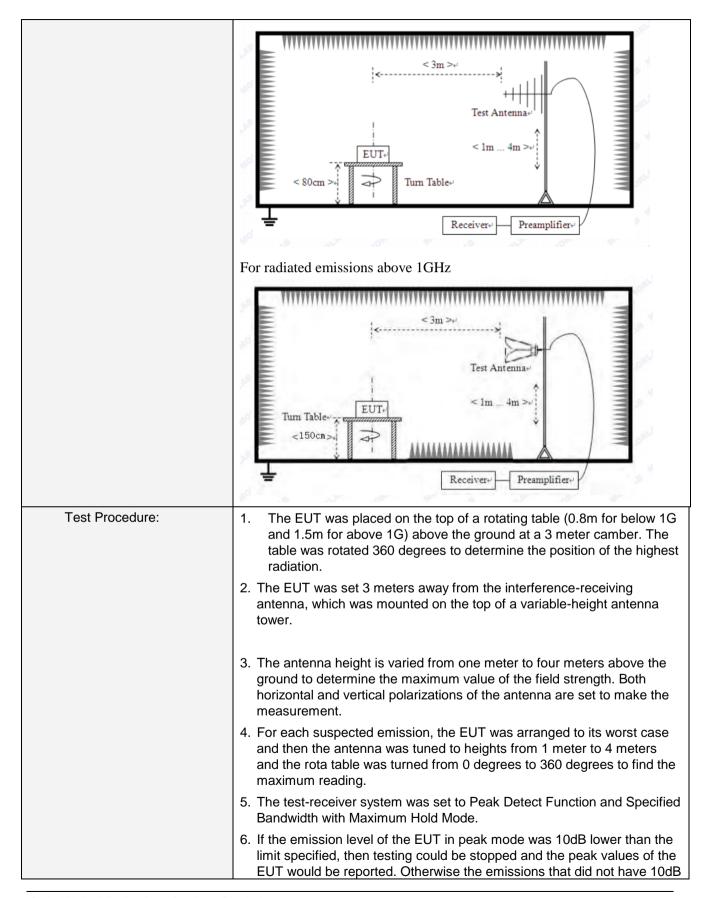


Test channel:


Report No.: GTS201806000094F01

30MHz~25GHz

30MHz~25GHz



Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

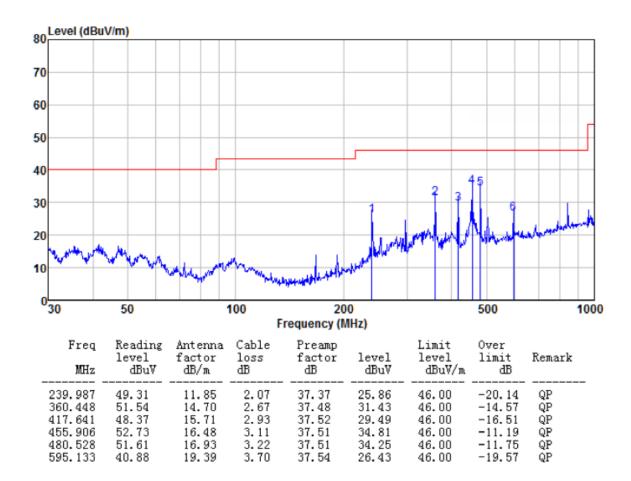
Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	[Detector	RB\	N	VBW	Value			
	9KHz-150KHz	Qu	uasi-peak	200	Hz	600Hz	z Quasi-peak			
	150KHz-30MHz	Qı	lasi-peak	9KH	Ιz	30KH2	z Quasi-peak			
	30MHz-1GHz	Qı	lasi-peak	100K	Ήz	300KH	Iz Quasi-peak			
	Above 1GHz		Peak	1Mł	Ηz	3MHz	z Peak			
	710070 10112		Peak	1Mł	Ηz	10Hz	Average			
Limit:	Frequency		Limit (u∖	//m)	V	alue	Measurement Distance			
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m			
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	300m			
	1.705MHz-30MH	Z	30			QP	30m			
	30MHz-88MHz		100		QP					
	88MHz-216MHz		150		QP					
	216MHz-960MH	Z	200			QP	3m			
	960MHz-1GHz		500		QP					
	Above 1GHz		500		Average Peak					
Testest -			5000		ŀ	еак				
Test setup:	For radiated emissio	ns fr	om 9kHz to	o 30MH	Ηz					
			< 3m >4	111111		****				
	< 80cm >4	UT+ H	z tenna Re	m >		eamplifier+'				

7.10.2 Radiated Emission Method

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

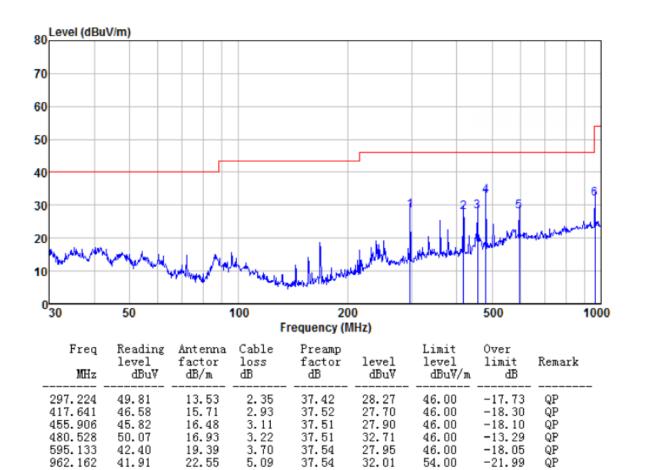
Measurement data:

Remark:


- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Below 1GHz

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Polarziation:	Horizontal

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Polarziation:	Vertical

Above 1GHz

Test channel	:				Lowest							
Peak value:												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	·	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	38.56	31.78	8.60	32.09	46.85	74.00	-27.15	Vertical				
7206.00	32.66	36.15	11.65	32.00	48.46	74.00	-25.54	Vertical				
9608.00	32.21	37.95	14.14	31.62	52.68	74.00	-21.32	Vertical				
12010.00	*					74.00		Vertical				
14412.00	*					74.00		Vertical				
4804.00	43.10	31.78	8.60	32.09	51.39	74.00	-22.61	Horizontal				
7206.00	34.53	36.15	11.65	32.00	50.33	74.00	-23.67	Horizontal				
9608.00	31.75	37.95	14.14	31.62	52.22	74.00	-21.78	Horizontal				
12010.00	*					74.00		Horizontal				
14412.00	*					74.00		Horizontal				

Average value:

U								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	27.13	31.78	8.60	32.09	35.42	54.00	-18.58	Vertical
7206.00	21.20	36.15	11.65	32.00	37.00	54.00	-17.00	Vertical
9608.00	20.20	37.95	14.14	31.62	40.67	54.00	-13.33	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	31.50	31.78	8.60	32.09	39.79	54.00	-14.21	Horizontal
7206.00	23.46	36.15	11.65	32.00	39.26	54.00	-14.74	Horizontal
9608.00	20.04	37.95	14.14	31.62	40.51	54.00	-13.49	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Middle									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	38.78	31.85	8.67	32.12	47.18	74.00	-26.82	Vertical	
7323.00	32.80	36.37	11.72	31.89	49.00	74.00	-25.00	Vertical	
9764.00	32.34	38.35	14.25	31.62	53.32	74.00	-20.68	Vertical	
12205.00	*					74.00		Vertical	
14646.00	*					74.00		Vertical	
4882.00	43.36	31.85	8.67	32.12	51.76	74.00	-22.24	Horizontal	
7323.00	34.69	36.37	11.72	31.89	50.89	74.00	-23.11	Horizontal	
9764.00	31.90	38.35	14.25	31.62	52.88	74.00	-21.12	Horizontal	
12205.00	*					74.00		Horizontal	
14646.00	*					74.00		Horizontal	

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	27.33	31.85	8.67	32.12	35.73	54.00	-18.27	Vertical
7323.00	21.34	36.37	11.72	31.89	37.54	54.00	-16.46	Vertical
9764.00	20.32	38.35	14.25	31.62	41.30	54.00	-12.70	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	31.72	31.85	8.67	32.12	40.12	54.00	-13.88	Horizontal
7323.00	23.61	36.37	11.72	31.89	39.81	54.00	-14.19	Horizontal
9764.00	20.18	38.35	14.25	31.62	41.16	54.00	-12.84	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

- 2. *"*", means this data is the too weak instrument of signal is unable to test.*
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel	Fest channel: Highest									
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	38.78	31.93	8.73	32.16	47.28	74.00	-26.72	Vertical		
7440.00	32.81	36.59	11.79	31.78	49.41	74.00	-24.59	Vertical		
9920.00	32.34	38.81	14.38	31.88	53.65	74.00	-20.35	Vertical		
12400.00	*					74.00		Vertical		
14880.00	*					74.00		Vertical		
4960.00	43.37	31.93	8.73	32.16	51.87	74.00	-22.13	Horizontal		
7440.00	34.70	36.59	11.79	31.78	51.30	74.00	-22.70	Horizontal		
9920.00	31.90	38.81	14.38	31.88	53.21	74.00	-20.79	Horizontal		
12400.00	*					74.00		Horizontal		
14880.00	*					74.00		Horizontal		

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	27.45	31.93	8.73	32.16	35.95	54.00	-18.05	Vertical
7440.00	21.42	36.59	11.79	31.78	38.02	54.00	-15.98	Vertical
9920.00	20.40	38.81	14.38	31.88	41.71	54.00	-12.29	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	31.86	31.93	8.73	32.16	40.36	54.00	-13.64	Horizontal
7440.00	23.70	36.59	11.79	31.78	40.30	54.00	-13.70	Horizontal
9920.00	20.26	38.81	14.38	31.88	41.57	54.00	-12.43	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

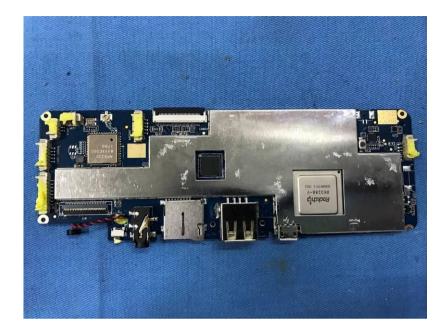
8 Test Setup Photo

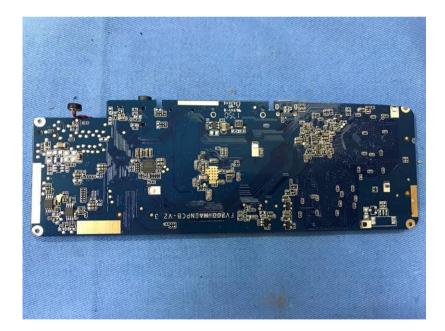
Radiated Emission

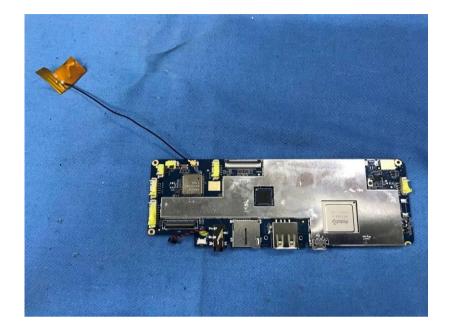
Conducted Emission

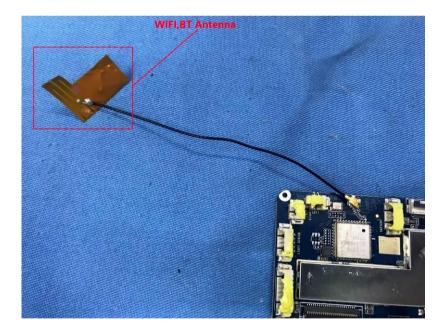
9 EUT Constructional Details











-----End-----