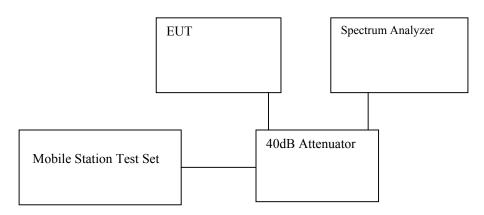
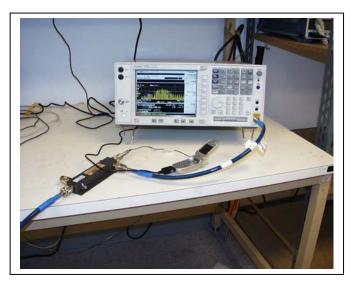
Radiated Emissions

X-Position

7.2. SECTION 2.1047: MODULATION CHARACTERISTICS

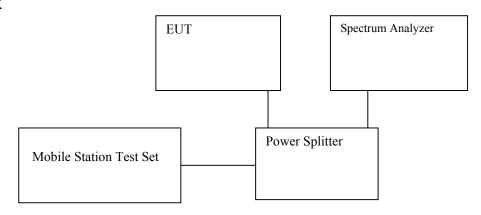

Not applicable.

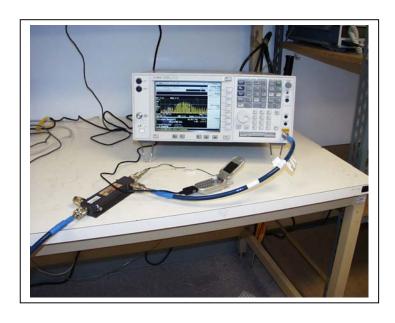

7.3. SECTION 2.1049: OCCUPIED BANDWIDTH

TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RES BW was set to about 1% of emission BW, -26 dBc display line was placed on the screen, the occupied BW is the delta frequency between the two points where the display line intersects the signal trace. 26dB BW was measured for low, middle and high channels on both RF input and output ports of the EUT.

TEST SETUP


Page 11 of 33


7.4. SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL

INSTRUMENTS LIST

EQUIPMENT	MANUFACTURE	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Modulation Analyzer	HP	8901B	3438A05272	6/23/04
PSA Analyzer	Agilent	E446A	US42070220	1/13/04
Audio Signal Generator	НР	3325A	2652A24749	5/8/04
Universal Radio Communication Tester	R & S	CMU200	838114 / 032	11/14/03
40dB Attenuator	Amplifier Research	DC7144A	305089	N/A
Power Splitter	Agilent	11667B	53331	N/A

TEST SETUP

Page 16 of 33

7.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

INSTRUMENTS LIST

EQUIPMENT	MANUFACTURE	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Modulation Analyzer	HP	8901b	3438A05272	6/23/04
PSA Analyzer	Agilent	E446A	US42070220	1/13/04
10dB Attenuator	Agilent	8493C	59028	N/A
Universal Radio				
Communication	R & S	CMU200	838114 / 032	11/14/03
Tester				
Bilog Antenna	A.R.A.	LPB 2520/A	1185	3/6/04
Tune Dipole	ETS	DB-4	1629	5/14/04
Tx Horn Antenna	EMCO	3115	6739	2/4/2004
Rx Horn Antenna	EMCO	3115	6717	2/4/2004
Amplifier	MITEQ	NSP2600-SP	924342	4/25/2004
HPF	MICROLAB	FH-2400H	N/A	N/A

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak Average	∑ 1 MHz ☐ 1 MHz	∑ 1 MHz □ 10 Hz

TEST SETUP

Page 26 of 33

TEST PROCEDURE

• Frequency stability versus environmental temperature

- 1). Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber. Set the temperature of the chamber to 25°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Turn EUT off and set Chamber temperature to -30°C.
- 3). Allow sufficient time (approximately 20 to 30 minus after chamber reach the assigned temperature) for EUT to stabilize. Turn on EUT and measure the EUT operating frequency. Turn off EUT after the measurement.
- 4). Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

• Frequency stability versus AC input voltage

- 1). Setup the configuration per figure 6 and set chamber temperature to 25°C. Use a variable AC power supply to power the EUT and set AC output voltage to EUT nominal input AC voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Slowly reduce the EUT input voltage to specified extreme voltage variation ($\pm 15\%$) and record the maximum frequency change.

MEASUREMENT RESULT

No non-compliance noted, as shown below.