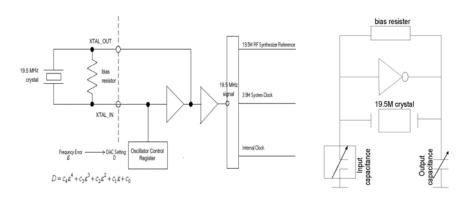

4. Calibration Procedure

4.1. Calibration Setup

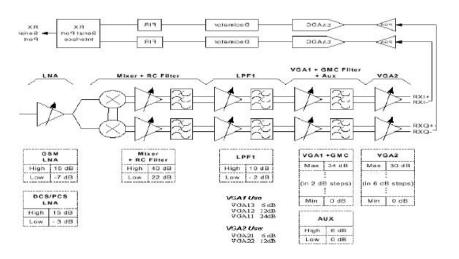

Procedure

- > Install calibration software on PC
- ➤ Install GPIB card in PC and connect it to GPIB port on GSM Test Set such as HP8922, HP8960, CMD55, CMU200, W4400, and etc.
- ➤ Connect serial cable to computer's com port and system connector (including the serial port line) to the unit under test
- ➤ Connect RF cable from the test port (RF switch) on the unit under test to GSM Test Set
- ➤ To get into calibration mode, loop-back the signal DEBUG_TX and DEBUG_RX before turning on the unit under test

4.2. Calibration Items

CCXO Characterization

> Function Diagram



> Procedure

- ✓ Handset receives signal of known frequency Channel 62 with -40dBm
- ✓ Get the coarse adjustment register by changing the register seeting until the frequency error reach 0
- ✓ Ccontrol DAC stepped, frequency error scan taken by DSP each step, and then DAC setting/frequency error table derived. Finally generate polynomial from table
- ✓ Load coefficient of polynomial and output capacitance register value to DSP

* Receiver Gain Stage Calibration

> Function Diagram

> Procedure

✓ Handset receives signal of known frequency Channel 62/698 with -40dBm

✓ Each gain stage individually enabled

IAIC Section in U200

All IAIC is set to 0

RF Section in U100

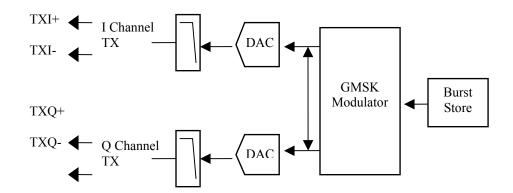
LNA Gain

Mixer Gain

LPF Gain

VGA1 Gain

VGA2 Gain


✓ Resultant gain calculated

Gain Code	Gain
0x0000	G0 = Pref(-33)
0xA000	GI = Gm in
0x8000	G2 = Gm in + G V 2 I
0x6000	G3 = Gm in + G V 2 2
0x4000	G4 = Gm in +G V V 2 1 +G V 2 2
0x4008	G5 = Gm in + G V 2 I + GV 2 2 + GV 13
0x5000	G6 = Gm in + G V 2 I + GV 2 2 + GL P F
0x4400	G7 = Gm in + G V 2 I + GV 2 2 + GL N A
0x4408	G8 = Gm in + G V 2 I + GV 2 2 + GL N A + G V I 3
0x5400	G9 = Gm in + G V 2 I + GV 2 2 + GL P F + GL N A
0x4C00	$G1\ 0 = Gm\ in + G\ V\ 2\ 1 + GV\ 2\ 2 + G\ M\ IX + GL\ N\ A$
0x4C08	$G1\ 1 = Gm\ in + G\ V\ 2\ 1 + GV\ 2\ 2 + G\ M\ IX + GL\ N\ A + G\ V\ 1\ 3$
0x5C00	$G1\ 2 = Gm\ in + G\ V\ 2\ 1 + GV\ 2\ 2 + + GL\ P\ F + GM\ IX + GL\ N\ A$
0x5C08	G1 3 = Gm in +G V 2 1+ GV2 2 ++GL PF+ GM IX + GL N A +G V 1 3
0x5C04	G1 4 = Gm in + G V 2 1 + GV 2 2 + + GL P F + GM IX + GL N A + GV 1 2
0x5C0C	G1 5 = Gm in + G V 2 1 + GV 2 2 + + GL P F + GM IX + GL N A + GV 1 2 + GV 1 3
0x5C02	G1 6 = Gm in + G V 2 1 + GV 2 2 + + GL P F + GM IX + GL N A + GV1 1

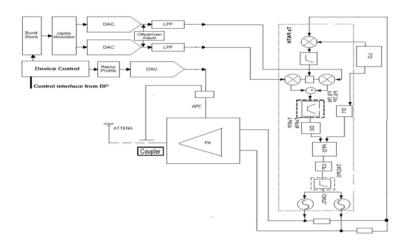
- ✓ Data transferred into NV storage as AGC data table
- ✓ Carried out 900MHz EGSM, DCS1800MHz and then PCS 1900MHz

❖ Transmit IQ Gain & Phase Balance Calibration

> Function Diagram

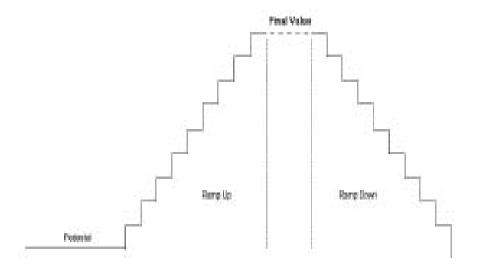
> Procedure

- ✓ Handset transmits to spectrum analyzer of GSM Test Set
- ✓ Determine optimal values for IAIC register (Gain and Phase Imbalance should be calibrated respectively)
 - Measure amplitude of side bands at 3 different register settings (+3, 0, -3)
 - Perform line fit on data
 - TXI, TXQ, Gain Imbalance
- ✓ Optimal values minimize the side bands
- ✓ Sideband attenuation relative to negative sideband is measured after optimization. The attenuation of unwanted signals must be min. of 40dB


❖ Transmit IQ DC Offset Calibration

Procedure

- ✓ Handset transmits to spectrum analyzer of GSM Test Set
- ✓ Determine optimal values for IAIC register (I and Q should be calibrated respectively)
 - Measure amplitude of side bands at 3 different register settings (+16, 0, -16)
 - Perform line fit on data
 - TXI, TXQ, DC Offset
- ✓ Optimal values minimize the side bands
- ✓ Carrier attenuation relative to negative sideband is measured after optimization. The attenuation of unwanted signals must be min. of 40dB


***** Transmit Power Calibration

> Function Diagram

> Ramp Profile

- ✓ Ramp profile consist 18 Scaling Factors and Duration, 9 for ramp up and 9 for Ramp Down.
- ✓ Ramp Step Value: Ramp(nth)=a(nth)*(Final-Pedestal)+Pedestal Duration =(n+1)nits (1nit=Frame/10000=0.4615us)
- ✓ The scaling factor and duration are same for all the band and power levels
- ✓ Final Value is different and should be calibrated for each power level
- ✓ Pedestal is same for each band and only need calibrated once in each band

State State State

- > Procedure
 - ✓ Set the PS to 3.1V and get the 1st ADC reading
 - ✓ Set the PS to 4.2V and get the 2^{nd} ADC reading
 - ✓ Calculate K and b and save them to NVM

State Pack Size Calibration

- > Procedure
 - ✓ Set V_{POWER} to 5.0V and connect an known value resistance R_{PACK} =10K in the terminal BAT_PK_IN and then measure V_{MUX} and calculate B = (V_{POWER}/V_{MUX} -1)
 - ✓ Save B to the NVM

***** Charging Current Calibration

- > Procedure
 - ✓ Connect 5V PS to charger terminal and set the DAC value to 225
 - ✓ Connect the 7Ohms resistance between $V_{BATTERY}$ terminal produce 0.1C current, then get the ADC reading
 - ✓ Connect the 70Ohms resistance between V_{BATTERY} terminal produce 1C current, then get the ADC reading
 - ✓ Calculate M and e and save them to NVM