

TE	EST REPORT	
Report Reference No	TRE1806016601 R/C	: 34212
FCC ID:	RAYVHFRS90S	
Applicant's name:	NAVICO AUCKLAND LIMITED	
Address	44 Arrenway Drive, Rosedale, Auch	kland, New Zealand
Manufacturer	NAVICO AUCKLAND LIMITED	
Address	44 Arrenway Drive, Rosedale, Auch	kland, New Zealand
Test item description	Base Station VHF Marine Radio	
Trade Mark	SIMRAD/B&G	
Model/Type reference	RS90S	
Listed Model(s)	V90S	
Standard:	FCC CFR Title 47 Part 15 Subpar	t C Section 15.247
Date of receipt of test sample	Jun.25, 2018	
Date of testing	Jun.25, 2018- Jul.03, 2018	
Date of issue	Jul.04, 2018	
Result:	PASS	
Compiled by (position+printedname+signature):	File administrators Fanghui Zhu	Jang hui . Zhu
Supervised by (position+printedname+signature):	Project Engineer Jerry Wang	Jerry Wong
Approved by (position+printedname+signature):	RF Manager Hans Hu	Homsty
Testing Laboratory Name :	Shenzhen Huatongwei Internatio	nal Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech Industri Tianliao, Gongming, Shenzhen, Ch	
Shenzhen Huatongwei International	Inspection Co., Ltd. All rights reser	ved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	77
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	13
5.4.	Power Spectral Density	14
5.5.	20 dB Bandwidth	16
5.6.	Carrier Frequencies Separation	18
5.7.	Hopping Channel Number	20
5.8.	Dwell Time	22
5.9.	Pseudorandom Frequency Hopping Sequence	24
5.10.	Restricted band (radiated)	25
5.11.	Band edge and Spurious Emissions (conducted)	27
5.12.	Spurious Emissions (radiated)	33

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard forTesting Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
N/A	2018-07-04	Original

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna Requirement	15.203/15.247 (c)	PASS	Baozhu Hu
AC Power Line Conducted Emissions	15.207	N/A	N/A
Conducted Peak Output Power	15.247 (b)(1)	PASS	Xiaokang Tan
Power Spectral Density	15.247(e)	PASS	Xiaokang Tan
20 dB Bandwidth	15.247 (a)(1)	PASS	Xiaokang Tan
Carrier Frequencies Separation	15.247 (a)(1)	PASS	Xiaokang Tan
Hopping Channel Number	15.247 (a)(1)	PASS	Xiaokang Tan
Dwell Time	15.247 (a)(1)	PASS	Xiaokang Tan
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	PASS	Xiaokang Tan
Restricted band	15.247(d)/15.205	PASS	Jiuru Pan
Radiated Emissions	15.247(d)/15.209	PASS	Xiaokang Tan

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	NAVICO AUCKLAND LIMITED	
Address:	44 Arrenway Drive, Rosedale, Auckland, New Zealand	
Manufacturer: NAVICO AUCKLAND LIMITED		
Address:	44 Arrenway Drive, Rosedale, Auckland, New Zealand	

3.2. Product Description

Name of EUT:	Base Station VHF Marine Radio	
Trade Mark:	SIMRAD/B&G	
Model No.:	RS90S	
Listed Model(s):	V90S	
Power supply:	DC 12V	
Wired hand:	Model: HS90	
External speaker:	Model: THX92N-0003	
Hardware version:	V1.0	
Software version:	V2.98	
2.4G		
Modulation:	GFSK	
Operation frequency:	2401MHz~2480MHz	
Channel number:	80	
Channel separation:	1MHz	
Antenna type:	Internal	
Antenna gain:	1dBi	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
01	2401
02	2402
:	÷
40	2440
:	:
79	2479
80	2480

> <u>TEST MODE</u>

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

	,	Manufacturer:	/
	7	Model No.:	/
,		Manufacturer:	/
	7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Condu	cted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A
Padiat	ed Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi- Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	10/16/2016	10/15/2019
2	EMI Test Receiver	R&S	ESCI	100900	11/11/2017	11/10/2018
3	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
4	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2020
5	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2020
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170 472	3/27/2017	3/26/2020
7	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
8	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
9	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
10	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018
11	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018
12	Test Software	Audix	E3	N/A	N/A	N/A
13	Test Software	R&S	ES-K1	N/A	N/A	N/A
14	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
15	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

RF Con	RF Conducted Test						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018	
2	EXA Signal Analyzer	Agilent	N9020A	184247	9/22/2017	9/21/2018	
3	OSP	R&S	OSP120	101317	N/A	N/A	

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

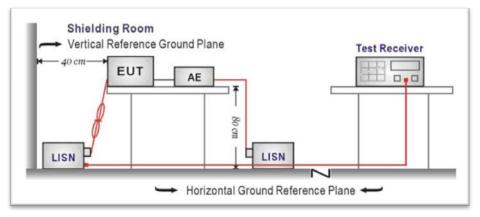
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Test Result:

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the **third photo of internal photos**.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (c	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

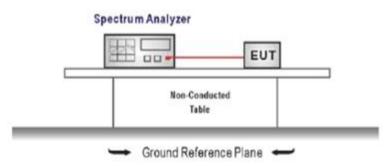
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS


Passed
 Not Applicable

5.3. Conducted Peak Output Power

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

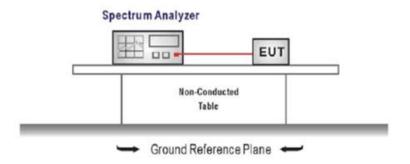
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	01	8.65		
GFSK	40	8.14	≤ 30.00	Pass
	80	7.94		


5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

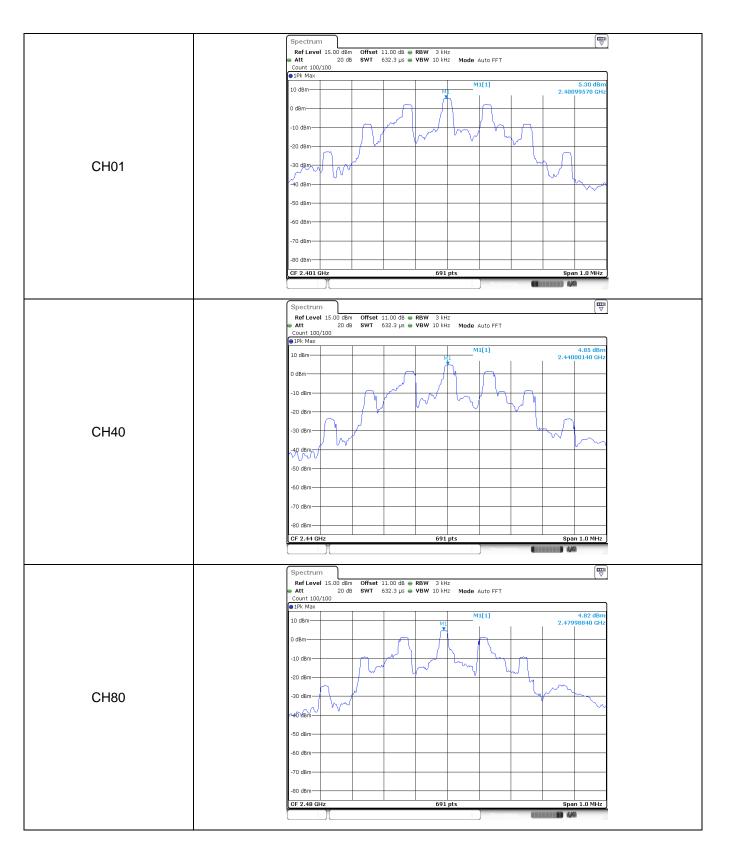
1. Connect the antenna port(s) to the spectrum analyzer input,

 Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

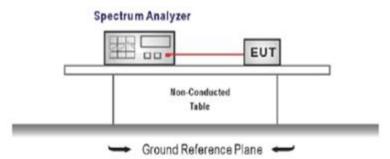

TEST RESULTS

☑ Passed □ Not Applicable

Туре	Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
	01	5.30		
GFSK	40	4.85	≤8.00	Pass
	80	4.82		

Test plot as follows:

Shenzhen Huatongwei International Inspection Co., Ltd.



5.5. 20 dB Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \ge 1% of the 20 dB bandwidth, VBW \ge RBW

Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

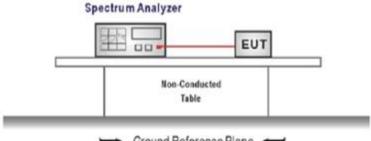
🛛 Passed

Not Applicable

Modulation type	Channel	20 dB Bandwidth (MHz)	Limit (MHz)	Result
	01	0.56		
GFSK	40	0.54	-	Pass
	80	0.54		

Modulation Type:	GFSK
	Spectrum Image: Constraint of the sector of t
CH01	Count 500/500 @ IPk View 20 dBm M1[1] 2.4006950 GHz 10 dBm M2 10 dBm 2.40095800 GHz 0 dBm M2 -10 dBm 0 -20 dBm 0
	4-0 d8m
	Spectrum Image: Constraint of the sector of t
CH40	Count 500/500 • IPk View 20 dBm M1[1] 2.439/2830 GHz 10 dBm 2.439/9250 GHz 0 dBm M2[1] -10.29 dBm -10.29 dBm 0 dBm M2[1] -10 dBm
	CF 2.44 GHz 1001 pts Span 1.5 MHz Narker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4397285 GHz -10.29 dBm Function Function Result M2 1 2.43992925 GHz 11.03 dBm Function Function Result D3 M1 1 535.5 kHz 1.07 dB Function Result Function Result
	Spectrum Image: Constraint of the sector of t
	20 dBm 2.47974200 GHz 12.00 dBm 42 M2[1] 12.00 dBm 0 dBm 01 -8.000 dBm 42 A8001350 GHz -20 dBm 01 -8.000 dBm 44 A80
CH80	-30 dBm
	Type Ref Trc X-value Y-value Function Function Function Result M1 1 2.47942.GHz -9.17 dBm

5.6. Carrier Frequencies Separation


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively,

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST CONFIGURATION

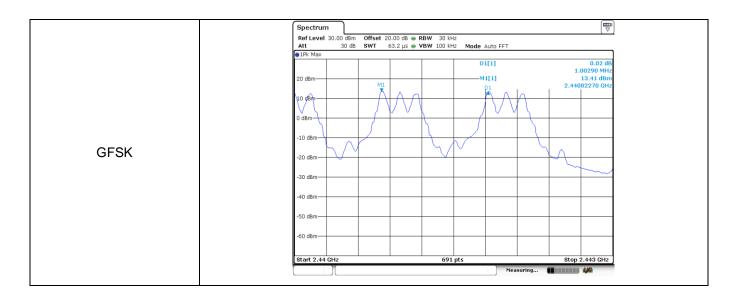
- Ground Reference Plane

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

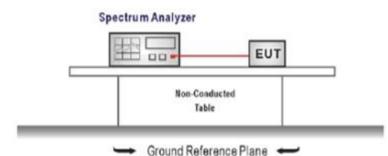

TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz) *	Result
GFSK	40	1.00	≥0.56	Pass

Note:

*: GFSK limit = The maximum 20 dB Bandwidth for GFSK modulation on the section 5.4.



5.7. Hopping Channel Number

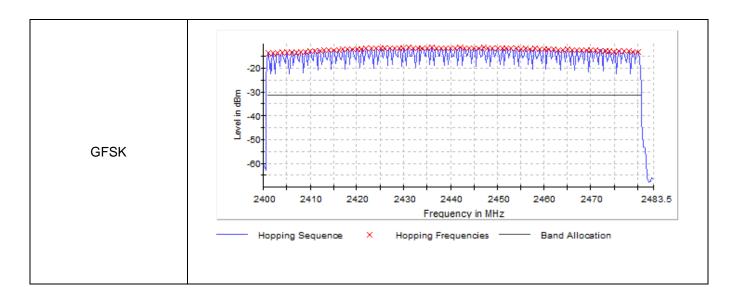
<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = the frequency band of operation RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

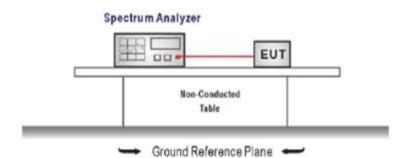

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Channel number	Limit	Result
GFSK	80	≥15.00	Pass



5.8. Dwell Time

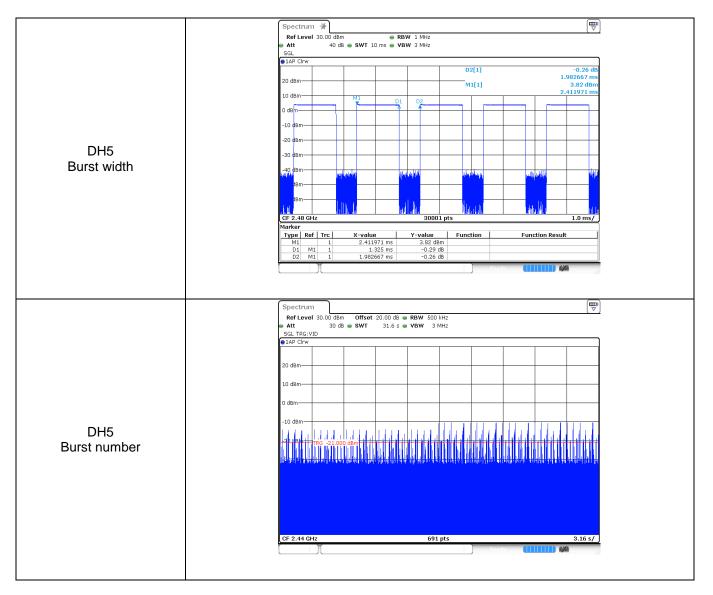
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW Sweep = as necessary to capture the entire dwell time per hopping channel, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

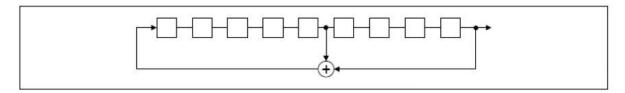
Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Modulation type	Burst Width Total [ms/hop/ch] Hops[hop*ch]				
GFSK	1.325	163	0.22	≤ 0.40	Pass

5.9. Pseudorandom Frequency Hopping Sequence


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

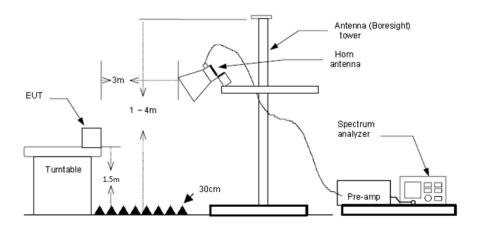
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	_	78	1		73	75	77
٦				 T			1			Γ	Γ	Г
				1			1					L
				1			1			i i		
							1			L		L

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.


5.10. Restricted band (radiated)

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 3.3

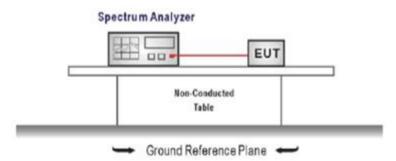
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.
- 3) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

Test chann	Test channel:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	49.55	28.05	6.62	37.59	46.63	74.00	-27.37	Horizontal	Peak
2389.79	69.68	27.65	6.75	37.59	66.49	74.00	-7.51	Horizontal	Peak
2310.00	36.76	28.05	6.62	37.59	33.84	74.00	-40.16	Vertical	Peak
2389.79	59.29	27.65	6.75	37.59	56.10	74.00	-17.90	Vertical	Peak
2310.00	25.82	28.05	6.62	37.59	22.90	54.00	-31.10	Horizontal	Average
2389.99	28.17	27.65	6.75	37.59	24.98	54.00	-29.02	Horizontal	Average
2310.00	25.61	28.05	6.62	37.59	22.69	54.00	-31.31	Vertical	Average
2389.99	27.49	27.65	6.75	37.59	24.30	54.00	-29.70	Vertical	Average


Test chann	Test channel:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	75.94	27.26	6.83	37.59	72.44	74.00	-1.56	Horizontal	Peak
2500.00	58.49	27.20	6.84	37.59	54.94	74.00	-19.06	Horizontal	Peak
2483.50	72.34	27.26	6.83	37.59	68.84	74.00	-5.16	Vertical	Peak
2500.00	65.09	27.20	6.84	37.59	61.54	74.00	-12.46	Vertical	Peak
2483.50	44.57	27.26	6.83	37.59	41.07	54.00	-12.93	Horizontal	Average
2500.00	25.55	27.20	6.84	37.59	22.00	54.00	-32.00	Horizontal	Average
2483.50	40.57	27.26	6.83	37.59	37.07	54.00	-16.93	Vertical	Average
2500.00	26.25	27.20	6.84	37.59	22.70	54.00	-31.30	Vertical	Average

5.11. Band edge and Spurious Emissions (conducted)

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

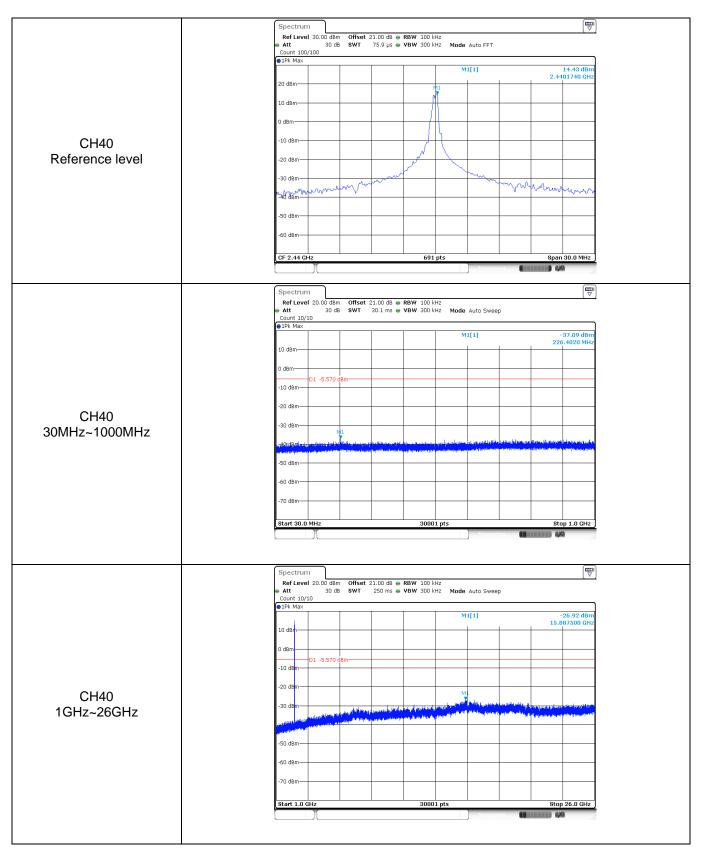
TEST PROCEDURE

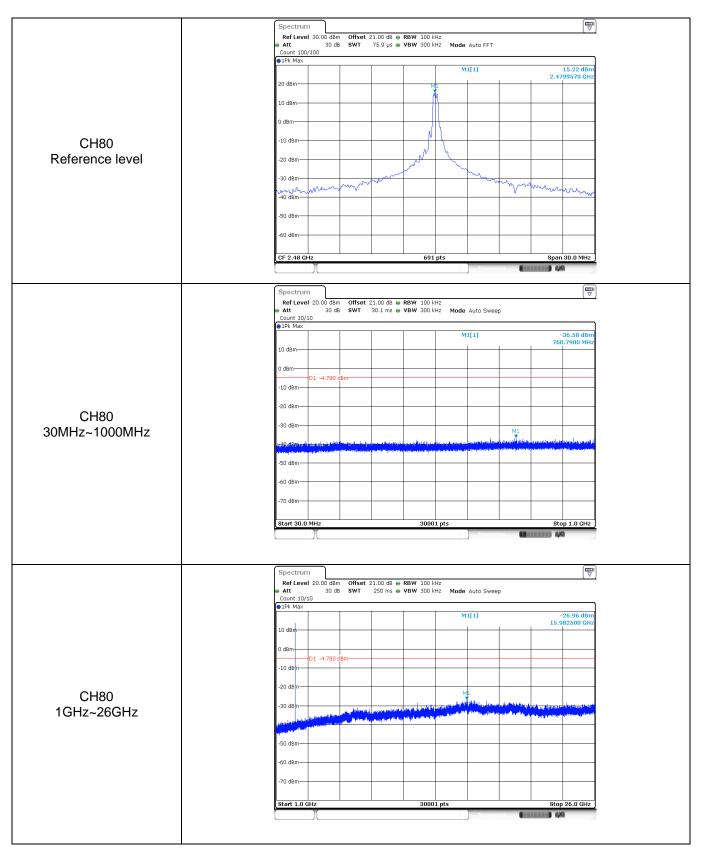
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


☑ Passed □ Not Applicable

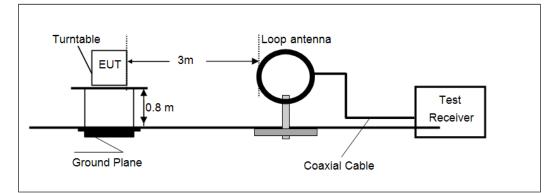

est Item:	Band edge	Modulation type:	GFSK
	Spectrum Ref Level 30. Att	00 dBm Offset 21.00 dB B RBW 100 kHz 30 dB SWT 1.1 ms B VBW 300 kHz Mode Auto	Sweep
	Count 500/500		10.05 /0
	20 dBm	M1[1] M2[1]	13.86 dBm 2.400940 GHz -13.25 dBm
	10 dBm		2.400000 GHz
	0 dBm	-6.140 dBm	
	-10 dBm		71
CH01	-30 dBm		M3
No hopping mode	++o'\16m	and the second	ware would will all all all all all all all all all
	-50 dBm		
	-60 dBm		
	Start 2.31 GHz Marker		Stop 2.405 GHz
	Type Ref Ti M1 M2 M2 M2	rc X-value Y-value Function 1 2.40094 GHz 13.86 dBm 1 1 2.4 GHz -13.25 dBm 1	Function Result
	M3 M4	1 2.39 GHz -35.56 dBm 1 2.31 GHz -37.97 dBm	
	M5	1 2.399906 GHz -13.85 dBm	easuring
	Spectrum Ref Level 30.	00 dBm Offset 21.00 dB RBW 100 kHz	
	 Att Count 500/500 	30 dB SWT 1.1 ms 👄 VBW 300 kHz Mode Auto	Sweep
	IPk Max	M1[1]	15.01 dBm
	20 dBm	M2[1]	2.400810 GHz -12.30 MBm
	10 dBm		2.400000 6 42
		4.990 dBm	
01107	-20 dBm		
CH01	-30 dBm		
Hopping mode	-40 dBm		
	-60 dBm		
	Start 2.31 GHz	691 pts	Stop 2.405 GHz
	Marker Type Ref T	rc X-value Y-value Function	Function Result
	M1 M2 M3	1 2.40081 GHz 15.01 dBm 1 2.4 GHz -12.30 dBm 1 2.39 GHz -35.05 dBm	
	M4 M5	1 2.31 GHz -37.12 dBm 1 2.399906 GHz -12.49 dBm	
			easudhg 🚺 🗰
	Spectrum		(IIII) ▽
	Ref Level 30. Att	00 dBm Offset 21.00 dB	
	Count 500/500		
	20 dBm *41	M1[1]	15.44 dBm 2.4798310 GHz
	10 dBm	M2[1]	-27.13 dBm 2.4835000 GHz
	0 dBm	-4.560 dBm	
	-10 dBm		
CH80	~20 [°] d8m	MB.	
No hopping mode	-30 dBm		2 mm mm mm mm
	-50 dBm		
	-60 dBm		
	Start 2.478 GH	z 691 pts	Stop 2.5 GHz
	Marker Type Ref T	rc X-value Y-value Function	Function Result
	M1 M2	1 2.479831 GHz 15.44 dBm 1 2.4835 GHz -27.13 dBm 1 2.5 CHz -20.02 dBm	
	M3 M4	1 2.5 GHz -39.02 dBm 1 2.4835159 GHz -26.95 dBm	easuring

Report No.: TRE1806016601

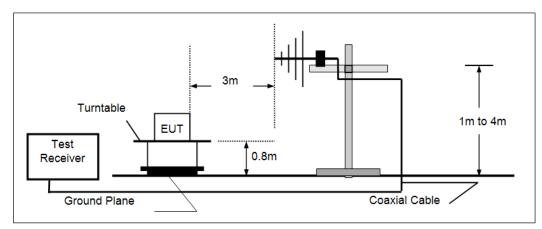
	Spectrum Ref Level 30.00 dBm Offset 21.00 Att 30 dB SWT 56.9 Count 500/500 PIPK Max	d8 ● RBW 100 kHz µs ● VBW 300 kHz Mode Auto P	(₩ ∀
CH80 Hopping mode	20'd8m 10 d8m 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m -50 d8m -50 d8m	M1[1] M2	15-45 dBm 2.4788440 GHz -26.90 dBm 2.4835000 GHz
	Start 2.478 GHz Marker	691 pts	Stop 2.5 GHz
	Type Ref Trc X-value M1 1 2.478944 Gł Gł M2 1 2.4835 Gł Gł M3 1 2.5 Gł Gł	z -26.90 dBm	Function Result
	M4 1 2.4835159 G		asuring

Fest Item:	SE	Modulation type: GFSK
		Spectrum (₩) RefLevel 30.00 dBm Offset 21.00 dB RBW 100 kHz (♥) Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FFT Count 100/100 Column 100/100 (₩) (₩) (₩)
CH01 Reference level		
		10 dBm
		-10 dam
Reference level		-30 dBm
		-50 d8m
		CF 2.401 GHz 691 pts Span 30.0 MHz
		Spectrum □ Ref Level 20.00 dBm Offset 21.00 dB ● RBW 100 kHz
		Att 30 dB SWT 30.1 ms ● VBW 300 kH2 Mode Auto Sweep Count 10/10 ●1Pk Max
		10 dBm
CH01		-10 dBm
30MHz~1000MHz		-30 dBm - M11 All dBm - M12 And All an
		-50 dBm
		-70 dBm
		Spectrum Image: Constraint of the second secon
		0 dBm 01 -6.100 dBm 01 -6.1000
CH01 1GHz~26GHz		-20 dem
		-So dam-
		-60 dBm
		Start 1.0 GHz 30001 pts Stop 26.0 GHz

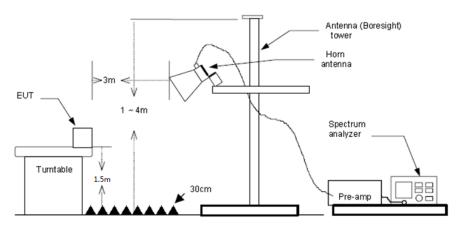
5.12. Spurious Emissions (radiated)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value		
30 MHz ~ 88 MHz	40.00	Quasi-peak		
88 MHz ~ 216 MHz	43.50	Quasi-peak		
216 MHz ~ 960 MHz	46.00	Quasi-peak		
960 MHz ~ 1 GHz	54.00	Quasi-peak		
Above 1 GHz	54.00	Average		
	74.00	Peak		

TEST CONFIGURATION


Below 30 MHz

> 30 MHz ~1000 MHz

> Above 1 GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table with 0.8 meter above ground for below 1GHz, 1.5 meter above ground for above 1GHz.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

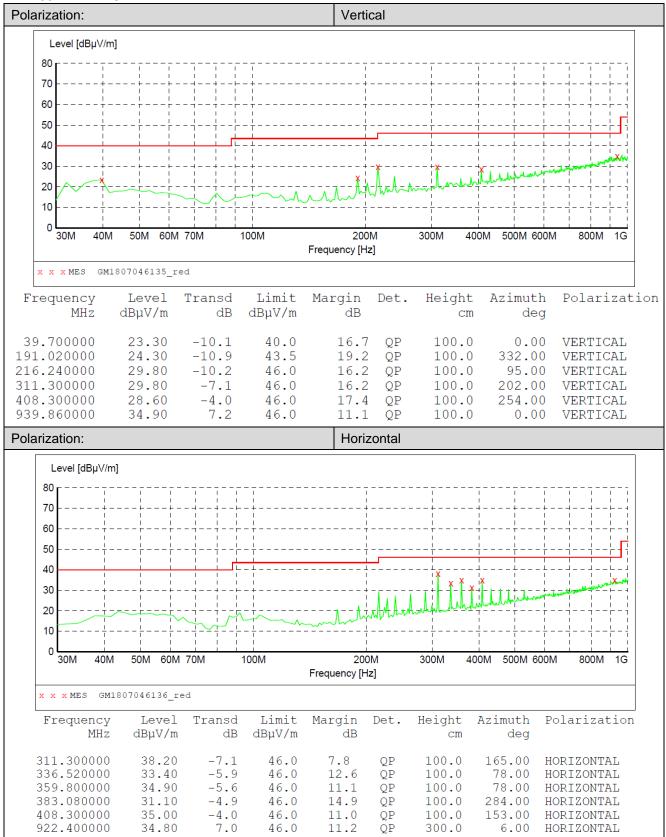
 (3) From 1 GHz to 10th harmonic: RBW=1 MHz, VBW=3 MHz Peak detector for Peak value RBW=1 MHz, VBW=10 Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable


Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) Below 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation High channel which it was worst case, so only the worst case's data on the test report.
- 4) Above 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report
- 5) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

➢ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

> 1 GHz ~ 25 GHz

CH01									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1755.164	35.76	25.31	5.87	37.36	29.58	74.00	-44.42	Vertical	Peak
3854.077	34.35	29.65	8.58	36.87	35.71	74.00	-38.29	Vertical	Peak
4809.499	35.26	31.58	9.55	35.72	40.67	74.00	-33.33	Vertical	Peak
8002.061	32.34	37.1	12.3	33.07	48.67	74.00	-25.33	Vertical	Peak
1655.354	36.34	25.07	5.68	37.25	29.84	74.00	-44.16	Horizontal	Peak
3757.208	35.06	29.47	8.45	36.94	36.04	74.00	-37.96	Horizontal	Peak
4809.499	36.21	31.58	9.55	35.72	41.62	74.00	-32.38	Horizontal	Peak
9611.663	33.41	39.07	13.73	33.93	52.28	74.00	-21.72	Horizontal	Peak

	CH40									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
1299.773	36.03	26.2	4.83	37.17	29.89	74.00	-44.11	Vertical	Peak	
3728.625	35.53	29.39	8.42	36.96	36.38	74.00	-37.62	Vertical	Peak	
4883.519	37.63	31.43	9.59	35.58	43.07	74.00	-30.93	Vertical	Peak	
8527.851	32.18	37.01	12.88	32.92	49.15	74.00	-24.85	Vertical	Peak	
1663.803	35.72	25.09	5.69	37.26	29.24	74.00	-44.76	Horizontal	Peak	
3561.636	35.73	29.19	8.21	37.09	36.04	74.00	-37.96	Horizontal	Peak	
4883.519	37.83	31.43	9.59	35.58	43.27	74.00	-30.73	Horizontal	Peak	
8593.224	32.05	37.27	12.89	32.93	49.28	74.00	-24.72	Horizontal	Peak	

CH80									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1685.115	36.27	25.16	5.74	37.28	29.89	74.00	-44.11	Vertical	Peak
4958.678	36.41	31.46	9.64	35.45	42.06	74.00	-31.94	Vertical	Peak
6172.197	31.1	32.79	10.96	33.96	40.89	74.00	-33.11	Vertical	Peak
8022.456	32.79	37.08	12.35	33.06	49.16	74.00	-24.84	Vertical	Peak
1225.86	36.15	26.27	4.70	37.21	29.91	74.00	-44.09	Horizontal	Peak
3690.853	34.37	29.30	8.37	36.99	35.05	74.00	-38.95	Horizontal	Peak
5138.579	33.28	31.74	9.78	35.10	39.70	74.00	-34.30	Horizontal	Peak
7301.355	30.79	36.30	11.97	33.35	45.71	74.00	-28.29	Horizontal	Peak

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

-----End of Report------