

Appendix C. Maximum Permissible Exposure

FCC ID: RAXWN8722BTAAC Page No. : C1 of C4

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby that distance of at least 0.2 m is normally maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)			Averaging Time E ² , H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: RAXWN8722BTAAC Page No. : C2 of C4

Report No.: FR551972

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For WLAN:

For 5GHz Band:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11ac VHT20: 21.58dBm

Distance (m)	Test Freq. (MHz)	Antenna Gain (dBi)	Antenna Gain (numeric)	Curput Power De		Power Density (S) (mW/cm²)	Limit of Power Density (S)	Test Result
			(Hullielic)	(dBm)	(mW)	(IIIW/CIII)	(mW/cm²)	
0.2	5785	7.65	5.8210	21.5768	143.7730	0.166582	1	Complies

For 2.4GHz Band:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11b: 22.96 dBm

Distanc (m)	Test Freq.	Antenna Gain (dBi)	Antenna Gain (numeric)	combined	naximum ed Average but Power Density (S) (mW/cm²)		Limit of Power Density (S)	Test Result
			(Hullielic)	(dBm)	(mW)	(IIIW/CIII)	(mW/cm²)	
0.2	2437	4.01	2.5177	22.9623	197.8031	0.099125	1	Complies

For Buletooth:

Antenna Type: PCB Antenna

Max Conducted Power for Bluetooth EDR BR (GFSK) Mbps: 14.06 dBm

Distance	Test Freq.		Antenna Gain	Average Pov	•	Power		Power Density (S)	Limit of Power	Test Result
(m)	(MHz)	Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)			
0.2	2402	4.66	2.9242	14.0582	25.4577	0.014817	1	Complies		

Antenna Type: PCB Antenna

Max Conducted Power for Bluetooth 4.0: 9.18 dBm

Distance	•	- 1	Antenna Gain	Powor		Power Density (S)	Limit of Power	Test Result
(m)	(MHz)	Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	
0.2	2402	4.66	2.9242	9.1800	8.2794	0.004819	1	Complies

FCC ID: RAXWN8722BTAAC Page No. : C3 of C4

Conclusion:

Both of the WLAN 2.4GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.099125 / 1 + 0.014817 / 1 = 0.113942, which is less than "1". This confirmed that the device complies.

Conclusion:

Both of the WLAN 5GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.166582 / 1 + 0.014817 / 1 = 0.181399, which is less than "1". This confirmed that the device complies.

FCC ID: RAXWN8722BTAAC Page No. : C4 of C4