

Specific Absorption Rate (SAR) Test Report for Arcadyan Technology Corporation on the Wireless Notebook Adapter 11a/b/g

Report No. Trade Name Model Name FCC ID Date of Testing Date of Report Date of Review : FA510305-1-2-01 : Philips : SNN6500, SNN6500/00 : RAXWN6301D : Mar. 21, 2005 : Mar. 23, 2005 : Mar. 23, 2005

The test results refer exclusively to the presented test model / sample only.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

1. Statement of Compliance	
2. Administration Data	
2.1. Testing Laboratory	2
2.2. Detail of Applicant	2
2.3. Detail of Manufacturer	2
2.4. Application Detail	2
3. Scope	3
3.1. Description of Device Under Test (DUT)	3
3.2. Product Photo	4
3.3. Applied Standards:	5
3.4. Device Category and SAR Limits	6
3.5. Test Conditions	
3.5.1 Ambient Condition:	
3.5.2 Test Configuration:	
4. Specific Absorption Rate (SAR)	
4.1. Introduction	
4.2. SAR Definition	
5.SAR Measurement Setup	
5.1. DASY4 E-Field Probe System	9
5.1.1 ET3DV6 E-Field Probe Specification	10
5.1.2 ET3DV6 E-Field Probe Calibration	
5.2. DATA Acquisition Electronics (DAE)	
5.3. Robot	
5.4. Measurement Server	
5.5. SAM Twin Phantom	
5.6. Data Storage and Evaluation	
5.6.1 Data Storage	
5.6.2 Data Evaluation	
5.7. Test Equipment List	
6. Tissue Simulating Liquids	
7.Uncertainty Assessment	
8.SAR Measurement Evaluation	
8.1. Purpose of System Performance check	
8.2. System Setup	22
8.3. Validation Results	23
9. Description for DUT Testing Position	
10. Measurement Procedures	
10.1. Spatial Peak SAR Evaluation	
10.2. Scan Procedures	-
10.3. SAR Averaged Methods	
11. SAR Test Results	
11.1. Notebook Bottom Touch	
12.References	.28

©2004 SPORTON International Inc..SAR Testing Lab Tel:886-22696-2468 Fax:886-2-2696-2255

Appendix A – System Performance Check Data Appendix B – SAR Measurement Data Appendix C – Calibration Data

©2004 SPORTON International Inc..SAR Testing Lab Tel:886-22696-2468 Fax:886-2-2696-2255

SPORTON INTERNATIONAL INC.

NVLAP LAB CODE 200079-0

FCC SAR Test Report

Test Report No : FA510305-1-2-01

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum result found during testing for the Arcadyan Technology Corporation Wireless Notebook Adapter 11a/b/g SNN6500, SNN6500/00 is 0.387 W/Kg on the WLAN 2.45GHz body SAR with expanded uncertainty 20.6%. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Tested by

Approved by

Malon SIND

Nilson She Test Engineer

ee 3/3/2005

Dr. C.H. Daniel Lee SAR Lab. Manager

©2004 SPORTON International Inc..SAR Testing Lab Pag This report shall not be reproduced except in full, without the written approval of Sporton. Rev;01

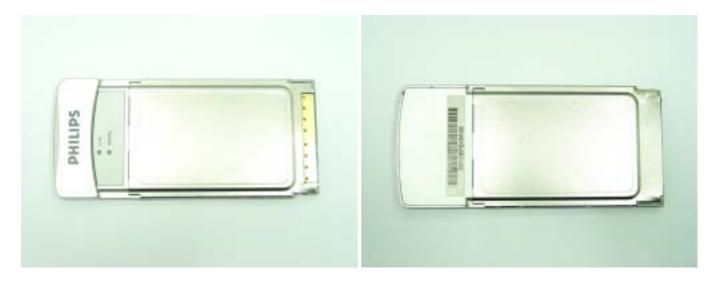
Page 1 of 28

6F, No.106, Sec.1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C. TEL:886-2-26962468 FAX:886-2-26962255 Scope of NVLAP Accreditation / IEC/CISPR 22, FCC Method -47 CFR Part 15 - Digital Devices, AS-3548

2. Administration Data

2.1. <u>Testing Laboratory</u>

Company Name : Department : Address : Telephone Number : Fax Number :	Sporton International Inc. Antenna Design/SAR No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. 886-3-327-3456 886-3-327-0973
2.2. <u>Detail of Applicant</u>	
Company Name : Address :	Arcadyan Technology Corporation 4F, No. 9, Park Avenue II, Science-based Industrial Park, Hsinchu 300, Taiwan.
Telephone Number : Fax Number :	886-3-5787000 886-3-5637327
2.3. <u>Detail of Manufacturer</u>	
Company Name : Address :	Arcadyan Technology Corporation 4F, No.9, Park Avenue II, Science-based Industrial Park, Hsinchu 300, Taiwan
2.4. <u>Application Detail</u>	
Date of reception of application: Start of test : End of test :	Jan. 03, 2005 Mar. 21, 2005 Mar. 21, 2005


3. <u>Scope</u>

3.1. <u>Description of Device Under Test (DUT)</u>

DUT Type :	Wireless Notebook Adapter 11a/b/g
Trade Name :	Philips
Model Name :	SNN6500, SNN6500/00
FCC ID :	RAXWN6301D
Type of Modulation :	802.11b: DSSS (CCK, BPSK, QPSK) 802.11g: OFDM (64QAM/16QAM/DQPSK/DBPSK)
Frequency Range :	2400~2483.5 MHz
Antenna Connector :	MS-156 HRS
Antenna Type :	PCB Antenna
Antenna Gain :	1.5 dBi
Maximum Output Power to Antenna :	802.11b: 18 dBm 802.11g: 13 dBm
Power Rating (DC/AC Voltage) :	DC 3.3V
DUT Stage :	Production Unit
Application Type :	Certification

3.2. <u>Product Photo</u>

3.3. <u>Applied Standards:</u>

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Wireless Notebook Adapter 11a/b/g is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5. <u>Test Conditons</u>

3.5.1. <u>Ambient Condition:</u>

Item	802.11b/802.11g
Ambient Temperature (°C)	$20 \sim 24$
Tissue simulating liquid temperature (°C)	22.3
Humidity (%)	< 60%

3.5.2. <u>Test Configuration:</u>

Engineering testing software installed on the Notebook can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1. The measurements were performed on the lowest, middle, and highest channel, i.e. channel 1, channel 6, and channel 11 for each testing position.

4. <u>Specific Absorption Rate (SAR)</u> Introduction *4.1*.

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The FCC recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

SAR =
$$C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where is the conductivity of the tissue, is the mass density of the tissue and *E* is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. <u>SAR Measurement Setup</u>

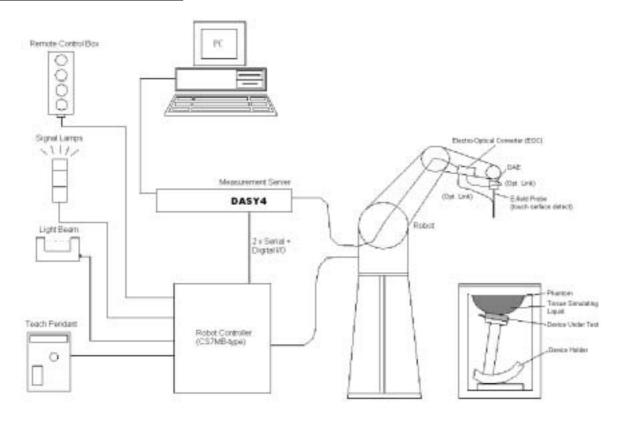


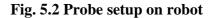
Fig. 5.1 DASY4 system

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- ➤ A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- > A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- ➢ A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1. DASY4 E-Field Probe System


The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1. ET3DV6 E-Field Probe Specification

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents)
Calibration	Simulating tissue at frequencies of 900MHz, 1.8GHz and 2.45GHz for brain and muscle (accuracy ±8%)
Frequency	10 MHz to $>$ 3 GHz
Directivity	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)
Dynamic Range	$5 \mu W/g \text{ to } > 100 \text{mW/g}; \text{Linearity: } \pm 0.2 \text{dB}$
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids on reflecting surface
Dimensions	Overall length: 330mm Tip length: 16mm
	Body diameter: 12mm
Application	Tip diameter: 6.8mm Distance from probe tip to dipole centers: 2.7mm General dosimetry up to 3GHz Compliance tests for mobile phones and Wireless LAN
	Fast automatic scanning in arbitrary phantoms

5.1.2. ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Sensitivity	X axis : 1.68 μV		Y axis : 1.70 μV		Z axis : 1.74 μV	
Diode compression point	X axis : 94 mV		Y axis : 94 mV		Z axis : 94 mV	
Conversion factor (Head / Body)	Frequency (MHz)	X a	xis	Y axis	Z axis	
	2350~2550	4.56 /	4.26	4.56 / 4.26	4.56 / 4.26	
Boundary effect	Frequency (MHz)	Alp	oha	Depth		
(Head / Body)	2350~2550	0.65 /	0.72	2.22 / 2.00		

NOTE:

- 1. The probe parameters have been calibrated by the SPEAG.
- 2. For the detailed calibration data is shown in Appendix C.

5.2. DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Calibration data is attached in Appendix C.

5.3. <u>Robot</u>

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- ▶ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4. <u>Measurement Server</u>

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5. <u>SAM Twin Phantom</u>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- \succ Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids: *Water-sugar based liquid *Glycol based liquids

Fig. 5.3 Top view of twin phantom

Fig. 5.4 Bottom view of twin phantom

©2004 SPORTON International Inc..SAR Testing Lab Pag This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

Page 13 of 28

5.6. Data Storage and Evaluation

5.6.1. Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.6.2. Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp <i>i</i>
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel

can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$$

H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$
with V_i = compensated signal of channel

with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) μ V/(V/m)2 for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g Etot = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/ cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.7. <u>Test Equipment List</u>

Manufacture Name of Equipment		T M		Calibration		
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 30, 2004	Sep. 30, 2005	
SPEAG	835MHz System Validation Kit	D835V2	499	Feb. 12, 2004	Feb. 12, 2006	
SPEAG	900MHz System Validation Kit	D900V2	190	July 17, 2003	July 17, 2005	
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	July 16, 2003	July 16, 2005	
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Feb. 17, 2004	Feb. 17, 2006	
SPEAG	2450MHz System Validation Kit	D2450V2	736	Aug. 26, 2003	Aug. 26, 2005	
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 17, 2004	Nov. 17, 2005	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR	
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.4 Build 3	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.8 Build 130	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	S-Parameter Network Analyzer (PNA)	E8358A	US40260131	Nov. 24,2004	Nov. 24, 2005	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR	
R & S	Radio Communication Tester	CMU200	105934	Aug. 24, 2004	Aug 24, 2005	
Agilent	Power Meter	E4416A	GB41292344	Jan. 21, 2005	Jan. 21, 2006	
Agilent	Power Sensor	E9327A	US40441548	Jan. 28, 2005	Jan. 28, 2006	
Agilent	Signal Generator	E8247C	MY43320596	Feb. 10, 2004	Feb. 10, 2006	
Agilent	Base Station Emulator	E5515C	GB43460754	Jan. 12, 2004	Jan. 12, 2006	

 Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the bottom of the phantom body is 15.2 centimeters, which is shown in Fig. 6.1.

The following ingredients for tissue simulating liquid are used:

- **Water**: deionized water (pure H_20), resistivity 16M as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittyvity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- DGMBE: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of tissue simulating liquid for frequency band 2450 MHz.

Ingredient	MSL-2450		
Water	698.3 ml		
DGMBE	301.7 ml		
Total amount	1 liter (1.0 kg)		
Dielectric Parameters at 22°	f = 2450 MHz		
	$r = 52.5 \pm 5\%, = 2.00 \pm 5\%$ S/m		
Table 6 1			

Table 6.1

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent E8358A Network Analyzer.

Table 6.2 shows the measuring results for muscle simulating liquid.

Bands	Frequency(MHz)	Permittivity (_r)	Conductivity ()	Measurement date
	2412	51.1	1.89	
2450 MHz	2437	51	1.93	Mar. 21, 2005
	2462	50.9	1.96	

The measuring data are consistent with $r = 52.5 \pm 5\%$ and $r = 2.00 \pm 5\%$.

Fig. 6.1

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	$_{1/k}$ (b)	1/ 3	1/ 6	1/ 2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
 (b) is the coverage factor

Table 7.1

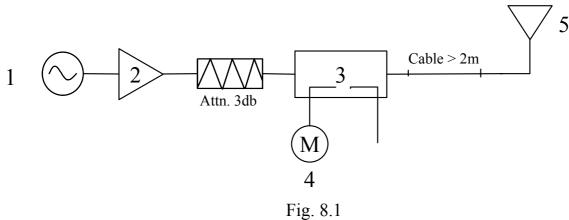
The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci 1g	Standard Unc. (1-g)	Vi or Veff
Measurement System						
Probe Calibration	± 4.8	Normal	1	1	±4.8	
Axial Isotropy	± 4.7	Rectangular	$\sqrt{3}$	0.7	±1.9	
Hemispherical Isotropy	± 9.6	Rectangular	$\sqrt{3}$	0.7	±3.9	
Boundary Effect	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Linearity	± 4.7	Rectangular	$\sqrt{3}$	1	±2.7	
System Detection Limit	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Readout Electronics	± 1.0	Normal	1	1	±1.0	
Response Time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5	
RF Ambient Conditions	± 3.0	Rectangular	$\sqrt{3}$	1	±1.7	
Probe Positioner Mech. Tolerance	± 0.4	Rectangular	$\sqrt{3}$	1	±0.2	
Probe Positioning with respect to Phantom Shell	± 2.9	Rectangular	$\sqrt{3}$	1	±1.7	
Extrapolation and Interpolation Algorithms for Max. SAR Evaluation	± 1.0	Rectangular	√3	1	±0.6	
Test sample Related						
Test sample Positioning	±2.9	Normal	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Normal	1	1	±3.6	5
Output Power Variation-SAR drift measurement	±5.0	Rectangular	$\sqrt{3}$	1	±2.9	
Phantom and Setup						
Phantom uncertainty(Including shap and thickness tolerances)	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	
Liquid Conductivity Target tolerance	±5.0	Rectangular	√3	0.64	±1.8	
Liquid Conductivity measurement uncertainty	±2.5	Normal	1	0.64	±1.6	
Liquid Permittivity Target tolerance	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	
Liquid Permittivity measurement uncertainty	±2.5	Normal	1	0.6	±1.5	
Combined standard uncertainty					±10.3	330
Coverage Factor for 95 %		<u>K=2</u>				
Expanded uncertainty (Coverage factor = 2)			Normal (k=2) 27		±20.6	

Table 7.2. Uncertainty Budget of DASY

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1. <u>Purpose of System Performance check</u>

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2. <u>System Setup</u>

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 100 mW (20 dBm) before dipole is connected.

8.3. Validation Results

Comparing to the original SAR value provided by Speag, the validation data should within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date	
ISM band (2450 MHz)	SAR (1g)	56	53.1	-5.2 %	Mar. 21, 2005	
	SAR (10g)	25.8	24.4	-5.4 %		

Table 8.1

The table above indicates the system performance check can meet the variation criterion.

9. <u>Description for DUT Testing Position</u> This DUT was tested in the position "Notebook Bottom Touch" shown in Fig. 9.1.

Fig. 9.1 Notebook Bottom Touch

10. Measurement Procedures

The measurement procedures are as follows:

- Plugging DUT into the notebook
- ▷ Using engineering software to transmit RF power continuously (continuous Tx) in the low channel
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- > Repeat the previous steps for the middle and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- ➢ Zoom scan
- Power reference measurement

10.1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2. Scan Procedures

First **Area Scan** is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an **Area Scan** is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, **Zoom Scan** is required. The **Zoom Scan** measures 5x5x7 points with step size 8, 8 and 5 mm. The **Zoom Scan** is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3. SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11.SAR Test Results

11.1. <u>Notebook Bottom Touch</u>

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	1	2412(Low)	CCK	18	0.189	0.387	1.6	Pass
802.11b	6	2437(Mid)	CCK	18	-0.084	0.369	1.6	Pass
	11	2462(High)	CCK	18	-0.032	0.333	1.6	Pass
	1	2412(Low)	OFDM	12.5	-0.093	0.289	1.6	Pass
802.11g	6	2437(Mid)	OFDM	13	0	0.259	1.6	Pass
	11	2462(High)	OFDM	13	-0.153	0.204	1.6	Pass
802.11g Turbo Mode	6	2437(Mid)	OFDM	13	-0.014	0.215	1.6	Pass

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003.
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

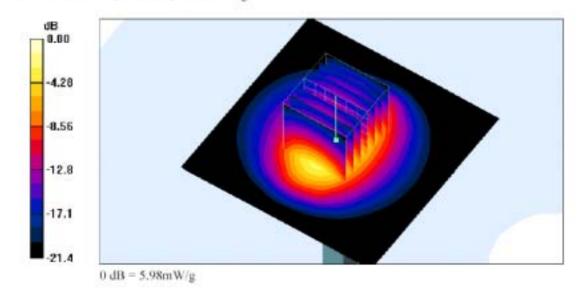
Date/Time: 3/21/2005 4:43:25 PM

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab

System Check_Body_2450MHz_20050321

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon_{\gamma} = 50.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.5 °C; Liquid Temperature : 21.8 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.20 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.9 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 11.9 W/kg SAR(1 g) = 5.31 mW/g; SAR(10 g) = 2.44 mW/g Maximum value of SAR (measured) = 5.98 mW/g

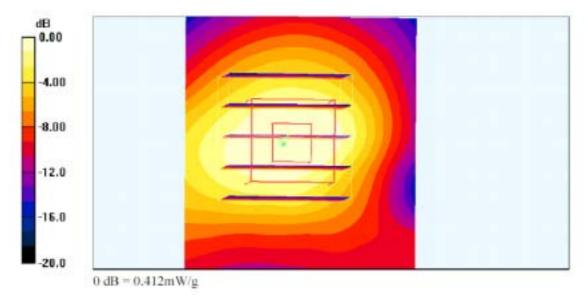
Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/21/2005 5:19:29 PM

Body_802.11b Ch1_NB BTM Touch _20050321

DUT: 510305; Type: WLAN 802.11a/b/g Card Bus

Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.89$ mho/m; $v_r = 51.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.6 °C ; Liquid Temperature : 21.9 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

Ch1/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.474 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.60 V/m; Power Drift = 0.189 dB Peak SAR (extrapolated) = 0.781 W/kg SAR(1 g) = 0.387 mW/g; SAR(10 g) = 0.205 mW/g

Maximum value of SAR (measured) = 0.412 mW/g

©2004 SPORTON International Inc..SAR Testing Lab

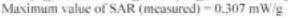
This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

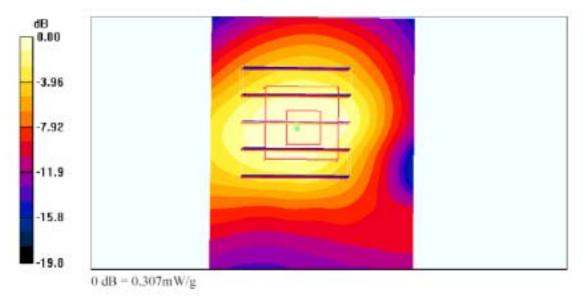
Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/21/2005 7:01:10 PM

Date/Time: 5/21/2005 7:01:10

Body_802.11g Ch1_NB BTM Touch _20050321_Turbo mode

DUT: 510305; Type: WLAN 802.11a/b/g Card Bus


Communication System: 802.11g; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; σ = 1.89 mho/m; e_p = 51.1; ρ = 1000 kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 22.4 °C


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

Ch1/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.350 mW/g

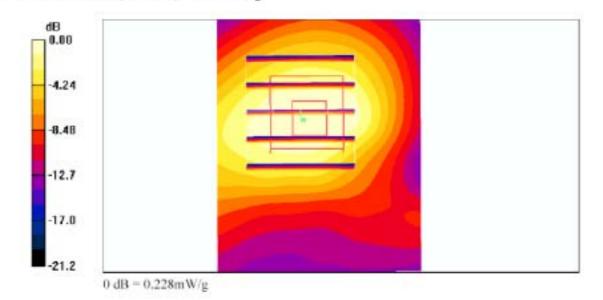
Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.50 V/m; Power Drift = -0.093 dB Peak SAR (extrapolated) = 0.590 W/kg SAR(1 g) = 0.289 mW/g; SAR(10 g) = 0.153 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Dat

Date/Time: 3/21/2005 6:50:04 PM

Body_802.11g Ch6_NB BTM Touch _20050321_Turbo mode

DUT: 510305; Type: WLAN 802.11a/b/g Card Bus


Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.93$ mho/m; $e_r = 51$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.1 °C; Liquid Temperature : 22.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

Ch6/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.258 mW/g

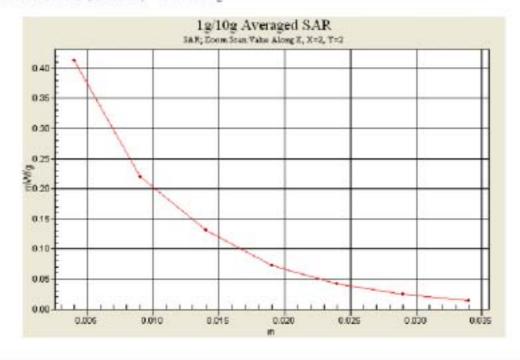
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.46 V/m; Power Drift = -0.014 dB Peak SAR (extrapolated) = 0.444 W/kg SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.228 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 3/21/2005 5:19:29 PM

Body_802.11b Ch1_NB BTM Touch _20050321

DUT: 510305; Type: WLAN 802.11a/b/g Card Bus


Communication System: 802.11b ; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.89$ mho/m; $v_p = 51.1$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.6 °C; Liquid Temperature : 21.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial; TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

Ch1/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.474 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.60 V/m; Power Drift = 0.189 dB Peak SAR (extrapolated) = 0.781 W/kg SAR(1 g) = 0.387 mW/g; SAR(10 g) = 0.205 mW/g Maximum value of SAR (measured) = 0.412 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeighausstrasse 43, 8964 Zurich, Bwitzerland

Auden > Sporton Int. Inc.

Otgect(x)	D2450V2 - 51	N:736	
Cellestion procedure(s)	QA CAL-05.v Calibration pr	ocedure for dipole validation kits	
Califeration date:	August 27, 20	500	
Condition of the calibrated item	In Toierance	according to the specific calibration	on document)
17025 elemational standard. Al calibrations have been conclus	ted in the closed laborat	E used in the calibration procedures and cantornity tary facility: environment temperature 22 +/- 2 degre	
Calibration Expansion area (MAT	E critical for calculators	Cel Dele (Cellinsted by, Certificate No.)	Scheduled Calibration
Model Type RF generator R&S BXE.03 Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E	100996 MY41092517 U837292763 C3837460104 U507390565	Cal Date (Californic Dy. Cartelogia No.) 27 Mar 2002 (R&B, No. 20 52369) 18-Oct-02 (Aglent, No. 20021018) 35-Oct-02 (METAS, No. 252 0236) 35-Oct-02 (METAS, No. 252 0236) 18-Oct-01 (Aglent, No. 248P(1033101)	In heuse check: Mar 05 Oct-04 Oct-03 Oct-03 In heuse check: Oct-03
	Name	Fundion	Squite
Calibrated by	- In dith Maedley	Tephotoan	Aprille
Approved by:	Kalja Ppezodz	Laboratory Director	Alm Hitz
			Data lowest August 28, 200
This calibration ov Shoato is Nove Calibration Laboratory of Schnid		ation until the econoditation process (beset on ISO) AG is completed.	

Schmid & Partner Engineering AG

speag

Zeughawittitsse 43, 8004 Zurich, Switzenand Phane +41 1 245 9700, Fex +41 1 245 9779 info@speeg.com, http://www.speeg.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003 Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	38.2	± 5%
Conductivity	1.89 mho/m	± 594

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

 averaged over 1 cm³ (1 g) of tissue;
 55.6 mW/g ± 16.8 % (k-2)¹

 averaged over 10 cm³ (10 g) of tissue;
 25.0 mW/g ± 16.2 % (k-2)¹

5.0 mW/g ± 16.2 % (k=2)'

⁸ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.158 ns	(one direction)
Transmission factor:	0.983	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	Re[Z] = 52.5 0
	Im (Z) = 3,6 Ω
Return Loss at 2450 MHz	-27.5 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with hody simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	50.8	$\pm 5\%$
Conductivity	2.03 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN-3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in soction 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:	56.0 mW/g \pm 16.8 % $(k-2)^2$
averaged over 10 cm3 (10 g) of tissue:	$25.8\ mW/g\pm 16.2\ \%\ (k{=}2)^2$

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re\{Z\} = 48.7 \Omega$
	Im (Z) = 4.8 Ω
Return Loss at 2450 MHz	-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coapial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DCsignals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

©2004 SPORTON International Inc..SAR Testing Lab

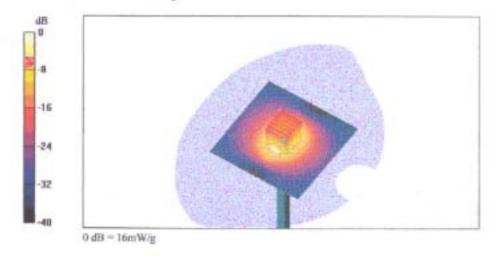
Page 1 of 1 Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_M2450_270803.da4

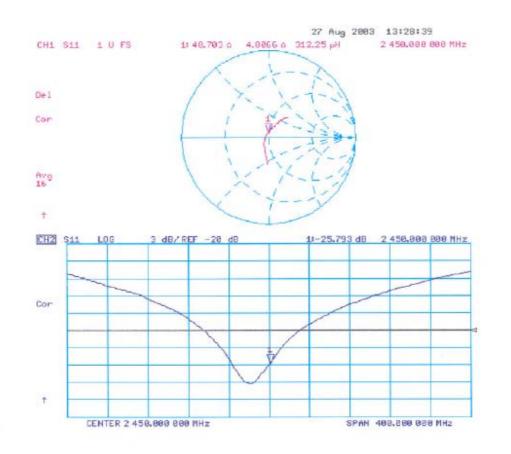
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz ($\sigma = 2.03$ mbo/m, $v_{g} = 50.75$, $\rho = 1000$ kg/m³)

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface. 4mm (Mechanical Surface Detection)
- · Electronics: DAEJ SN411; Calibrated: 1/16/2003
- · Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP.1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91 V/m Power Drift = -0.02 dB Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

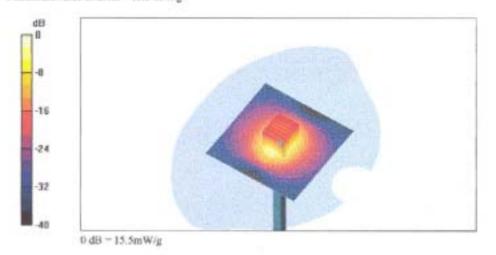
Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/g Reference Value = 91 V/m Power Drift = -0.02 dB Maximum value of SAR = 16 mW/g

Page 1 of 1 Date/Time: 08/27/03 11:42:12

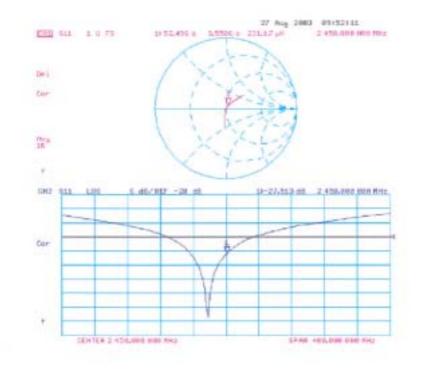
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL 2450 MHz ($\sigma = 1.89$ mhc/m, $\epsilon_{\gamma} = 38.19$, $\rho = 1000$ kg/m³) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pia = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91.5 V/m Power Drift = -0.04 dB Maximum value of SAR = 15.3 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 13.9 mW/g, SAR(10 g) = 6.25 mW/g Reference Value = 91.5 V/m Power Drift = +0.04 dB Maximum value of SAR = 15.5 mW/g

	h, Switzerland	TORATE S S	viss Calibration Service
ccredited by the Swiss Federal I he Swiss Accreditation Servic fulfilateral Agreement for the r	a is one of the signator	ies to the EA	SCS 108
Sporton (Aude	n)	Certificate No: E	T3-1788_Sep04
CALIBRATION O	CERTIFICAT	E	Stateman
Otject	ET3DV6 - SN:1	788	
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes	
Calibration data:	September 30, 3	2004	
Condition of the calibrated item	In Tolerance	In the second second second	
The measurements and the uno	ertainties with confidence	stonal standards, which makes the physical units of probability are given on the following pages and an ony facility environment temperature (22 ± 3)°C are	a part of the pertitionin.
The measurements and the unor All calibrations have been conclu Calibration Equipment used (M&	intainties with confidence clied in the closed laborat TE critics: for calibration)	probability are given on the following pages and an ory facility environment temperature (22 ± 3)°C are	s part of the perification d humidity < 70%.
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Phimory Standards	entainties with confidence clied in the closed laborat TE critical for calibration) ID #	probability are given on the following pages and an ory facility: emborrment temperature (22 ± 3)*C are Call Date (Calibrated by, Carl/Scate No.)	s part of the perification d humidity < 70%. Schequied Calibration
The measurements and the unor All calibrations have been conclu Calibration Equipment used (M& Primary Standards Prover motor E44108	etainties with confidence cled in the closed laborat TE critical for calibration) ID # GB41203874	probability are given on the following pages and an ory facility: emicorment temperature (22 ± 3)°C are Call Date (Calibrated by, Carlifoste No.) 5 May 04 (METAS, No. 251-00388)	s part of the perificate d humidity < 70%. Scheculed Calibration May 05
The measurements and the unor All calibrations have been conclu Calibration Equipment used (M& Primmy Standards Power motor E44108 Power pensor E4412A	etainties with confidence cled in the closed laborat TE critical for calibration) ID 4 0841233874 MT41485277	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C are Cuil Date (Calibrated by, Cartificate No.) 5 May 04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00380)	s part of the pertitions d humidity < 70%. Scheculed Calibration May 05 May 05
The measurements and the unor All calibrations have been conclu Calibration Equipment used (M& Primary Standards Prover motor E44108 Power consor E44108 Reference 3 cB Attenuator	Interview with confidence cled in the closed laborat TE criticel for carbration) ID # CB41233874 MT41465277 SN: S5054 (3c)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C env Call Date (Calibrated by, Cardificate No.) 5 May C4 (JETAS, No. 251-00368) 5-May-C4 (JETAS, No. 251-00368) 3-Apr-03 (JETAS, No. 251-00368)	s part of the pertitions d humidity < 70%. Scheculed Calibration May 05 May 05 May 05 Aug 05
The measurements and the unce	Interview with confidence clied in the closed laborat TE critical for calibration) ID # 0841203674 Mini 1495277 Sint 58054 (Juc) Sint 58054 (Juc) Sint 58056 (20b)	probability are given on the following pages and an ory facility environment temperature (22 ± 3)*C are Call Date (Calibrato d by, Cardificato No.) 5 May 64 (METAS, No. 251-00388) 1-May-04 (METAS, No. 251-00380) 3-May-04 (METAS, No. 251-00380)	s part of the perification d humidity < 70%. Scheculed Calibration May 05 May 05
The measurements and the unor All calibration Equipment used (M& Primary Standards Power meter E44108 Power sensor E4412A Robertoo 3 dB Attenuator Robertoo 30 dB Attenuator Robertoo 20 dB Attenuator	Interview with confidence cled in the closed laborat TE criticel for carbration) ID # CB41233874 MT41465277 SN: S5054 (3c)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C env Call Date (Calibrated by, Cardificate No.) 5 May C4 (JETAS, No. 251-00368) 5-May-C4 (JETAS, No. 251-00368) 3-Apr-03 (JETAS, No. 251-00368)	s part of the pertitions d humidity < 70%. Scheculed Calibration May 05 May 05 Aug 05 May 05
The measurements and the unor All calibrations have been conclu Calibration Equipment used (M& Primary Standards Prover motor E44108 Power sensor E4412A Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator	etainties with confidence clied in the closed laborat TE critice for calibration) ID # 0841203874 MY41465277 Shi 55054 (bc) Shi 55056 (208) Shi 55129 (108)	probability are given on the following pages and an ory facility environment temperature (22 ± 3)*C are Cuil Date (Calibrato d by, Cartificato No.) 5 May 04 (METAS, No. 251-00388) 1-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00389)	s part of the pertitions d humidity < 70%. Scheculed Calibration May 05 May 05 May 05 May 05 May 05 Aug 05
The measurements and the unor All calibrations have been conclu Calibration Equipment used (M& Primory Standards Prover motor E44108 Power motor E44108 Reference 3 off Advenuator Reference 20 off Advenuator Reference 20 off Advenuator Reference Probe E330V2 DA54	etainties with confidence clied in the closed laborat TE critics: for calibration) D # C6441233874 Mr41465277 Shi: 55054 (Jc) Shi: 55056 (20b) Shi: 55056 (20b) Shi: 55129 (J0b) Shi: 517	probability are given on the following pages and an ony facility environment temperature (22 ± 3)*C and Call Date (Calibrated by, Cariffoate No.) 5 May 04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00403) 3-Apr-03 (METAS, No. 251-00403) 3-Apr-03 (METAS, No. 251-00403) 3-Apr-03 (METAS, No. 251-00404) 5-Jan-04 (SPEAG, No. 251-00404) 5-Jan-04 (SPEAG, No. 251-00404) 25-May-04 (SPEAG, No. DAE4-617_May04)	s part of the perificacia d humidity < 70%. Scheculed Calibration May 05 May 05 Aug 05 Aug 05 Aug 05 Jan 05
The measurements and the unor All calibration Equipment used (M& Calibration Equipment used (M& Primary Standards Power restor E44108 Power sensor E44108 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	etainties with confidence clied in the closed laborat TE critice for carbration(0.9 0.4 0.641203874 Mr41465277 SAI: 55054 (Jac) SAI: 55054 (Jac) SAI: 55055 (208) SAI: 55129 (J08) SAI: 55129 (J08)	probability are given on the following pages and an ony facility environment temperature (22 ± 3)*C are Cuil Date (Calibrated by, Carlifoste No.) 5 May 04 (BETAS, No. 251-00388) 5-May-04 (BETAS, No. 251-00388) 3-Apr-03 (BETAS, No. 251-00403) 3-Apr-03 (BETAS, No. 251-00403) 3-Apr-03 (BETAS, No. 251-00404) 0-Apr-04 (BETAS, No. 251-00404) 0-Apr-04 (BETAS, No. 251-00404)	s part of the perification d humidity < 70%. Scheouled Calibration May 05 May 05 May 05 May 05 Aug 05 Jan 05 May 05
The measurements and the unor All calibrations have been conclu- Calibration Equipment used (M& Primary Standards Prover motor E44108 Power contor E44108 Power contor E44108 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E3307/2 DAE4 Socionclary Standards Power contorr HP 8451A	Interview with confidence cled in the closed laborat TE criticel for caribration) ID # CB41233874 MT41465277 SN: 55054 (2c) SN: 55054 (2c) SN: 55054 (2c) SN: 55125 (10b) SN: 55125 (10b) SN: 517 ID #	probability are given on the following pages and an ony facility environment temperature (22 ± 3)*C and Call Date (Calibrated by, CardSeate No.) 5 May C4 (AETAS, No. 251:00388) 5-May-C4 (AETAS, No. 251:00389) 3-Apr-C3 (AETAS, No. 251:00389) 3-Apr-C4 (SPEAKS, No. 251:00389) 25-May-C4 (SPEAKS, No. 251:00404) 25-May-C4 (SPEAKS, No. 251:00404) Check Date (in house)	s part of the perificipies d humidity < 70%. Scheculed Calibration May 05 Aug 05 Aug 05 Aug 05 Jan 05 May 05 Scheculed Check
The measurements and the unor All calibrations have been conclu- Calibration Equipment used (M& Primary Standards Prover remoter E44108 Prover sensor E44108 Prover sensor E44108 Prover sensor E44108 Prover sensor E44108 Prover sensor E44108 Prover sensor E44108 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E330V2 DA54 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	Interview with confidence clied in the closed laborat TE criticel for caribration(ID # GB412038/74 WY41495277 Sht 55054 (3c) Sht 55054 (3c) Sht 55054 (3c) Sht 55054 (3c) Sht 55125 (00) Sht 55125 (00) Sht 517 ID # ID # MY41092195	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C env Call Date (Calibrato d by, Cardificato No.) 5 May Ce (METAS, No. 251-00388) 5 May Ce (METAS, No. 251-00388) 3 Apr-03 (METAS, No. 251-00389) 3 Apr-04 (SPEAG, No. DAE4-617_May04) 25 Map-04 (SPEAG, No. DAE4-617_May04) Check Date (SPEAG, No. 10000, Check Oct-03)	s part of the pertition in dimmidity < 70%. Scheculed Calibration May 05 May 05 Aug 06 May 05 Aug 06 May 05 Scheculed Check In house check: Oct 05
The measurements and the unor All calibrations have been conclu- Calibration Equipment used (M& Primary Standards Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Relevence 20 dB Attenuator Relevence 700 dB Attenuator Relevence	Interview with confidence clied in the closed laborat TE create for calibration(ID # G841203874 MY41495277 SN: 55054 (3c) SN: 55055 (20b) SN: 55055 (20b) SN: 55129 (10b) SN: 55129 (1	probability are given on the following pages and an ory facility environment temperature (22 ± 3)*C are Call Date (Calibrato d by, Cardificato No.) 5 May 04 (METAS, No. 251-00388) 1-May-04 (METAS, No. 251-00380) 3-Apr-03 (s part of the perification dihumidity < 70%. Scheculed Calibration May 05 May 05 Aug 05 Aug 05 Aug 05 Aug 05 Scheculed Check In house check: Oct 05 In house check: Dec 05 In house check: Dec 05 In house check: Dec 05
The measurements and the unor All calibrations have been conclu- Calibration Equipment used (M& Primary Standards Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Power renter E44108 Relevence 20 dB Attenuator Relevence 700 dB Attenuator Relevence	etainties with confidence clied in the closed laborat TE critice for calibration) ID # G841203874 MM41485277 SN: 55054 (3c) SN: 55054 (3c) SN: 55055 (20b) SN: 55129 (10b) SN: 55129 (1	probability are given on the following pages and an ory facility environment temperature (22 ± 3)*C are Cuil Date (Calibrato di by, Cardificato No.) 5 May 04 (METAS, No. 251-00388) 1-May-04 (METAS, No. 251-00389) 3-Apr-03	s part of the perification dihumidity < 70%. Scheculed Calibration May 05 May 05 Aug 05 Aug 05 Aug 05 Aug 05 Scheculed Check In house check: Oct 05 In house check: Dec 05 In house check: Dec 05 In house check: Dec 05
The measurements and the unor All calibration Equipment used (M& Primary Standards Power meter E44108 Power sensor E44108 Power sensor E44108 Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 70 dB	etaivies with confidence clied in the closed laborat TE create for calibration(ID # 0841203874 MY41465277 Sri: 55054 (bc) Sri: 55054 (bc) Sri: 55056 (208) Sri: 55013 Sri: 55013 Sri: 55129 (108) Sri: 55129 (108) Sri	probability are given on the following pages and an ony facility environment temperature (22 ± 3)*C are Cuil Date (Calibrato di y, Cartificato No.) 5 May 04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 5-Jan-04 (SPEAS, No. 251-00404) 5-Jan-04 (SPEAS, No. 251-00404) Check Date (In house) 18-Sop 02 (SPEAS, In house check Det-03) 4-Aug 09 (SPEAS, In house check Dat-03) 18-Oct-01 (SPEAS, In house check Dat-03) Function	s part of the certificate. d humidity < 70%. Scheculed Calibration May 05 May 05 Aug 05 Aug 05 Aug 05 Jan 05 Scheculed Check In house check: Dec 05 In house check: Dec 05

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8064 Zarich, Switzerland

5

C

5

Solweizerlacher Kalibrierdienst Service suisse d'etalonnege Servizio svizzern di tamlum Servizio svizzern di tamlum

Accreditation No.: SCS 108

Accedited by the Swiss Federal Office of Metrology and Acceditation The Swiss Acceditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization o	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, 'Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-fleid (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from Isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Cartificate No: ET3-1788 Sep04

Page 2 of 9

ET3DV6 SN:1788

September 30, 2004

Probe ET3DV6

SN:1788

Manufactured: Last calibrated: Recalibrated: May 28, 2003 August 29, 2003 September 30, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system()

Cartificate No. ET3-1785_Sec04

Page 3 of 9

ET3DV6 SN:1788

September 30, 2004

DASY - Parameters of Probe: ET3DV6 SN:1788

Sella	sitivity in F	ree Spac	e ^A		Diode	Compression ^B
	NormX	1.6	58 = 9.9%	μV/(V/m) ²	DCP X	94 mV
	NormY	1.7	20 ± 9.9%	μV/(V/m) ²	DCP Y	94 mV
	NormZ	1.7	4 ± 9.9%	$\mu V/(V/m)^2$	DCP Z	94 mV
Sen	sitivity in T	ssue Sin	nulating L	iquid (Conversi	ion Factor	s)
Pleas	e see Page 8.					
Bou	ndary Effe	st				
TSL		900 MHz	Typical S	AR gradient: 5 % pe	er imm	
	Sensor Cer	ter to Phank	om Surlece D	Nestance	3.7 mm	4.7 mm
	Sensor Cer SAR _{ce} [%]		om Surface D It Correction /		3.7 mm 6.1	4.7 mm 4.4
		Without		Algorithm		
TSL.	SAR _{te} [%] SAR _{te} [%]	Without	t Correction Alg	Algorithm	8.1 0.7	4.4
TSL.	SAR _{te} [%] SAR _{te} [%]	Withou With C 1810 MHz	t Correction Alg	Algorithm orithm AR gradient: 10 % p	8.1 0.7	4.4 D.1
TSL.	SAR _{te} [%] SAR _{te} [%]	Withou With C 1810 MHz ter to Phant	t Correction / correction Alg Typical S	Algorithm orithm AR gradient: 10 % p Ilatence	8.1 0.7 per mm	4.4 D.1

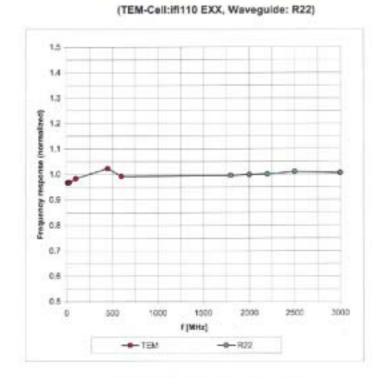
Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

* The uncertainties of NormX,Y,Z do not allive: the E²-level uncertainty inside TBL (see Page 0).
* Numerical Invariantian parameter: uncertainty not required.


Certificate No: ET3-1768_Sep04

Page 4 of 9

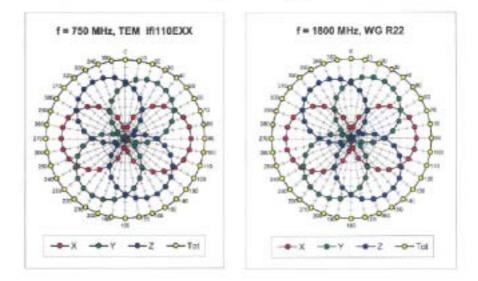
ET3DV6 SN:1788

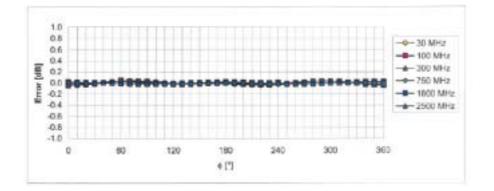
September 30, 2004

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep04


Page 5 of 9



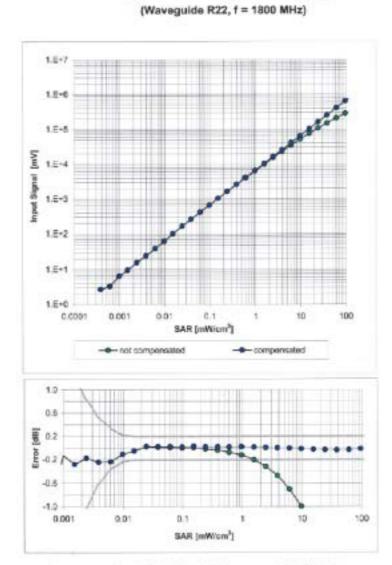
ET3DV6 SN:1788

September 30, 2004

Receiving Pattern (\$), 9 = 0°

Uncertainty of Axial leotropy Assessment: ± 0.5% (k=2)

Centificate No: ET3-1785_Sep04


Page 6 of 9

©2004 SPORTON International Inc..SAR Testing Lab

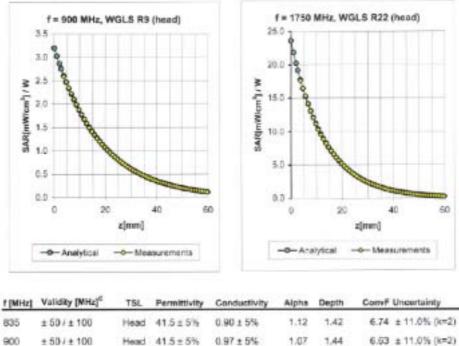
ET3DV6 SN:1788

September 30, 2004

Dynamic Range f(SARhead)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Cartificata No. ETS-1768_6ep04


Page 7 of 9

©2004 SPORTON International Inc..SAR Testing Lab

ET3DV6 SN:1788

September 30, 2004

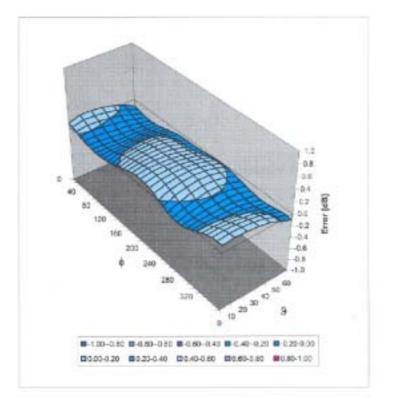
Conversion Factor Assessment

6.74 ± 11.0% (k=2) 835 1.07 1.44 900 Head 40.0 ± 5% 5.37 ± 11.0% (k=2) 1750 0.56 2.31 $\pm 50/\pm 100$ $1.40 \pm 5\%$ Head 40.0 ± 5% 5.16 ± 11.0% (k=2) 1900 ± 50/±100 1.40 ± 5% 0.65 2.42 4.88 ± 11.0% (k=2) 2000 ± 50/± 100 Head 40.0 ± 5% $1.40 \pm 5\%$ 0.54 2.59 Head 39.2 ± 5% 2.22 4.58 ± 11.8% (k=2) ± 50/± 100 1.80 + 8%0.65 2450 6.53 ± 11.0% (k=2) 835 ± 50/± 100 Body 55.2 ± 5% $0.97 \pm 5\%$ 1.04 1.52 6.17 ± 11.0% (k#2) 900 ± 50/±100 Body 55.0 ± 5% 1.06 ± 5% 0.99 1.55 1750 ±50/±100 Body 53.3±5% 1.52 ± 5% 0.532.74 4.73 ± 11.0% (k=2) Body 58.3 ± 5% 4.56 ± 11.0% (k=2) 1900 ± 50 / ± 100 1.52 ± 5% 0.55 2.82 Body 53.3 ± 5% 4.43 ± 11.0% (k=2) 2000 ± 50/±100 1.52 ± 5% 0.54 2.95 4.26 ± 11.8% (k=2) 2450 ± 50/±100 Body 52.7 ± 5% 1.96 ± 5% 0.72 2.00

⁶ The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the CoovF uncertainty at cellbration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1788_Sep04

Page 8 of 9


©2004 SPORTON International Inc..SAR Testing Lab

ET3DV6 SN:1788

September 30, 2004

Deviation from Isotropy in HSL Error (6, 8), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1708_Sep04

Page S of B

Calibration Laboratory Cohmid & Partner Engineering AG Eughausstrasse 43, 1004 Zurich,		GNISS R BRATE	S Schweizerischer Kalibrierdienst C Service suisse d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service
corecited by the Swiss Federal Off he Swiss Accreditation Service is ultilateral Agreement for the rec	s one of the signatories	to the EA	Station No.: SCS 108
lient Sporton (Auden)	1	Certific	cate No: DAE3-577_Nov04
CALIBRATION CI	ERTIFICATE		
lbjed	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v10 Calibration proces	dure for the data acquisition	n unit (DAE)
Calibration date:	November 17, 200	04	
Condition of the calibrated item	In Tolerance		
This calibration certificate documen The measurements and the uncerts All calibrations have been conducte	sinties with confidence pr	nei standarda, which realize the physi stability are given on the following pr facility: environment temperature (2	ages and are part of the certificate.
This calibration certificate documen The measurements and the uncerts All calibrations have been conducte Calibration Equipment used (M&TE	sinties with confidence pr d in the closed laboratory critical for calibration)	sbability are given on the following pr facility: environment temperature (2	ages and are part of the certificate. 2 = 3)*C and humidity < 70%.
This calibration certificate document The measurements and the uncertainty	sinties with confidence pr	sbability are given on the following pa	ages and are part of the certificate. 2 = 3)*C and humidity < 70%.
This celibration certificate documen The metaturements and the uncerta All celibrations have been conducte Celibration Equipment used (M&TE Primary Standards Flake Process Celibrator Type 702	inties with confidence pr d in the closed laboratory critical for calibration) ID #	bability are given on the following pa facility: environment temperature (2 <u>Cal Date (Calibrated by, Certificate</u> 7-Sep-04 (Sintrel, No.S-040073)	ages and are part of the certificate. 2 = 3)*C and humidity < 70%. No.) Scheduled Calibration
This calibration certificate documen The melasurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	intee with confidence pr d in the closed laboratory ortical for calibration) ID # SN: 6285603	stability are given on the following pa facility: environment temperature (2 Cal Date (Calibrated by, Certificate	ages and are part of the certificate. 2 = 3)/°C and humidity < 70%. No.) Scheduled Calibration Sep-05 Scheduled Check
This celibration certificate documen The metalsurements and the uncerta All celibrations have been conducte Celibration Equipment used (M&TE Primary Standards Fluke Process Celibrator Type 702 Secondary Standards	In the closed laboratory of in the closed laboratory official for calibration) ID # SN: 6285603 ID # SE UMS 006 AB 1002	sbability are given on the following pl facility: environment temperature (2 <u>Cal Date (Celibrated by, Certificate</u> 7-Sep-04 (Sintrel, No.E-040073) <u>Check Date (in house)</u> 15-Jul-04 (SPEAG, in house check)	ages and are part of the certificate. 2 = 3)°C and humidity < 70%. No.) Scheduled Calibration Sep-05 Scheduled Check) In house check Jul-05
This celibration certificate documen The measurements and the uncerta NI celibrations have been conducte Celibration Equipment used (M&TE Primary Standards Primary Standards Celibrator Box V1.1	intee with confidence pr d in the closed laboratory ortical for calibration) ID # SN: 6285603	bability are given on the following pa facility: environment temperature (2 Cal Date (Calibrated by, Certificate 7-Sep-04 (Sintral, No.E-040073) Check Date (in house)	ages and are part of the certificate. 2 = 3)/C and humidity < 70%. No.) Scheduled Calibration Sep-05 Scheduled Check
This celibration certificate documen The measurements and the uncerta All celibrations have been conducte Celibration Equipment used (M&TE Primary Standards Flake Process Celibrator Type 702 Secondary Standards Celibrator Box V1.1	In the closed laboratory of in the closed laboratory official for calibration) ID # SN: 6285603 ID # SE UMS 006 A8 1002	sbability are given on the following pl facility: environment temperature (2 <u>Cal Date (Celibrated by, Certificate</u> 7-Sep-04 (Sintrei, No.E-040073) <u>Check Date (in house)</u> 16-Jul-04 (SPEAG, in house check) Function	ages and are part of the certificate. 2 = 3)°C and humidity < 70%. No.) Scheduled Calibration Sep-05 Scheduled Check) In house check Jul-05
This celibration certificate documen The metalsurements and the uncerta All celibrations have been conducte Celibration Equipment used (M&TE Primary Standards Fluke Process Celibrator Type 702 Secondary Standards	In the closed laboratory of in the closed laboratory official for calibration) ID # SN: 6285603 ID # SE UMS 006 A8 1002	sbability are given on the following pl facility: environment temperature (2 <u>Cal Date (Celibrated by, Certificate</u> 7-Sep-04 (Sintrei, No.E-040073) <u>Check Date (in house)</u> 16-Jul-04 (SPEAG, in house check) Function	ages and are part of the certificate. 2 = 3)°C and humidity < 70%. No.) Scheduled Calibration Sep-05 Scheduled Check) In house check Jul-05
This calibration certificate document The measurements and the uncertain All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Primary Standards Calibrator Box V1.1 Calibrator Box V1.1	In the closed laboratory of in the closed laboratory official for calibration) ID # SN: 6285603 ID # SE UMS 006 AB 1002 Name Eric Hainfeld	stability are given on the following pl facility: environment temperature (2 <u>Cal Date (Celibrated by, Certificate</u> 7-Sep-04 (Sintrel, No.E-040073) <u>Check Date (in house)</u> 16-Jul-04 (SPEAG, in house check) Function Technician	ages and are part of the certificate. 2 = 3)*C and humidity < 70%. No.) Scheduled Celloration Sep-05 Scheduled Check) In house check Jul-05 Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

s

Sohweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

digital acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov04

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	iution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Y	z
High Range	404.437 ± 0.1% (k=2)	403.891 ± 0.1% (k=2)	$404.359 \pm 0.1\%$ (k=2)
Low Range	3.94121 ± 0.7% (k=2)	3.89867 ± 0.7% (k=2)	3.95408 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	127 °±1 °
---	-----------

Certificate No: DAE3-577_Nov04

Page 3 of 6

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.6	0.00
Channel X + Input	20000	20001.77	0.01
Channel X - Input	20000	-19991.81	-0.04
Channel Y + Input	200000	199999.7	0.00
Channel Y + Input	20000	19999.20	0.00
Channel Y - Input	20000	-19994.82	-0.03
Channel Z + Input	200000	200000.2	0.00
Channel Z + Input	20000	19996.22	-0.02
Channel Z - Input	20000	-19996.74	-0.02

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	200.05	0.03
Channel X - Input	200	-200.88	0.44
Channel Y + Input	2000	1999.9	0.00
Channel Y + Input	200	199.73	-0.13
Channel Y - Input	200	-200.53	0.27
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	199.25	-0.38
Channel Z - Input	200	-201.42	0.71

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	13.15	12.30
	- 200	-12.61	-12.86
Channel Y	200	-7.43	-7.53
	- 200	6.30	6.52
Channel Z	200	-0.16	0.31
	- 200	-1.51	-1.48

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		1.90	-0.22
Channel Y	200	1.47		4.60
Channel Z	200	-1.40	-0.08	

Certificate No: DAE3-577_Nov04

Page 4 of 5

©2004 SPORTON International Inc..SAR Testing Lab

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15948	15814
Channel Y	15960	16073
Channel Z	16236	16172

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.03	-3.07	1.24	0.58
Channel Y	-0.66	-2.19	1.96	0.55
Channel Z	-0.91	-2.82	0.42	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25/A

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.3
Channel Y	0.2000	200.4
Channel Z	0.2001	199.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre-test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

10. Common Mode Bit Generation (verified during pre test)

Typical values	Bit set to High at Common Mode Error (Voc)
Channel X, Y, Z	+1.25

Certificate No: DAE3-577_Nov04

Page 5 of 5

©2004 SPORTON International Inc..SAR Testing Lab