FCC TEST REPORT

CATEGORY: Portable

PRODUCT NAME: EZ Connect[™] g WLAN Cardbus

FCC ID. : RAXWN4301C

FILING TYPE: Certification

BRAND NAME: SMC

MODEL NAME: SMCWCB-G

APPLICANT: Arcadyan Technology Corporation

4F, No. 9, Park Avenue II, Science-based Industrial Park,

Hsinchu 300, Taiwan.

MANUFACTURER: Arcadyan Technology Corporation

4F, No. 9, Park Avenue II, Science-based Industrial Park,

Hsinchu 300, Taiwan.

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA and any agency of U.S. government.

The test equipment used to perform the test is calibrated and traceable to NML/ROC or NIST/USA.

Report No.: FR522103

1190 ILAC MRA

Table of Contents

HISTORY OF THIS TEST REPORT	II
CERTIFICATE OF COMPLIANCE	
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST. 1.1. Applicant	11111
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST 2.1. Connection Diagram of Test System 2.2. The Test Mode Description 2.3. Description of Test Supporting Units	3
3. GENERAL INFORMATION OF TEST 3.1. Test Facility 3.2. Standards for Methods of Measurement. 3.3. Frequency Range Investigated. 3.4. Test Distance. 3.5. Test Software.	4 4 4
4. LIST OF MEASUREMENTS	
5. TEST RESULT 5.1. Test of 6dB Spectrum Bandwidth 5.2. Test of Maximum Peak Conducted Output Power 5.3. Test of Peak Power Spectral Density 5.4. Test of Band Edges Emission 5.5. Test of AC Power Line Conducted Emission 5.6. Test of Spurious Radiated Emission 5.7. Antenna Requirements	
6. LIST OF MEASURING EQUIPMENTS USED	45
7. COMPANY PROFILE 7.1. Certificate of Accreditation 7.2. Test Location	47 47
8. CNLA CERTIFICATE OF ACCREDITATION	
ADDENDIV A DUOTOODADUS OF FUT	A4 A40

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

HISTORY OF THIS TEST REPORT

Received Date: Mar. 01, 2005
Test Date: Mar. 04, 2005

Original Report Issue Date: Mar. 25, 2005

Report No.: FR522103

No additional attachment.

☐ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C

PRODUCT NAME: EZ Connect[™] g WLAN Cardbus

BRAND NAME: SMC

MODEL NAME: SMCWCB-G

APPLICANT: Arcadyan Technology Corporation

4F, No. 9, Park Avenue II, Science-based Industrial Park,

Hsinchu 300, Taiwan.

MANUFACTURER: Arcadyan Technology Corporation

4F, No. 9, Park Avenue II, Science-based Industrial Park,

Hsinchu 300, Taiwan.

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4-2003 and all test are performed according to 47 CFR FCC Part 15 Subpart C. Testing was carried out on Mar. 04, 2005 at SPORTON International Inc. LAB.

Dr. Alan LaneVice General Manager
Sporton International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : iii

Report No.: FR522103

Issued Date: Mar. 25, 2005

1. General Description of Equipment under Test

1.1. Applicant

Arcadyan Technology Corporation

4F, No. 9, Park Avenue II, Science-based Industrial Park, Hsinchu 300, Taiwan.

1.2. Manufacturer

Arcadyan Technology Corporation

4F, No. 9, Park Avenue II, Science-based Industrial Park, Hsinchu 300, Taiwan.

1.3. Basic Description of Equipment under Test

This product is a Cardbus with 802.11b/g wireless solution. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Items	Description
Type of Modulation	DSSS (CCK / DQPSK / DBPSK) OFDM (64QAM / 16QAM / DQPSK / DBPSK)
Number of Channels	11
Frequency Band	2400MHz ~ 2483.5 MHz
Carrier Frequency	See section 1.6 for details
Data Rate	1, 2, 5.5, 11 Mbps – DSSS 6, 12, 18, 24, 36, 48, 54 Mbps - OFDM
Channel Bandwidth	15 MHz (DSSS), 18 MHz (OFDM)
Max. Conducted Output Power	DSSS: 17.02 dBm; OFDM: 15.02 dBm
Antenna Type	See section 1.5 for details
Communication Type	Half-Duplex
Testing Duty Cycle	100.00%
EUT Power Source	120.00V AC (host) / DC 3.3V (EUT)
Temperature Range (Operating)	0 ~ 55 °C

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 1 of 48

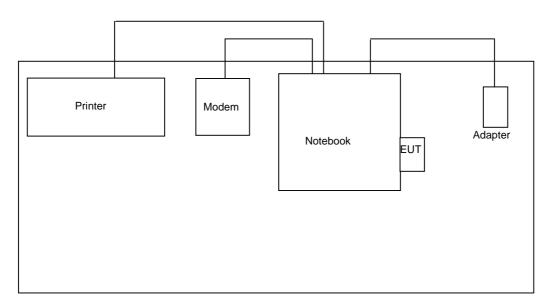
Issued Date: Mar. 25, 2005

sued on Mar. 25, 2005 Report No.: FR522103

1.5. Antenna Description

No.	Antenna Type	Gain (dBi)
1	Printed Antenna	2.43

1.6. Table for Carrier Frequencies


Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	05	2432 MHz	09	2452 MHz	-	-
02	2417 MHz	06	2437 MHz	10	2457 MHz	-	-
03	2422 MHz	07	2442 MHz	11	2462 MHz	-	-
04	2427 MHz	08	2447 MHz	-	-	-	-

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 2 of 48
Issued Date : Mar. 25, 2005

Report No.: FR522103

2. Test Configuration of the Equipment under Test

2.1. Connection Diagram of Test System

2.2. The Test Mode Description

- 1. For DSSS modulation, CCK (11 Mbps) is the worst case on all test items.
- 2. For OFDM modulation, BPSK (6 Mbps) is the worst case on all test items.
- 3. According to ANSI C63.4-2003: If frequency range of EUT is more than 10 MHz, we have to test the lowest, middle and highest channels of EUT.
- 4. Spurious emission below 1GHz is independent of channel selection and modulation types. So only channel 11 with OFDM modulation was tested.
- 5. AC conduction emission is independent of channel selection, modulation types. So only channel 11 with OFDM modulation was tested.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	FCC ID	Data cable (m)
Notebook	DELL	D505	DoC	-
Printer	EPSON	STYLUS COLOR 680	DoC	1.7
Modem	ACEEX	DM141	IFAXDM141	1.15

Page No. : 3 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Report No.: FR522103

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456 : FAX 886-3-318-0055

Test Site No : 03CH03-HY / TH01-HY / CO04-HY

3.2. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR FCC Part 15 Subpart C

3.3. Frequency Range Investigated

Radiated emission test: from 30 MHz to 10th carrier harmonic.

3.4. Test Distance

The test distance of radiated emission (30MHz~1GHz) test from antenna to EUT is 3 M. The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 3 M.

3.5. Test Software

During testing, Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameter Table

Test Software	ART				
Test Channel	CH 01	CH 06	CH 11		
Test Frequency	2412MHz	2437MHz	2462MHz		
TX Power of DSSS	17	17	17		
TX Power of OFDM	11	11	11		

SPORTON International Inc.

Page No. : 4 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Paragraph	FCC Section	Description of Test	Result	
5.1	15.247(a)(2)	6dB Spectrum Bandwidth	Pass	
5.2	15.247(b)(3)	Maximum Peak Conducted Output Power	Pass	
5.3	15.247(e)	Peak Power Spectral Density	Pass	
5.4	15.247(d)	Band Edges Emission	Pass	
5.5	15.207	AC Power Line Conducted Emission	Pass	
5.6	15.247(d)	Spurious Radiated Emission	Pass	
5.7	15.203/15.247(b)/(c)	Antenna Requirement	Pass	

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 5 of 48
Issued Date : Mar. 25, 2005

Report No.: FR522103

Page No.

: 6 of 48

5. Test Result

5.1. Test of 6dB Spectrum Bandwidth

5.1.1. Applicable Standard

Section 15.247(a)(2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.2. Measuring Instruments

Item 18 of the table is on section 6.

5.1.3. Description of Major Test Instruments Setting

• Spectrum Analyzer · R&S FSP30

Attenuation · Auto

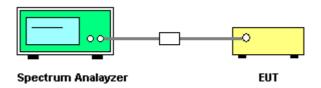
Center Frequency : 2412 MHz / 2437 MHz / 2462 MHz

Span Frequency : > 6dB Bandwidth

RB : 100 kHz

VB : 100 kHz

Detector : Peak


Trace : Max Hold

Sweep Time : Auto

5.1.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz. Trace to Max hold and Detector PK.
- 3. The 6dB spectrum width is the specrum with level higher than 6dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.1.5. Test Setup Layout

5.1.6. Test Criteria

All test results complied with the requirements of 15.247(a)(2). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

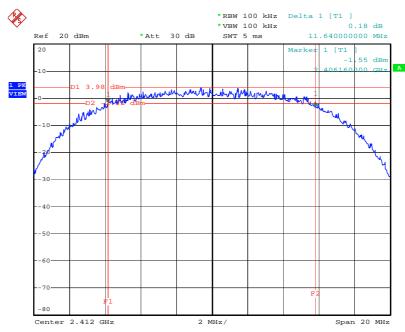
TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Issued on Mar. 25, 2005 Report No.: FR522103

5.1.7. Test Result

Temperature: 18°CRelative Humidity: 69%

• Duty Cycle of the Equipment During the Test: 100.00%


Test Engineer: Hung Ming Long

Modulation Type	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Min. Limit (MHz)
DSSS	01	2412 MHz	11.64	0.5
DSSS	06	2437 MHz	12.12	0.5
DSSS	11	2462 MHz	11.64	0.5
OFDM	01	2412 MHz	16.40	0.5
OFDM	06	2437 MHz	16.52	0.5
OFDM	11	2462 MHz	16.36	0.5

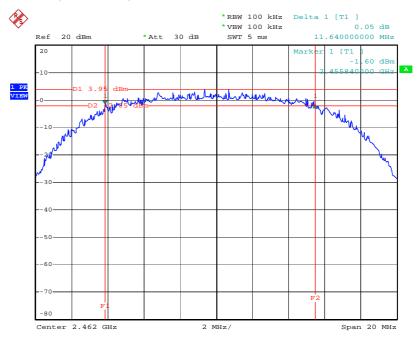
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 7 of 48 Issued Date : Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: DSSS (Channel 01):

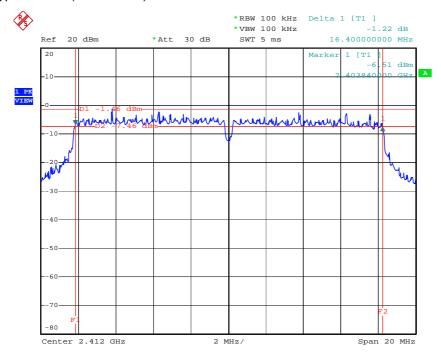
Date: 5.MAR.2005 07:18:33

Modulation Type: DSSS (Channel 06):


Date: 5.MAR.2005 07:20:02

TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

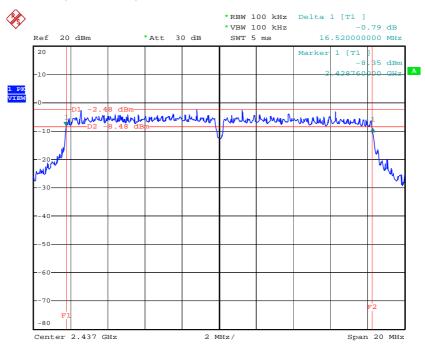
Page No. : 8 of 48


Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: DSSS (Channel 11):

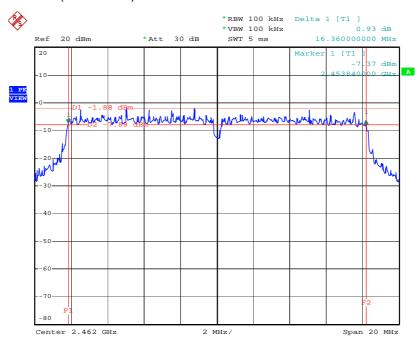
Date: 5.MAR.2005 07:16:52

Modulation Type: OFDM (Channel 01):


Date: 5.MAR.2005 07:39:54

TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Page No. : 9 of 48


Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: OFDM (Channel 06):

Date: 5.MAR.2005 07:39:11

Modulation Type: OFDM (Channel 11):

Date: 5.MAR.2005 07:37:49

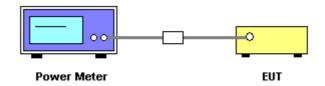
Page No. : 10 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Issued on Mar. 25, 2005 Report No.: FR522103

5.2. Test of Maximum Peak Conducted Output Power

5.2.1. Applicable Standard

Section 15.247(b)(3): The maximum peak output power shall not exceed 1 watt (30dBm). Except as shown below, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the above stated values by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


5.2.2. Measuring Instruments

Item 19, 21 of the table are on section 6.

5.2.3. Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the peak power meter through an attenuator.
- 2. Repeated the 1 for the middle and highest channel of the EUT.

5.2.4. Test Setup Layout

5.2.5. Test Criteria

All test results complied with the requirements of 15.247(b)(3). Measurement Uncertainty is 1.5dB.

5.2.6. Test Result of Conducted Power

Temperature: 18°C Relative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)
DSSS	01	2412 MHz	17.02	30
DSSS	06	2437 MHz	16.98	30
DSSS	11	2462 MHz	17.00	30
OFDM	01	2412 MHz	15.00	30
OFDM	06	2437 MHz	15.01	30
OFDM	11	2462 MHz	15.02	30

SPORTON International Inc.

Page No. : 11 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005

FAX: 886-2-2696-2255

Report No.: FR522103

: 12 of 48

5.3. Test of Peak Power Spectral Density

5.3.1. Applicable Standard

Section 15.247(e): For digital modulation systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

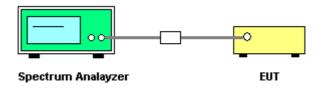
5.3.2. Measuring Instruments

Item 18 of the table is on section 6.

5.3.3. Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP30

Attenuation Auto


Center Frequency 2412 MHz / 2437 MHz / 2462 MHz

Span Frequency 1.5MHz RB 3 kHz **VB** 30 kHz Detector Peak Trace Max Hold Sweep Time 500s

5.3.4. Test Procedures

- 1. The transmitter output is connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz. Set Detector to Peak, Trace to Max Hold.
- 3. Mark the frequency with maximum peak power as the center of the display of the spectrum.
- 4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.
- 5. Repeated the 1~4 for the middle and highest channel of the EUT.

5.3.5. Test Setup Layout

5.3.6. Test Criteria

All test results complied with the requirements of 15.247(e). Measurement Uncertainty is 1.5dB.

SPORTON International Inc.

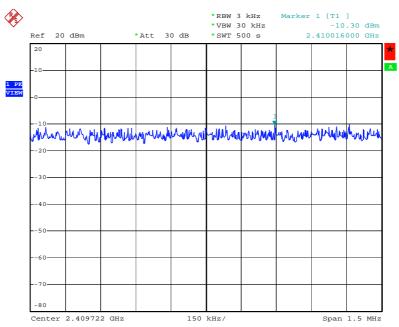
Page No. TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Issued on Mar. 25, 2005 Report No.: FR522103

5.3.7. Test Result

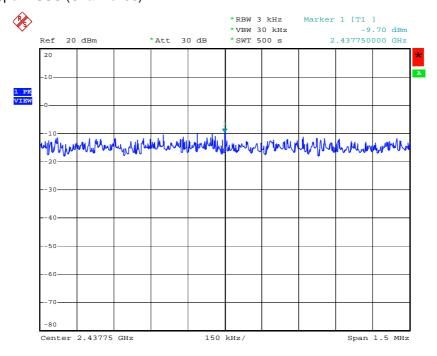
Temperature: 18°CRelative Humidity: 69%

• Duty Cycle of the Equipment During the Test: 100.00%


Test Engineer: Hung Ming Long

Modulation Type	Channel No.	Frequency (MHz)	Power Density (dBm)	Limits (dBm)
DSSS	01	2412 MHz	-10.30	8
DSSS	06	2437 MHz	-9.70	8
DSSS	11	2462 MHz	-9.72	8
OFDM	01	2412 MHz	-17.75	8
OFDM	06	2437 MHz	-18.92	8
OFDM	11	2462 MHz	-17.85	8

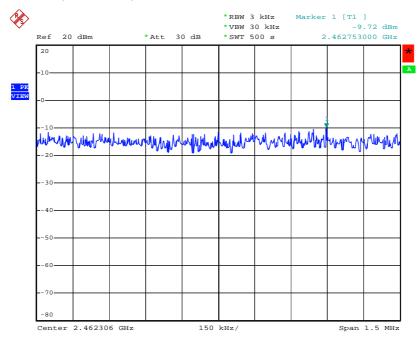
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 13 of 48 Issued Date : Mar. 25, 2005


Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: DSSS (Channel 01):

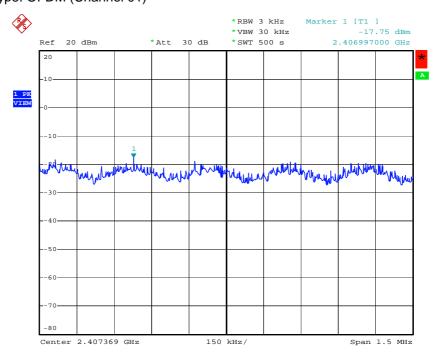
Date: 5.MAR.2005 07:14:22

Modulation Type: DSSS (Channel 06):



Date: 5.MAR.2005 07:14:52

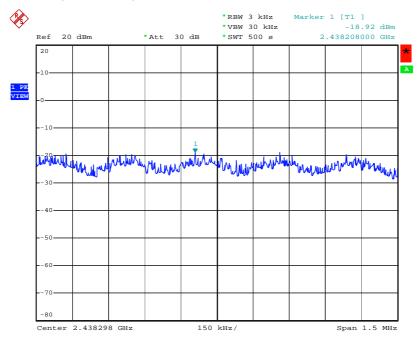
Page No. : 14 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255


Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: DSSS (Channel 11):

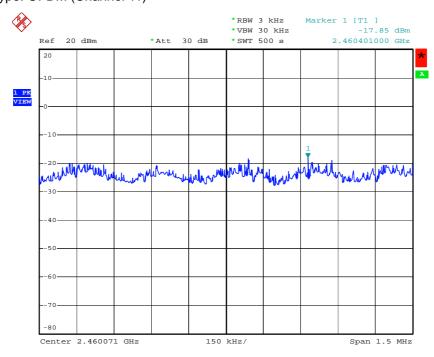
Date: 5.MAR.2005 07:16:06

Modulation Type: OFDM (Channel 01):



Date: 5.MAR.2005 07:03:33

Page No. : 15 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255


Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: OFDM (Channel 06):

Date: 5.MAR.2005 07:06:33

Modulation Type: OFDM (Channel 11):

Date: 5.MAR.2005 07:07:17

Page No. : 16 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Report No.: FR522103

5.4. Test of Band Edges Emission

5.4.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.4.2. Measuring Instruments

Item 6~17 of the table is on section 6 for radiated measurement. Item 18 of the table is on section 6 for conducted measurement.

5.4.3. Description of Major Test Instruments Setting

Spectrum Analyzer : R&S FSP30 (Conducted Measurement)

Attenuation Auto

: 2412 MHz / 2462 MHz Center Frequency

100MHz Span Frequency RB 100 kHz **VB** : 100 kHz Peak Detector Trace : Max Hold Sweep Time Auto

Spectrum Analyzer : R&S FSP40 (Radiated Measurement)

Attenuation : Auto

: 2412 MHz / 2462 MHz Center Frequency

Span Frequency 100MHz

RB 1 MHz for PK value / 1 MHz for AV value VΒ : 1 MHz for PK value / 10 Hz for AV value

Detector Peak Trace Max Hold Sweep Time Auto

5.4.4. Test Procedures and Test Instruments Setting

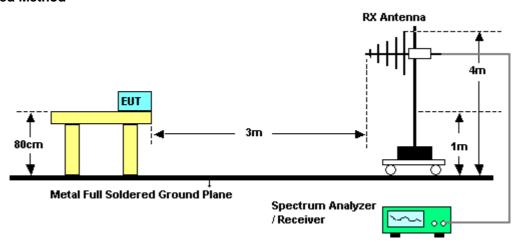
Conducted Measurement

1. The transmitter is set to the lowest channel.

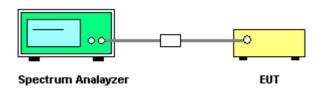
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

SPORTON International Inc.

Page No. : 17 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255


Issued on Mar. 25, 2005 Report No.: FR522103

Radiated Measurement


- 1. Configure the EUT according to ANSI C63.4.
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission in restriction bands, use 10Hz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1 MHz RBW for reading under PK.

5.4.5. Test Setup

Radiated Method

Conducted Method

5.4.6. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 1x10⁻⁵.

Page No. : 18 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Issued on Mar. 25, 2005 Report No.: FR522103

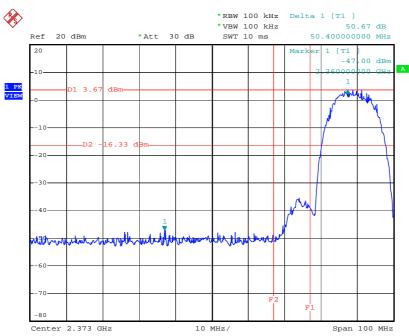
5.4.7. Test Result of Radiated Emission

Temperature: 18°CRelative Humidity: 69%

• Duty Cycle of the Equipment During the Test: 100.00%

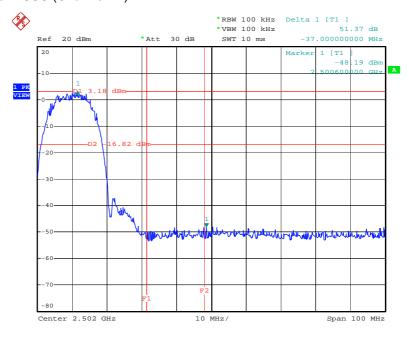
Test Engineer: Hung Ming Long

Modulation Type	Test Channel	Freq. (MHz)	Level* (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Trace (PK/AV)
DSSS	01	2359.66	58.50	-15.50	74	PK
DSSS	01	2359.98	50.71	-3.29	54	AV
DSSS	11	2487.26	63.35	-10.65	74	PK
DSSS	11	2486.78	50.85	-3.15	54	AV
OFDM	01	2360.1	58.25	-15.75	74	PK
OFDM	01	2360.1	50.82	-3.18	54	AV
OFDM	11	2483.5	61.11	-12.89	74	PK
OFDM	11	2483.5	46.35	-7.65	54	AV


Level*: The max field strength in the restricted bands.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 19 of 48 Issued Date : Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

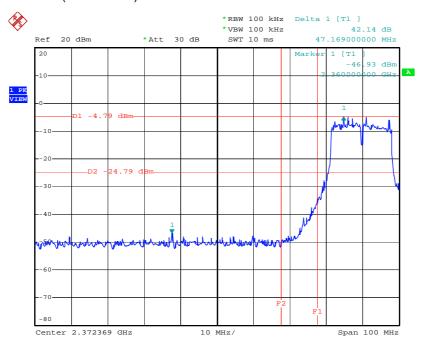

Test Result of Conducted Emission

Modulation Type: DSSS (Channel 01):

Date: 5.MAR.2005 07:19:11

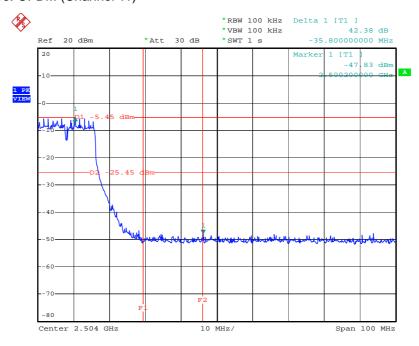
Modulation Type: DSSS (Channel 11):

Date: 5.MAR.2005 07:17:50


TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Page No.

: 20 of 48


Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: OFDM (Channel 01):

Date: 5.MAR.2005 07:04:34

Modulation Type: OFDM (Channel 11):

Date: 5.MAR.2005 07:09:45

Page No. : 21 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Report No.: FR522103

5.5. Test of AC Power Line Conducted Emission

5.5.1. Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

5.5.2. Measuring Instruments

Please reference item 1~5 in chapter 6 for the instruments used for testing.

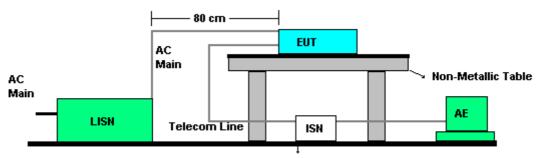
5.5.3. Description of Major Test Instruments Setting

 Test Receiver : R&S ESCS 30

Attenuation : 10 dB Start Frequency : 0.15 MHz Stop Frequency : 30 MHz IF Bandwidth : 9 KHz

5.5.4. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provide 50uH/ 50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.


SPORTON International Inc.

Page No. : 22 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

Issued on Mar. 25, 2005 Report No.: FR522103

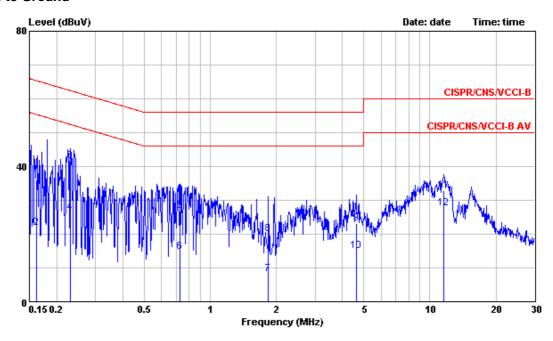
5.5.5. Test Setup Layout

Metal Full Soldered Ground Plane

5.5.6. Test Criteria

All test results complied with the requirements of 15.207. Measurement Uncertainty is 2.54dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 23 of 48 Issued Date : Mar. 25, 2005

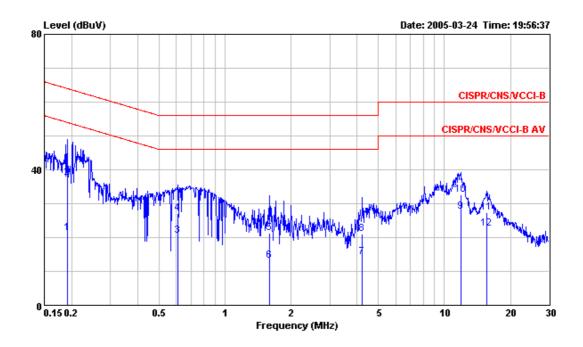


Issued on Mar. 25, 2005 Report No.: FR522103

5.5.7. Test Result of Conducted Emission for CH 11 / 2462 MHz

Temperature: 18°CRelative Humidity: 69%Test Engineer: Sky Wu

Line to Ground



			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dВ	
1	0.1622420	36.12	-29.23	65.35	35.77	0.10	0.25	QP
2	0.1622420	21.72	-33.63	55.35	21.37	0.10	0.25	Average
3	0.2316200	41.64	-20.75	62.39	41.50	0.10	0.04	QP
4	0.2316200	26.35	-26.04	52.39	26.21	0.10	0.04	Average
5	0.7274420	26.87	-29.13	56.00	26.25	0.10	0.52	QP
6	0.7274420	14.77	-31.23	46.00	14.15	0.10	0.52	Average
7	1.841	8.15	-37.85	46.00	7.98	0.10	0.07	Average
8	1.841	19.99	-36.01	56.00	19.82	0.10	0.07	QP
9	4.621	23.22	-32.78	56.00	22.94	0.20	0.08	QP
10	4.621	15.09	-30.91	46.00	14.81	0.20	0.08	Average
11	11.559	32.82	-27.18	60.00	31.97	0.20	0.65	QP
12	11.559	27.64	-22.36	50.00	26.79	0.20	0.65	Average

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 24 of 48 Issued Date : Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

Neutral to Ground

			0 ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dВ	
1	0.1903870	21.26	-32.76	54.02	20.89	0.11	0.26	Average
2	0.1903870	37.50	-26.52	64.02	37.13	0.11	0.26	QP
3	0.6107510	20.56	-25.44	46.00	19.82	0.23	0.51	Average
4	0.6107510	27.18	-28.82	56.00	26.44	0.23	0.51	QP
5	1.594	21.34	-34.66	56.00	20.75	0.23	0.36	QP
6	1.594	13.20	-32.80	46.00	12.61	0.23	0.36	Average
7	4.221	14.17	-31.83	46.00	13.64	0.24	0.29	Average
8	4.221	20.96	-35.04	56.00	20.43	0.24	0.29	QP
9	11.871	27.55	-22.45	50.00	26.32	0.33	0.90	Average
10	11.871	32.69	-27.31	60.00	31.46	0.33	0.90	QP
11	15.631	27.47	-32.53	60.00	26.41	0.35	0.71	QP
12	15.631	22.55	-27.45	50.00	21.49	0.35	0.71	Average

Note:

Corrected Reading: Probe (LISN / ISN) Factor + Cable Loss + Read Level = Level.

Page No. : 25 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

5.5.8. Photographs of Conducted Emission Test Configuration

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 26 of 48 Issued Date : Mar. 25, 2005

Report No.: FR522103

Page No.

: 27 of 48

5.6. Test of Spurious Radiated Emission

5.6.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.6.2. Measuring Instruments

Please reference item 1~17 in chapter 6 for the instruments used for testing.

5.6.3. Description of Major Test Instruments Setting

Spectrum Analyzer : R&S FSP40

Attenuation : Auto

Start Frequency : 1000 MHz

Stop Frequency : 10th carrier harmonic

RB / VB : 1 MHz / 1MHz for Peak

RB / VB : 1 MHz / 10Hz for Average

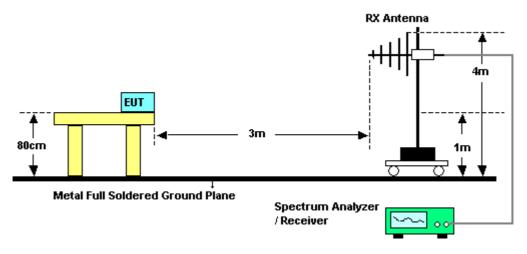
Test Receiver : R&S ESCS 30

Attenuation : Auto
Start Frequency : 30 MHz
Stop Frequency : 1000 MHz

RB · 120 KHz for QP or PK

5.6.4. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.


SPORTON International Inc.

TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

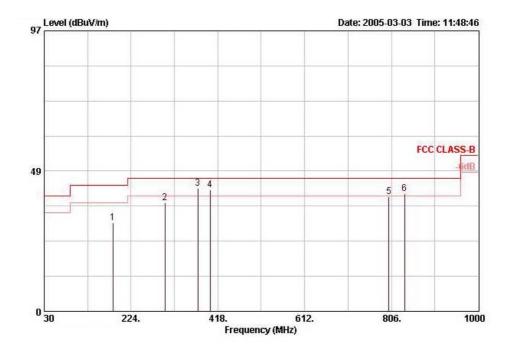
- 10.If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.
- 11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.6.5. Test Setup Layout

5.6.6. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 2.26dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 28 of 48 Issued Date : Mar. 25, 2005

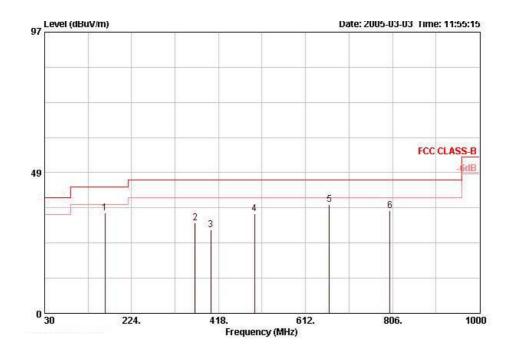

5.6.7. Test Results for CH 11 / 2462 MHz (for emission below 1GHz)

Modulation Type: OFDMTemperature: 18°CRelative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal



		Freq	Level	Over Limit				Preamp Factor		Pol/Phase	Remark
		MHz	dBuV/m	- dB	dBuV/m	dB/m	dB	dB	dBuV	-	
1 (e	183.260	30.66	-12.84	43.50	8.30	1.07	30.02	51.31	HORI ZONTAL	
2	e	299.660	37.51	-8.49	46.00	13.00	1.37	30.16	53.30	HORI ZONTAL	
3 (e	373.380	42.57	-3.43	46.00	14.93	1.53	30.52	56.64	HORIZONTAL	
4 1	e	400.540	42.12	-3.88	46.00	15.94	1.59	30.35	54.94	HORI ZONTAL	
5	e	800.180	39.70	-6.30	46.00	20.00	2.26	30.13	47.57	HORIZONTAL	
6	e	835.100	40.80	-5.20	46.00	20.29	2.33	30.00	48.19	HORIZONTAL	

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

		Freq	Level	Limit		Factor			Kead Level	Pol/Phase	Remark
		Mtz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV)	
1		164.830	34.61	-8.89	43.50	9.35	1.02	30.19	54.42	VERTICAL	
	e	365.620	31.08	-14.92	46.00	14.83	1.51	30.55	45.29	VERTICAL	
3	e	400.540	28.89	-17.11	46.00	15.94	1.59	30.35	41.71	VERTICAL	
4	0	498.510	34.28	-11.72	46.00	17.36	1.77	30.53	45.68	VERTICAL	
5	e	665.350	37.59	-8.41	46.00	18.91	2.06	30.35	46.98	VERTICAL	
6	e	800.180	35.36	-10.64	46.00	20.00	2.26	30.13	43.23	VERTICAL	

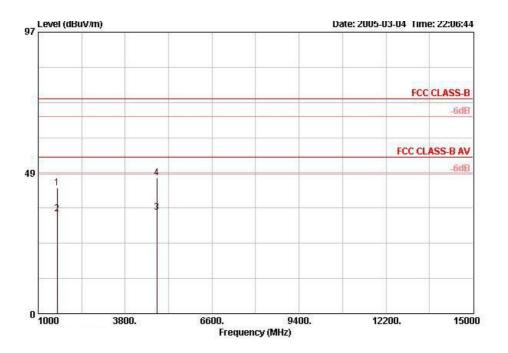
Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level All emissions are peak value.

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 30 of 48 Issued Date : Mar. 25, 2005

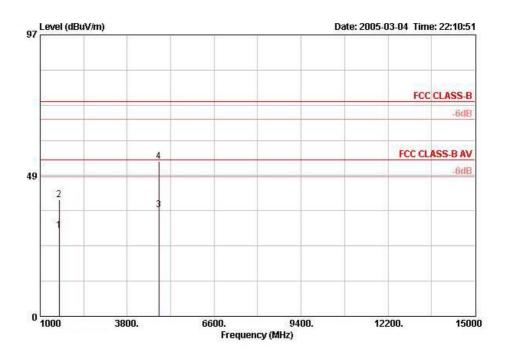

5.6.8. Test Results for CH 01 / 2412 MHz (for emission above 1GHz)

Modulation Type: DSSSTemperature: 18°CRelative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal


	Freq	Level	Over Limit		Antenna Factor			Read Level	Pol/Phase	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	*	-
10	1607.680	43.46	-30.54	74.00	25.64	1.46	35.73	52.08	HORI ZONTAL	PEAK
2 @	1607.920	34.27	-19.73	54.00	25.64	1.46	35.73	42.89	HORIZONTAL	AVERAGE
3 @	4823.900	34.90	-19.10	54.00	33.22	3.20	37.61	36.08	HORIZONTAL	AVERAGE
4 @	4823.900	46.79	-27.21	74.00	33.22	3.20	37.61	47.98	HORI ZONTAL	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 31 of 48

Issued Date: Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

		Freq	Level	Over Limit		Antenna Factor			Read Level	Pol/Phase	Remark
		MHz	dBuV/m	dB	dBuV/m	dB/m	dB	- дв	dBuV	-	-
1 8	9	1607.960	29.53	-24.47	54.00	25.64	1.46	35.73	38.15	VERTICAL	AVERAGE
2 8	9	1608.240	40.26	-33.74	74.00	25.64	1.46	35.73	48.88	VERTICAL	PEAK
3 6	9	4823.940	36.74	-17.26	54.00	33.22	3.20	37.61	37.92	VERTICAL	AVERAGE
4 6	9	4824.420	53.48	-20.52	74.00	33.22	3.20	37.61	54.67	VERTICAL	PEAK

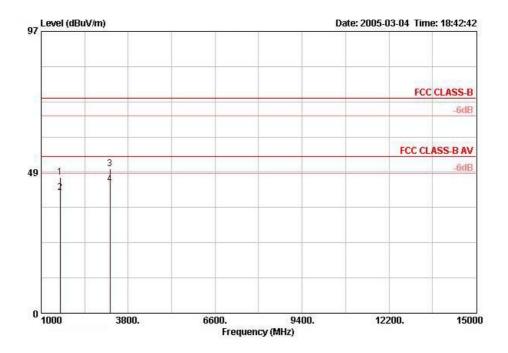
Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 32 of 48

Issued Date: Mar. 25, 2005

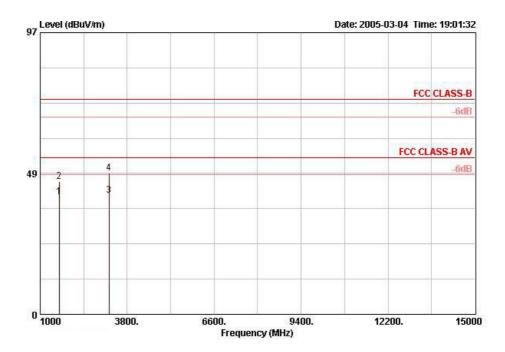

Issued on Mar. 25, 2005 Report No.: FR522103

Modulation Type: OFDMTemperature: 18°CRelative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal


		Freq	Level			Antenna Factor			Read Level	Pol/Phase	Remark
		Mkz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	9	-
1	0	1608.270	46.85	-27.15	74.00	25.64	1.46	35.73	55.47	HORIZONTAL	PEAK
2	9	1608.570	41.54	-12.46	54.00	25.64	1.46	35.73	50.16	HORIZONTAL	AVERAGE
3	e	3215.830	49.76	-24.24	74.00	30.66	1.97	36.60	53.74	HORIZONTAL	PEAK
4	@	3215.830	44.52	-9.48	54.00	30.66	1.97	36.60	48.50	HORIZONTAL	AVERAGE

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 33 of 48

Issued Date: Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

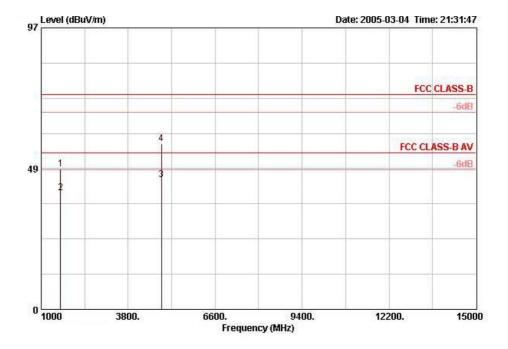
		Freq	Level			Antenna Factor			Read Level	Pol/Phase	Remark
		MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV		
1	e	1608.400	40.52	-13.48	54.00	25.64	1.46	35.73	49.14	VERTICAL	AVERAGE
2	· e	1608.400	45.76	-28.24	74.00	25.64	1.46	35.73	54.38	VERTICAL	PERK
3	e	3216.030	41.03	-12.97	54.00	30.66	1.97	36.60	45.01	VERTICAL	AVERAGE
4	@	3216.430	48.52	-25.48	74.00	30.66	1.97	36.60	52.50	VERTICAL	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 34 of 48 Issued Date : Mar. 25, 2005

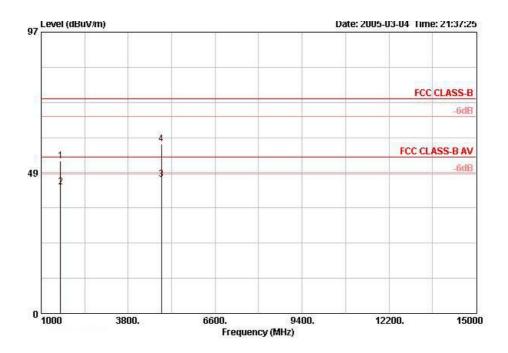

5.6.9. Test Results for CH 06 / 2437 MHz (for emission above 1GHz)

Modulation Type: DSSSTemperature: 18°CRelative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal



		Freq	Freq Level			Antenna Factor			Read Level	Pol/Phase	Remark
		MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	9	-
1	<u>e</u>	1624.660	48.36	-25.64	74.00	25.71	1.46	35.73	56.92	HORIZONTAL	PEAK
2	0	1624.720	40.07	-13.93	54.00	25.71	1.46	35.73	48.62	HORIZONTAL	AVERAGE
3	9	4873.660	44.68	-9.32	54.00	33.33	3.22	37.65	45.77	HORIZONTAL	AVERAGE
4	9	4874.040	57.03	-16.97	74.00	33.33	3.22	37.65	58.13	HORIZONTAL	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 35 of 48 Issued Date : Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

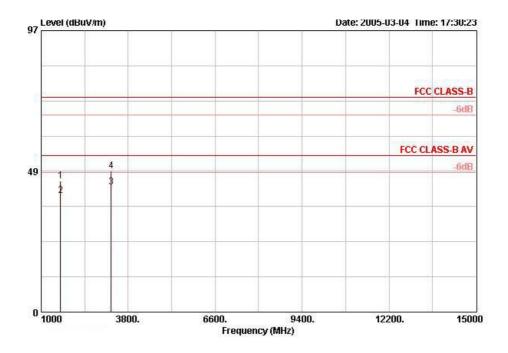
		Freq	Level	Over Limit		Antenna Factor			Read Level	Pol/Phase	Remark
		MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	-	
1	e	1624.270	52.47	-21.53	74.00	25.71	1.46	35.73	61.03	VERTICAL	PEAK
2	0	1624.270	43.52	-10.48	54.00	25.71	1.46	35.73	52.08	VERTICAL	AVERAGE
3	0	4873.580	46.12	-7.88	54.00	33.33	3.22	37.65	47.22	VERTICAL	AVERAGE
4	@	4873.780	58.54	-15.46	74.00	33.33	3.22	37.65	59.64	VERTICAL	PERK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 36 of 48 Issued Date : Mar. 25, 2005

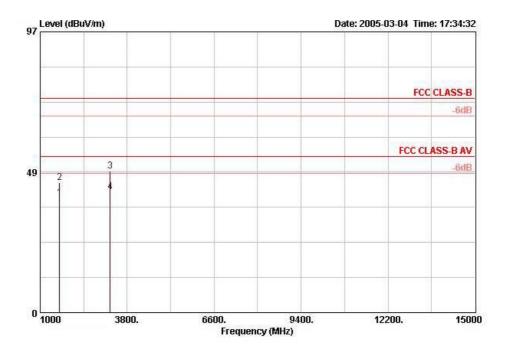


Modulation Type: OFDMTemperature: 18°CRelative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal



	Freq	Level	Limit		Factor			Level	Pol/Phase	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	*	*
9	1624.500	45.23	-28.77	74.00	25.71	1.46	35.73	53.79	HORI ZONTAL	PEAK
3	1624.700	40.19	-13.81	54.00	25.71	1.46	35.73	48.74	HORIZONTAL	AVERAGE
9	3249.400	43.12	-10.88	54.00	30.73	2.03	36.60	46.95	HORIZONTAL	AVERAGE
e	3249.600	48.52	-25.48	74.00	30.73	2.03	36.60	52.35	HORIZONTAL	PERK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 37 of 48 Issued Date : Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

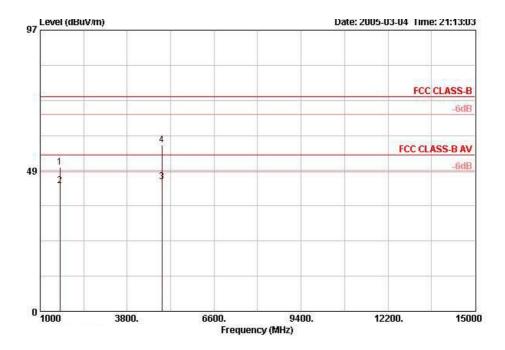
	Freq	Level	Over Limit		Antenna Factor			Read Level	Pol/Phase	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	-	
10	1624.300	39.68	-14.32	54.00	25.71	1.46	35.73	48.24	VERTICAL	AVERAGE
2 @	1624.300	44.95	-29.05	74.00	25.71	1.46	35.73	53.51	VERTICAL	PEAK
3 @	3249.210	48.92	-25.08	74.00	30.73	2.03	36.60	52.76	VERTICAL	PEAK
4 @	3249.210	41.83	-12.17	54.00	30.73	2.03	36.60	45.67	VERTICAL	AVERAGE

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 38 of 48 Issued Date : Mar. 25, 2005


5.6.10. Test Results for CH 11 / 2462 MHz (for emission above 1GHz)

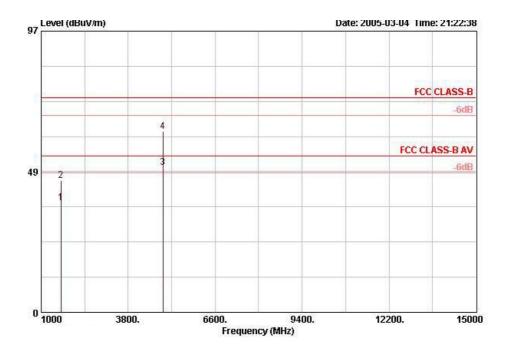
Modulation Type: DSSSTemperature: 18°CRelative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal

	Freq	Level	Level	Over Limit		intenna Factor			Read Level	Pol/Phase	Remark
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV		*	
1 @	1641.400	49.60	-24.40	74.00	25.77	1.46	35.74	58.10	HORIZONTAL	PEAK	
2 @	1641.540	43.36	-10.64	54.00	25.77	1.46	35.74	51.87	HORIZONTAL	AVERAGE	
3 e	4923.560	44.70	-9.30	54.00	33.45	3.25	37.69	45.69	HORIZONTAL	AVERAGE	
1 0	4924.100	57.25	-16.75	74.00	33.45	3.25	37.69	58.25	HORIZONTAL	PERK	


SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 39 of 48

Issued Date: Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

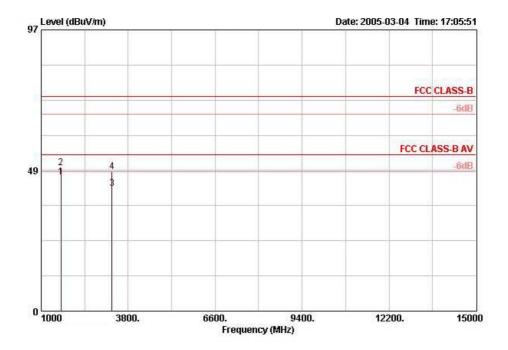
		Freq	Level	Uver Limit		Antenna Factor			Kead Level	Pol/Phase	Remark
		MHz	dBuV/m	dВ	dBuV/m	dB/m	dB	- dB	dBuV	-	
1	9	1641.340	37.88	-16.12	54.00	25.77	1.46	35.74	46.38	VERTICAL	AVERAGE
2	0	1641.440	45.43	-28.57	74.00	25.77	1.46	35.74	53.93	VERTICAL	PERK
3	e	4923.660	49.90	-4.10	54.00	33.45	3.25	37.69	50.89	VERTICAL	AVERAGE
4	@	4924.040	62.31	-11.69	74.00	33.45	3.25	37.69	63.30	VERTICAL	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 40 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

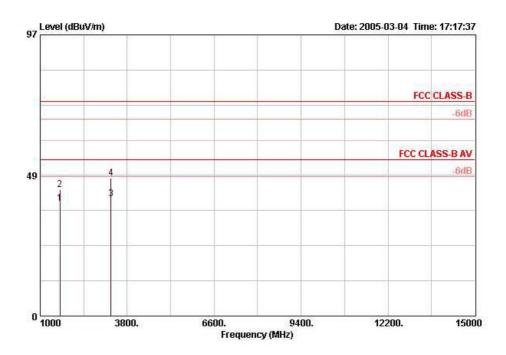

Modulation Type: OFDMTemperature: 18°C

Relative Humidity: 69%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Hung Ming Long

(A) Polarization: Horizontal



		Freq	Level			Antenna Factor			Read Level	Pol/Phase	Remark
		MHz	dBuV/m	dB	dBuV/m	dB/m	dB	- дв	dBuV		-
1	<u>e</u>	1641.320	46.35	-7.65	54.00	25.77	1.46	35.74	54.85	HORI ZONTAL	AVERAGE
2	0	1641.320	49.30	-24.70	74.00	25.77	1.46	35.74	57.81	HORIZONTAL	PEAK
3	9	3282.600	42.31	-11.69	54.00	30.81	2.10	36.60	46.00	HORIZONTAL	AVERAGE
4	@	3282.780	48.23	-25.77	74.00	30.81	2.10	36.60	51.92	HORIZONTAL	PEAK

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 41 of 48 Issued Date : Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

(B) Polarization: Vertical

		Freq	Level	Over Limit		Antenna Factor			Read Level	Pol/Phase	Remark
		MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV		**
1	@	1641.380	38.74	-15.26	54.00	25.77	1.46	35.74	47.24	VERTICAL	AVERAGE
2	0	1641.380	43.64	-30.36	74.00	25.77	1.46	35.74	52.14	VERTICAL	PEAK
3	0	3282.640	40.47	-13.53	54.00	30.81	2.10	36.60	44.16	VERTICAL	AVERAGE
4	e	3282.740	47.49	-26.51	74.00	30.81	2.10	36.60	51.18	VERTICAL	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 42 of 48

Issued Date: Mar. 25, 2005

Issued on Mar. 25, 2005 Report No.: FR522103

5.6.11. Photographs of Radiated Emission Test Configuration

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 43 of 48 Issued Date : Mar. 25, 2005

5.7. Antenna Requirements

5.7.1. Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.7.2. Antenna Connected Construction

There is no antenna connector for printed antenna.

5.7.3. Antenna Gain

All antennas gain of EUT are less than 6dBi. Therefore peak conducted power limit shall not be degraded any more. Antenna report of manufacturer will have more detail antenna gain or antenna pattern.

5.7.4. Test Criteria

All test results complied with the requirements of 15.203/15.247(b)/(c).

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 44 of 48 Issued Date : Mar. 25, 2005

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Feb. 16, 2005	Conduction (CO04-HY)
2	LISN	MessTec	NNB-2/16Z	2001/004	9kHz – 30MHz	Jun. 09, 2004	Conduction (CO04-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9kHz – 30MHz	Apr. 27, 2004	Conduction (CO04-HY)
4	EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
5	RF Cable-CON	UTIFLEX	3102-26886-4	CB044	9kHz – 30MHz	Apr. 21, 2004	Conduction (CO04-HY)
6	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2004	Radiation (03CH03-HY)
7	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
8	Amplifier	SCHAFFNER	CPA9231A	18667	9KHz – 2GHz	Jan. 10, 2005	Radiation (03CH03-HY)
9	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
10	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
11	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Feb. 22, 2005	Radiation (03CH03-HY)
12	Amplifier	MITEQ	AFS44	849984	100MHz~26.5GHz	Mar. 26, 2004	Radiation (03CH03-HY)
13	Horn Antenna	EMCO	3115	6741	1GHz – 18GHz	Apr. 07, 2004	Radiation (03CH03-HY)
14	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
15	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
16	Horn Antenna	Schwarzbeck	BBHA9170	154	18GHz~40GHz	Jun. 09, 2004	Radiation (03CH03-HY)
17	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 01, 2004	Radiation (03CH03-HY)

[%] Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 45 of 48 Issued Date : Mar. 25, 2005

Calibration Characteristics Items Instrument Manufacturer Model No. Serial No. Remark Date Conducted 18 FSP30 9kHz - 30GHx Spectrum analyzer R&S 100023 Aug. 02, 2004 (TH01-HY) Conducted 19 Power meter 100444 DC - 40GHz R&S **NRVS** Jun. 15, 2004 (TH01-HY) Conducted 20 Power sensor R&S NRV-Z55 100049 DC - 40GHz Jun. 15, 2004 (TH01-HY) Conducted 21 Power Sensor R&S NRV-Z32 100057 30MHz - 6GHz Jun. 15, 2004 (TH01-HY) Conducted 22 AC power source HPC **HPA-500W** HPA-9100024 AC 0 - 300V Jun. 16, 2004 (TH01-HY) Conducted 23 C671845 DC 1V - 60V AC power source G.W. GPC-6030D Nov. 05, 2004 (TH01-HY) Temp. and Conducted 24 **KSON** THS-C3L 612 N/A Oct. 01, 2004 **Humidity Chamber** (TH01-HY) Conducted 25 RF CABLE-1m CB034-1m 20MHz - 7GHz RG142 Jan. 01, 2005 Jye Bao (TH01-HY) Conducted 26 RF CABLE-2m Jye Bao RG142 CB035-2m 20MHz - 1GHz Jan. 01, 2005 (TH01-HY)

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 46 of 48 Issued Date : Mar. 25, 2005

Calibration Interval of instruments listed above is one year.

Report No.: FR522103

7. Company Profile

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

7.1. Certificate of Accreditation

Taiwan	BSMI, CNLA, DGT
USA	FCC, NVLAP, UL
EU	Nemko, TUV
Japan	VCCI
Canada	Industry Canada

7.2. Test Location

SHIJR	ADD:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL:	02-2696-2468
	FAX:	02-2696-2255
HWA YA	ADD:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL:	03-327-3456
	FAX:	03-318-0055
LINKOU	ADD:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL:	02-2601-1640
	FAX:	02-2601-1695
DUNGHU	ADD:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL:	02-2631-4739
	FAX:	02-2631-9740
JUNGHE	ADD:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL:	02-8227-2020
	FAX:	02-8227-2626
NEIHU	ADD:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL:	02-2794-8886
	FAX:	02-2794-9777

Page No. : 47 of 48 TEL: 886-2-2696-2468 Issued Date: Mar. 25, 2005 FAX: 886-2-2696-2255

8. CNLA Certificate of Accreditation

Test Lab. : Sporton International Inc.

Accreditation Number : 1190

Originally Accredited : 2003/12/15

Effective Period : 2003/12/15~2006/12/14

Accredited Scope : 47 CFR FCC Part 15 Subpart C (9kHz~40GHz)

Taiwan Accreditation Foundation
Chinese National Laboratory Accreditation
Certificate of Accreditation

Accreditation Criteria: ISO 17025 Accreditation Number: 1190

Organization/Laboratory: EMC & Wireless Communications Laboratory, Sporton International Inc.

Originally Accredited: December 15, 2003

Effective Period: December 15, 2003 To December 14, 2006

Accredited Scope: Electrical Testing Field, 7 items, details shown in the following pages.

Specific Accreditation Recognition and Approval of Designated Laboratory for Commodities

Program: Inspection

President, Taiwan Accreditation Foundation

Date:July 19, 2004

(This document is invalid unless accompanied by all 4 pages)

CNLA-ZL03191E Page 1 of 4

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 48 of 48

Report No.: FR522103

Issued Date: Mar. 25, 2005