

# Appendix C. Maximum Permissible Exposure

FCC ID: RAXWA8001BAC Page No. : C1 of C3



## Maximum Permissible Exposure

### 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> , H  <sup>2</sup> or S<br>(minutes) |  |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|------------------------------------------------------------------------|--|
| 0.3-3.0                  | 614                                  | 1.63                                 | (100)*                         | 6                                                                      |  |
| 3.0-30                   | 1842 / f                             | 4.89 / f                             | (900 / f)*                     | 6                                                                      |  |
| 30-300                   | 61.4                                 | 0.163                                | 1.0                            | 6                                                                      |  |
| 300-1500                 |                                      |                                      | F/300                          | 6                                                                      |  |
| 1500-100,000             |                                      |                                      | 5                              | 6                                                                      |  |

#### (B) Limits for General Population / Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) |        |          | Averaging Time<br> E  <sup>2</sup> , H  <sup>2</sup> or S<br>(minutes) |  |
|--------------------------|--------------------------------------|--------|----------|------------------------------------------------------------------------|--|
| 0.3-1.34                 | 614                                  | 1.63   | (100)*   | 30                                                                     |  |
| 1.34-30                  | 824/f                                | 2.19/f | (180/f)* | 30                                                                     |  |
| 30-300                   | 27.5                                 | 0.073  | 0.2      | 30                                                                     |  |
| 300-1500                 |                                      |        | F/1500   | 30                                                                     |  |
| 1500-100,000             |                                      |        | 1.0      | 30                                                                     |  |

Note: f = frequency in MHz; \*Plane-wave equivalent power density

#### 1.2. MPE Calculation Method

E (V/m) = 
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density:  $Pd$  (W/m²) =  $\frac{E^2}{377}$ 

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

**d** = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: RAXWA8001BAC Page No. : C2 of C3



#### 1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz Band (NII):

Antenna Type: PIFA Antenna

Conducted Power for IEEE 802.11ac VHT20: 27.45dBm

| Distance<br>(m) | Directional<br>Gain | Antenna<br>Gain |         | he maximum combined<br>Average Output Power |          | Limit of<br>Power<br>Density (S) | Test Result |
|-----------------|---------------------|-----------------|---------|---------------------------------------------|----------|----------------------------------|-------------|
| (11)            |                     | (numeric)       | (dBm)   | (mW)                                        | (mW/cm²) | (mW/cm²)                         |             |
| 0.2             | 4.64                | 2.9111          | 27.4508 | 556.0010                                    | 0.322171 | 1                                | Complies    |

Note: 
$$DirectionalGain = 10 \cdot log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

For 5GHz Band (DTS):

Antenna Type: PIFA Antenna

Conducted Power for IEEE 802.11ac VHT40: 28.35dBm

| Distance | Directional | Antenna | The maximum combined Average Output Power |          | Power<br>Density (S)<br>(mW/cm²) | Limit of<br>Power<br>Density (S)<br>(mW/cm²) | Test Result |
|----------|-------------|---------|-------------------------------------------|----------|----------------------------------|----------------------------------------------|-------------|
| (m) Gain | (numeric)   | (dBm)   | (mW)                                      |          |                                  |                                              |             |
| 0.2      | 4.64        | 2.9111  | 28.3509                                   | 684.0476 | 0.396366                         | 1                                            | Complies    |

Note: 
$$DirectionalGain = 10 \cdot log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

FCC ID: RAXWA8001BAC Page No. : C3 of C3