RF Exposure Report

Report No.: SABCMA-WTW-P21010371-1
FCC ID: RAXCM4642342

Test Model: CM4642342XXX
Series Model: CG4634XXXXXX (where X character can be replaced by either alphanumeric character between A and Z and between 0 and 9 or "-" or "." or "blank")

Received Date: Dec. 22, 2020
Test Date: Feb. 02, 2021
Issued Date: Feb. 26, 2021

Applicant: Arcadyan Technology Corporation
Address: No.8, Sec.2, Guangfu Rd.,Hsinchu City 30071, Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration /
Designation Number: 723255 / TW2022

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 RF Exposure 5
2.1 Limits for Maximum Permissible Exposure (MPE) 5
2.2 MPE Calculation Formula 5
2.3 Classification 5
2.4 Antenna Gain 6
2.5 Calculation Result of Maximum Conducted Power 7

Release Control Record

Issue No.	Description	Date Issued
SABCMA-WTW-P21010371-1	Original release.	Feb. 26, 2021

1 Certificate of Conformity

```
            Product: DOCSIS® 3.1 Dual-Band AX5660 Wi-Fi 6 Cable Gateway
            Brand: XTREAM
            Test Model: CM4642342XXX
            Series Model: CG4634XXXXXX
                (where X character can be replaced by either alphanumeric
                character between A and Z and between 0 and 9 or """ or "." or "blank")
                    Sample Status: ENGINEERING SAMPLE
                            Applicant: Arcadyan Technology Corporation
    Test Date: Feb. 02, 2021
    Standards: FCC Part 2 (Section 2.1091)
        IEEE C95.3-2002
        References Test KDB 447498 D01 General RF Exposure Guidance v06
        Guidance:
```

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \qquad Vivian Huang , Date: \qquad Feb. 26, 2021

Vivian Huang / Specialist

Approved by : \qquad , Date: \qquad Feb. 26, 2021

Clark Lin / Technical Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{A} / \mathrm{m})$	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time (minutes)
Limits For General Population / Uncontrolled Exposure				
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	\ldots	\ldots	$\mathrm{f} / 1500$	30
$1500-100,000$	\ldots	\ldots	1.0	30

$\mathrm{f}=$ Frequency in MHz ; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

$\mathrm{Pd}=\left(\right.$ Pout $\left.{ }^{*} \mathrm{G}\right) /\left(4^{*} \mathrm{pi}^{*} \mathrm{r}^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 32 cm away from the body of the user. So, this device is classified as Mobile Device.
2.4 Antenna Gain

Ant. No	RF Chain No.	Ant. Net Gain (dBi)	Freq. Range (GHz)	Ant. Type	Connector Type
1	2.4 GHz Chain 0	1.83	$2.4 \sim 2.4835$	PCB	none
2	2.4 GHz Chain 1	0.03	$2.4 \sim 2.4835$	PCB	none
3	2.4 GHz Chain 2	1.97	$2.4 \sim 2.4835$	PCB	none
4	5 GHz Chain 0	1.81	$5.15 \sim 5.85$	PCB	none
5	5 GHz Chain 1	3.32	$5.15 \sim 5.85$	PCB	none
6	5 GHz Chain 2	2.37	$5.15 \sim 5.85$	PCB	none
7	5 GHz Chain 3	2.07	$5.15 \sim 5.85$	PCB	none

Note: The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.5 Calculation Result of Maximum Conducted Power

For 2.4 GHz and 5 GHz (U-NII-1 and U-NII-3 band) data was copied from the original test report (Report No.:
SABCMA-WTW-P21010371)

Operation Mode	Evaluation Frequency (MHz)	Max. Average Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	$\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$
WLAN 2.4GHz	2412~2462	986.76	6.09	32	0.31167	1
WLAN 5GHz (U-NII-1)	5180~5240	990.208	8.43	32	0.53606	1
WLAN 5GHz (U-NII-2A)	5250~5320	245.391	8.43	32	0.13285	1
WLAN 5GHz (U-NII-2C)	5500~5720	237.806	8.43	32	0.12874	1
WLAN 5GHz (U-NII-3)	5745~5825	972.881	8.43	32	0.52668	1

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
2. 2.4GHz: Directional gain $=10 \log \left[\left(10^{\mathrm{GO} / 20}+10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 3\right]=6.09 \mathrm{dBi}$
3. 5 GHz : Directional gain $=10 \log \left[\left(0^{\mathrm{Go}} / 20+10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 4\right]=8.43 \mathrm{dBi}$

Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1
CPD = Calculation power density
LPD = Limit of power density

WLAN 2.4GHz + WLAN $5 \mathrm{GHz}(\mathrm{U}-\mathrm{NII}-1)=0.31167 / 1+0.53606 / 1=0.84773$
Therefore the maximum calculations of above situations are less than the " 1 " limit.

- END ---

