Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D2450V2-929 Nov22/2 ### CALIBRATION CERTIFICATE (Replacement of No: D2450V2-929_Nov22) Object D2450V2 - SN:929 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date November 21, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 31-Aug-22 (No. DAE4-601_Aug22) | Aug-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN; US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastráti | Laboratory Technician | 2 Cer | | Approved by: | Sven Kühn | Technical Manager | -1- | issued: January 18, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D2450V2-929_Nov22/2 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-929_Nov22/2 Page 2 of 7 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | <u> </u> | | | |------------------------------|------------------------|-------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.4 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-929_Nov22/2 Page 3 of 7 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.9 Ω + 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.5 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.162 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D2450V2-929_Nov22/2 Page 4 of 7 ### **DASY5 Validation Report for Head TSL** Date: 21.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:929 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 31.08.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 115.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.25 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.5% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.38 dBW/kg ### Impedance Measurement Plot for Head TSL ### Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ ### **Evaluation Condition** | | | · · · · · · · · · · · · · · · · · · · | | |---------|------------------|---------------------------------------|---| | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | l | ### SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 55.9 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 26.2
W/kg ± 16.9 % (k=2) | ### SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 57.0 W/kg ± 17.5 % (k=2) | | SAP averaged over 10 cm ³ (10 a) of Head TSI | condition | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 27.5 W/kg ± 16.9 % (k=2) | ### SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 53.7 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.9 % (k=2) | ### SAR result with SAM Head (Ear \cong D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 34.4 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 17.5 W/kg ± 16.9 % (k=2) | Certificate No: D2450V2-929_Nov22/2 ¹ Additional assessments outside the current scope of SCS 0108 ### D2450V2, serial no. 929 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 2450 V2 – serial no. 929 | | | | | | | | |--|------------------|-----------|----------------------|-------------|---------------------------|-------------|--| | | | 2450MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | | 11.21.2022 | -25.5 | | 52.9 | | 4.7 | | | | (Cal. Report) | -20.0 | | 32.9 | | 4.7 | | | | 11.20.2023 | -25.9 | 1.57 | 52.3 | -0.6 | 4.0 | 0.1 | | | (extended) | -20.9 | 1.57 | 52.3 | -0.6 | 4.8 | 0.1 | | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.20.2023) 2450MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sp Sporton Certificate No: D5GHzV2-1128_Nov22 Accreditation No.: SCS 0108 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1128 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: November 23, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 31-Aug-22 (No. DAE4-601_Aug22) | Aug-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | +=1 | | Approved by: | Sven Kühn | Technical Manager | (1) | Issued: November 25, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1128_Nov22 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1128_Nov22 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.0 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (2111) | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity |
|---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | (person | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1128_Nov22 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 5.13 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1128_Nov22 Page 4 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.2 Ω - 6.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.2 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 52.3 Ω - 3.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.8 dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 50.4 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.8 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.208 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1128_Nov22 Page 5 of 8 ### DASY5 Validation Report for Head TSL Date: 23.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1128 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.6 S/m; ϵ_r = 36; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.97 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.13 S/m; ϵ_r = 35.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 31.08.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.61 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 70.1% Maximum value of SAR (measured) = 17.9 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.87 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.2% Maximum value of SAR (measured) = 19.2 W/kg Certificate No: D5GHzV2-1128 Nov22 ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.51 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.87 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City, Taiwan Accreditation No.: SCS 0108 Certificate No: D6.5GHzV2-1003 Mar23 ## **CALIBRATION CERTIFICATE** Object D6.5GHzV2 - SN:1003 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 15, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|--------------------------------|-----------------------| | Power sensor R&S NRP33T | SN: 100967 | 01-Apr-22 (No. 217-03526) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Mismatch combination | SN: 84224 / 360D | 26-Apr-22 (No. 217-03545) | Apr-23 | | Reference Probe EX3DV4 | SN: 7405 | 02-Jun-22 (No. EX3-7405_Jun22) | Jun-23 | | DAE4 | SN: 908 | 27-Jun-22 (No. DAE4-908_Jun22) | Jun-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | |----------------------------------|---------------|-----------------------------------|------------------------| | RF generator Anapico APSIN20G | SN: 827 | 18-Dec-18 (in house check Dec-21) | In house check: Dec-23 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 | Calibrated by: Name Leif Klysner Function Signature Approved by: Sven Kühn Technical Manager Laboratory Technician Su Issued: March 16, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D6.5GHzV2-1003_Mar23 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020. #### Additional Documentation: b) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the
certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.2 | |------------------------------|------------------------------|--| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | The substitute of substitu | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 6.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1944 | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 297 W/kg ± 24.7 % (k=2) | | SAR averaged over 8 cm ³ (8 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.5 W/kg ± 24.4 % (k=2) | Certificate No: D6.5GHzV2-1003_Mar23 ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.7 Ω - 2.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.7 dB | | ### APD (Absorbed Power Density) | APD averaged over 1 cm ² | Condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 296 W/m² | | APD measured | normalized to 1W | 2960 W/m ² ± 29.2 % (k=2) | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 133 W/m ² | | APD measured | normalized to 1W | 1330 W/m ² ± 28.9 % (k=2) | ^{*}The reported APD values have been derived using the psSAR1g and psSAR8g. ### General Antenna Parameters and Design After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | | OI EAG | Certificate No: D6.5GHzV2-1003_Mar23 ### **DASY6 Validation Report for Head TSL** Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz) **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |--------------------|--------------------|----------|----------| | D6.5GHz | 16.0 x 6.0 x 300.0 | SN: 1003 | | **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | |-------------------------|----------------------------|--------|---------------|--------------------|----------------------|--------------------|---------------------| | Flat, HSL | [mm] | David. | CIV | 5500 | 2.24 | 2000 St | 10 | | riat, nst | 5.00 | Band | cw, | 6500 | 5.50 | 6.02 | 34.3 | **Hardware Setup** | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2022-06-02 | DAE4 Sn908, 2022-06-27 | #### Scan Setup | Scan Setup | | Measurement Results | | |---------------------|--------------------|---------------------|-------------------| | | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2023-03-15, 12:03 | | Grid Steps [mm] | 3.4 x 3.4 x 1.4 | psSAR1g [W/Kg] | 29.7 | | Sensor Surface [mm] | 1.4 | psSAR8g [W/Kg] | 6.66 | | Graded Grid | Yes | psSAR10g [W/Kg] | 5.46 | | Grading Ratio | 1.4 | Power Drift [dB] | 0.01 | | MAIA | N/A | Power Scaling | Disabled | | Surface Detection | VMS + 6p | Scaling Factor [dB] | | | Scan Method | Measured | TSL Correction | No correction | | | | M2/M1 [%] | 55.0 | | | | Dist 3dB Peak [mm] | 4.7 | | | | | | ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: 5G-Veri10-1020 Jan23/2 ### CALIBRATION CERTIFICATE (Replacement of No: 5G-Veri10-1020_Jan23) Object 5G Verification Source 10 GHz - SN: 1020 Calibration procedure(s) QA CAL-45.v4 Calibration procedure for sources in air above 6 GHz Calibration date: January 20, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the
closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--|--------------------|---|---| | Reference Probe EUmmWV3 | SN: 9374 | 2023-01-03(No. EUmmWV3-9374_Jan23) | Jan-24 | | DAE4ip | SN: 1602 | 2022-06-27 (No. DAE4ip-1602_Jun22) | Jun-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards RF generator R&S SMF100A | ID #
SN: 100184 | Check Date (in house) 19-May-22 (in house check Nov-22) | Scheduled Check
In house check: Nov-23 | Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Sven Kühn Technical Manager 5. 2 Issued: March 16, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary CW Continuous wave ### Calibration is Performed According to the Following Standards - Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz. - IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022 ### Methods Applied and Interpretation of Parameters - Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange. - Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections. - Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn. - E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn. - Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation. #### Calibrated Quantity Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module mmWave | V3.2 | |--------------------------------|----------------------|------| | Phantom | 5G Phantom | | | Distance Horn Aperture - plane | 10 mm | | | Number of measured planes | 2 (10mm, 10mm + 1/4) | | | Frequency | 10 GHz ± 10 MHz | | ### Calibration Parameters, 10 GHz Circular Averaging | Distance Horn | Prad1 | Max E-field | Uncertainty | Avg Powe | er Density | Uncertainty | |----------------|-------|-------------|-------------|----------------------------------|------------|-------------| | Aperture to | (mW) | (V/m) | (k = 2) | Avg (psPOn+, psPOlot+, psPDmod+) | | (k = 2) | | Measured Plane | | | | (W. | ′rn²) | | | | | | | 1 cm² | 4 cm² | | | 10 mm | 86.1 | 152 | 1.27 dB | 59.4 | 54.9 | 1.28 dB | | Distance Horn | Prad' | Max E-field | Uncertainty | Power Density | | Uncertainty | |----------------|-------|-------------|-------------|----------------------------|-------------------|-------------| | Aperture to | (mW) | (V/m) | (k = 2) | psPDn+, psPDiol+, psPDmod+ | | (k = 2) | | Measured Plane | | | | (W/m²) | | | | | | | | 1 cm² | 4 cm ² | | | 10 mm | 86.1 | 152 | 1.27 dB | 59.2, 59.5, 59.6 | 54.6, 54.9, 55.2 | 1.28 dB | ### **Square Averaging** | Distance Horn | Pradi | Max E-field | Uncertainty | Avg Power Density | | Uncertainty | |----------------|-------|-------------|-----------------|----------------------------------|-------------------|-------------| | Aperture to | (mW) | (V/m) | (k = 2) | AVQ (psPDn+, psPDtot+, psPDmod+) | | (k = 2) | | Measured Plane | | | | (W/m²) | | | | | | | | 1 cm² | 4 cm ² | | | 10 mm | 86.1 | 152 | 1.27 d B | 59.4 | 54.8 | 1.28 dB | | Distance Horn | Prad1 | Max E-field | Uncertainty | Power Density | | Uncertainty | |----------------|-------|-------------|-------------|----------------------------|------------------|-------------| | Aperture to | (mW) | (V/m) | (k = 2) | psPDn+, psPDioi+, psPDmod+ | | (k = 2) | | Measured Plane | | | | (W/m²) | | | | | | | | 1 cm² | 4 cm² | | | 10 mm | 86.1 | 152 | 1.27 dB | 59.2, 59.5, 59.6 | 54.5, 54.9, 55.1 | 1.28 dB | ### Max Power Density | Distance Horn | Pradi | Max E-field | Uncertainty | Max Power Density | Uncertainty | |----------------|-------|-------------|-------------|-------------------|-------------| | Aperture to | (mW) | (V/m) | (k = 2) | Sn, Stot, (Stot) | (k = 2) | | Measured Plane | | | | (W/m²) | | | 10 mm | 86.1 | 152 | 1.27 dB | 60.9, 61.2, 61.3 | 1.28 dB | Certificate No: 5G-Veri10-1020_Jan23/2 $^{^{\}rm I}$ Assessed of mic and mismatch loss plus numerical offset: 0.55 dB #### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** IMEI Name, Manufacturer Dimensions [mm] **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1020 **Exposure Conditions** Phantom Section Frequency [MHz], Conversion Factor Position, Test Distance Band Group, Channel Number 5G -10.0 mm Validation band 10000.0, 1.0 CW 10000 Hardware Setup DAE, Calibration Date Medium Probe, Calibration Date Phantom DAE4ip Sn1602, mmWave Phantom - 1002 EUmmWV3 - SN9374 F1-55GHz, 2022-06-27 2023-01-03 Scan Setup Measurement Results 5G Scan 5G Scan Sensor Surface [mm] 10.0 2023-01-20, 09:26 MAIA MAIA not used Avg. Area [cm2] 1.00 Circular Averaging Avg. Type psPDn+ [W/m²] 59.2 psPDtot+ [W/m2] 59.5 psPDmod+ [W/m²] 59.6 Max(Sn) [W/m2] 60.9 Max(Stot) [W/m²] 61.2 Max(|Stot|) [W/m2] 61.3 Emox [V/m] 152 Power Drift [dB] -0.01 #### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** Name, Manufacturer Dimensions [mm] IMEI DUT Type 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1020 #### Exposure Conditions | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | cw | 10000.0,
10000 | 1.0 | #### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|----------------------------|-----------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz, | DAE4ip Sn1602, | | | | 2023-01-03 | 2022-06-27 | | Scan Setup | | Measurement Results | | |--|---------------|---------------------------------|--------------------| | 57 S S S S S S S S S S S S S S S S S S S | 5G Scan | | 5G Scan | | Sensor Surface [mm] | 10.0 | Date | 2023-01-20, 09:26 | | MAIA | MAIA not used | Avg. Area [cm²] | 4.00 | | | | Avg. Type | Circular Averaging | | | | psPDn+ [W/m ²] | 54.6 | | | | psPDtot+ [W/m ²] | 54.9 | | | | psPDmod+ [W/m²] | 55.2 | | | | Max(Sn) [W/m ²] | 60.9 | | | | Max(Stot) [W/m ²] | 61.2 | | | | Max(Stot) [W/m ²] | 61.3 | | | | E _{max} [V/m] | 152 | | | | Power Drift [d8] | -0.01 | #### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** Name, Manufacturer Dimensions [mm] IMEI DUT Type 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1020 #### **Exposure Conditions** Phantom Section Position, Test Distance [mm] Band Group, Frequency [MHz], Conversion Factor Channel Number 5G - 10.0 mm Validation band CW 10000.0, 1.0 #### **Hardware Setup** Phantom Medium Probe, Calibration Date DAE, Calibration Date mmWave Phantom - 1002 Air EUmmWV3 - SN9374_F1-55GHz, 2023-01-03 DAE4ip Sn1602, 2022-06-27 Scan Setup Measurement Results 5G Scan 5G Scan Sensor Surface [mm] 2023-01-20, 09:26 10.0 Date MAIA MAIA not used Avg. Area [cm2] 1.00 Square Averaging Avg. Type psPDn+ [W/m2] 59.2 psPDtot+ [W/m2] 59.5 psPDmod+ [W/m2] 59.6 Max(Sn) [W/m²] 60.9 Max(Stot) [W/m2] 61.2 Max(|Stot|) [W/m2] 61.3 Emis [V/m] 152 Power Drift [dB] -0.01 #### Measurement Report for 5G Verification Source 10 GHz, UID 0 -,
Channel 10000 (10000.0MHz) #### **Device under Test Properties** Name, Manufacturer Dimensions [mm] IME **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1020 #### **Exposure Conditions** **Phantom Section** Position, Test Distance Band Group, Frequency [MHz], Conversion Factor Channel Number [mm] 5G -10.0 mm 10000.0, Validation band CW 1.0 10000 #### Hardware Setup Probe, Calibration Date DAE, Calibration Date Phantom Medium EUmmWV3 - SN9374_F1-55GHz, mmWave Phantom - 1002 DAE4ip Sn1602, Air 2023-01-03 2022-06-27 | Scan Setup | | Measurement Results | | |---------------------|---------------|-------------------------------|-------------------| | | 5G Scan | | 5G Scan | | Sensor Surface [mm] | 10.0 | Date | 2023-01-20, 09:26 | | MAIA | MAIA not used | Avg. Area [cm²] | 4.00 | | | | Avg. Type | Square Averaging | | | | psPDn+ [W/m²] | 54.5 | | | | psPDtot+ [W/m ²] | 54.9 | | | | psPDmod+ [W/m²] | 55.1 | | | | Max(Sn) [W/m ²] | 60.9 | | | | Max(Stot) [W/m ²] | 61.2 | | | | Max(Stot) [W/m²] | 61.3 | | | | E _{max} [V/m] | 152 | | | | Power Drift [dB] | -0.01 | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City, Taiwan Certificate No. EUmm-9424 Mar23 ### **CALIBRATION CERTIFICATE** Object EUmmWV3 - SN:9424 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v8, QA CAL-42.v3 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date March 21, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | 0-1-1-10-0 | |-------------------------|------------|------------------------------------|-----------------------| | Power sensor NRP110T | SN: 101244 | 14-Mar-22 (No. 20A1037915) | Scheduled Calibration | | Spectrum analyzer FSV40 | SN: 101832 | | Mar-23 | | Ref. Probe EUmmWV3 | | 23-Jan-23 (No. 4030-315005314) | Jan-24 | | DAE4 | SN: 9374 | 03-Jan-23 (No. EUmmWV3-9374_Jan23) | Jan-24 | | DAE4 | SN: 789 | 03-Jan-23 (No. DAE4-789_Jan23) | Jan-24 | | | | | | | e (in house) | Scheduled Check | |-------------------------|--| | (in house check May-22) | | | | In house check: May-23
In house check: May-23 | | 17 | 7 (in house check May-22) | Name Function Signature Calibrated by Leif Klysner Laboratory Technician Approved by Sven Kühn Technical Manager Issued: March 21, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland s Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary NORMx,y sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ∂ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Sensor Angles sensor deviation from the probe axis, used to calculate the field orientation and polarization k is the wave propagation direction ## Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 ### Methods Applied and Interpretation of Parameters: - NORMx,y: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz. - DCPx,y: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - Note: As the field is measured with a diode detector sensor, it is warrantied that the probe response is linear (E2) below the documented lowest calibrated value. - · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - · The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, Rp, inductance L and capacitors C, Cp). - · Ax,y; Bx,y; Cx,y; Dx,y; VRx,y: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). - · Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required). - · Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup. ## Parameters of Probe: EUmmWV3 - SN:9424 ### **Basic Calibration Parameters** | Sensor X | Sensor Y | Unc (k = 2) | |----------|----------|--------------------------------| | 0.02350 | 0.02442 | ±10.1% | | 104.0 | | CONTRACTOR CONTRACTOR | | | | ±4.7% | | | | 0.02350 0.02442
104.0 103.0 | ## Calibration Results for Frequency Response (750 MHz - 110 GHz) | Frequency
GHz | Target
E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (k = 2
dB | |------------------|--------------------------|--------------------------|--------------------------|------------------| | 0.75 | 77.2 | 0.07 | -0.13 | ±0.43 | | 1.8 | 140.4 | -0.00 | -0.01 | ±0.43 | | 2.0 | 133.0 | 0.13 | 0.16 | ±0.43 | | 2.2 | 124.8 | -0.08 | -0.06 | ±0.43 | | 2.5 | 123.0 | 0.09 | 0.09 | ±0.43 | | 3.5 | 256.2 | -0.22 | -0.25 | ±0.43 | | 3.7 | 249.8 | 0.01 | -0.05 | ±0.43 | | 6.6 | 76.1 | -0.29 | -0.28 | .0.00 | | 8.0 | 68.3 | -0.22 | -0.21 | ±0.98 | | 10.0 | 67.5 | -0.03 | -0.03 | ±0.98 | | 15.0 | 55.3 | 0.27 | 0.20 | ±0.98
±0.98 | | | | | 0.20 | 10.30 | | 26.6 | 114.9 | -0.19 | -0.19 | ±0.98 | | 30.0 | 121.2 | -0.09 | -0.09 | ±0.98 | | 35.0 | 119.8 | 0.11 | 0.13 | ±0.98 | | 40.0 | 105.8 | 0.28 | 0.31 | ±0.98 | | 50.0 | | | | | | | 60.5 | 0.62 | 0.56 | ±0.98 | | 55.0 | 75.8 | -0.10 | -0.08 | ±0.98 | | 60.0 | 80.0 | 0.34 | 0.34 | ±0.98 | | 65.0 | 77.7 | 0.12 | 0.21 | ±0.98 | | 70.0 | 73.8 | 0.28 | 0.24 | ±0.98 | | 75.0 | 73.2 | -0.07 | -0.16 | ±0.98 | | 75.0 | 80.8 | 0.20 | 0.13 | ±0.98 | | 80.0 | 79.9 | -0.53 | -0.51 | ±0.98 | | 85.0 | 47.6 | -0.68 | -0.69 | ±0.98 | | 90.0 | 72.3 | -0.40 | -0.39 | ±0.98 | | 92.0 | 72.0 | -0.25 | -0.24 | ±0.98 | | 95.0 | 66.6 | -0.13 | -0.17 | ±0.98 | | 97.0 | 57.0 | -0.09 | -0.16 | ±0.98 | | 100.0 | 55.0 | -0.08 | -0.15 | ±0.98 | | 105.0 | 53.0 | -0.14 | -0.14 | ±0.98 | | 110.0 | 61.1 | 0.14 | 0.19 | ±0.98 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EUmm-9424_Mar23 ^B Linearization parameter uncertainty for maximum specified field strength. ## Parameters of Probe: EUmmWV3 - SN:9424 ## **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------
--|---|---------|--|-------|---------|----------|-------------|----------------------------------| | 0 | cw | X | 0.00 | 0.00 | 1.00 | 0.00 | 139.7 | ±2.5% | ±4.7% | | 10050 | | Y | 0.00 | 0.00 | 1.00 | | 74.8 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 1.90 | 60.00 | 14.35 | 10.00 | 6.0 | ±1.7% | ±9.6% | | | | Y | 14.00 | 74.00 | 17.00 | | 6.0 | 21.170 | 13.07 | | 10353 | Pulse Waveform (200Hz, 20%) | X | 1.33 | 60.00 | 13.13 | 6.99 | 12.0 | ±1.2% | ±9.6% | | | FA 02 32 | Y | 2.00 | 62.00 | 13.00 | 0.00 | 12.0 | 11.270 | £3.07 | | 10354 | Pulse Waveform (200Hz, 40%) | X | 0.81 | 60.00 | 11.76 | 3.98 | 23.0 | ±1.2% | ±9.6% | | | Mi 90 5-957 | Y | 0.80 | 60.00 | 11.76 | 0.50 | | ±1.2% | E9.07 | | 10355 | Pulse Waveform (200Hz, 60%) | X | 0.48 | 60.00 | 11.02 | 2.00 | 23.0 | . 4 00/ | | | | , , , , , , | Y | 0.57 | 60.00 | | 2.22 | 27.0 | ±1.0% | ±9.6% | | 10387 | QPSK Waveform, 1 MHz | X | - | THE RESIDENCE OF THE PARTY T | 10.88 | | 27.0 | | | | | The state of s | Ŷ | 1.11 | 60.00 | 11.66 | 1.00 | 22.0 | ±1.8% | ±9.6% | | 10388 | QPSK Waveform, 10 MHz | | 1.05 | 60.00 | 11.48 | | 22.0 | | | | 10000 | Gran wavelorm, TUMHZ | X | 1.28 | 60.00 | 11.71 | 0.00 | 22.0 | ±0.8% | ±9.6% | | 10000 | 04.0414111 | Υ | 1.36 | 60.00 | 11.78 | i | 22.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 2.44 | 62.61 | 14.80 | 3.01 | 17.0 | ±0.7% | ±9.6% | | | | Y | 2.35 | 62.76 | 15.13 | | 17.0 | | 20.07 | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.12 | 60.00 | 12.25 | 0.00 | 19.0 | ±0.9% | ±9.6% | | | 19 | Y | 2.14 | 60.00 | 12.39 | 0.00 | 19.0 | 10.576 | 19.0% | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.25 | 60.00 | 12.71 | 0.00 | 12.0 | ±0.8% | . 0. 00/ | | | | Y | 3.15 | 60.00 | 12.83 | 0.00 | 12.0 | ±0.6% | ±9.6% | Note: For details on UID parameters see Appendix E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## Parameters of Probe: EUmmWV3 - SN:9424 ## Calibration Results for Linearity Response | Frequency
GHz | Target E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (k = 2) | |------------------|-----------------------|--------------------------|--------------------------|-------------| | 0.9 | 50.0 | 0.02 | -0.06 | ±0.2 | | 0.9 | 100.0 | -0.02 | 0.07 | | | 0.9 | 500.0 | 0.01 | -0.01 | ±0.2 | | 0.9 | 1000.0 | 0.04 | | ±0.2 | | 0.9 | 1500.0 | 0.02 | 0.02 | ±0.2 | | 0.9 | 7.2C0.7.E- | | 0.02 | ±0.2 | | 0.3 | 2100.0 | -0.01 | 0.02 | ±0.2 | ## Sensor Frequency Model Parameters (750 MHz - 55 GHz) | B (6) | Sensor X | Sensor Y | |---------------------|----------|----------| | R (Ω) | 171.20 | 190.32 | | R _p (Ω) | 181.35 | 194.12 | | L (nH) | 0.22217 | 0.22233 | | C (pF) | 0.1328 | 0.1531 | | C _p (pF) | 0.0378 | 0.0388 | ## Sensor Frequency Model Parameters (55 GHz - 110 GHz) | 5 (0) | Sensor X | Sensor Y | |--------------------|----------|----------| | R (Ω) | 23.65 | 29.94 | | R _p (Ω) | 144.36 | 155.81 | | L (nH) | 0.07537 | 0.07794 | | C (pF) | 0.0498 | 0.0523 | | Cp (pF) | 0.0647 | 0.0588 | #### Sensor Model Parameters | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms V ⁻² | T2
msV ⁻¹ | T3
ms | T4
V-2 | T5
v-1 | T6 | |---|----------|----------|--|--------------------------|-------------------------|----------|-----------|-----------|------| | X | 42.4 | 311.46 | 34.33 | 2.66 | 3.85 | 5.01 | 0.00 | 1.05 | | | v | 30.3 | 219.40 | The second secon | | | | 0.00 | 1.25 | 1.01 | | , | 00.0 | 213.40 | 33.58 | 0.92 | 3.70 | 4.98 | 0.00 | 1.15 | 1.01 | #### Other Probe Parameters | 15 | |-------------| | Rectangular | | 120.9° | | enabled | | disabled | | 320 mm | | 8 mm | | 23 mm | | 8.0 mm | | 1.5 mm | | 1.5 mm | | | EUmmWV3 - SN:9424 ## Deviation from Isotropy in Air 30GHz: 3D isotropy, E-field parallel to probe axis 60GHz: 3D isotropy, E-field parallel
to probe axis Probe isotropy for E_{tot} : probe rotated $\phi=0^\circ$ to 360°, tilted from field propagation direction \vec{k} Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 30 GHz: deviation within ± 0.31 dB Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 60 GHz: deviation within ± 0.40 dB ## **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |-------|--|---|-------------|--------------|------------| | 10010 | - | | CW | 0.00 | ±4.7 | | 10011 | and the second | SAR Validation (Square, 100 ms, 10 ms) UMTS-FDD (WCDMA) | Test | 10.00 | ±9.6 | | 10012 | | | WCDMA | 2.91 | ±9.6 | | 10013 | - | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 1.87 | ±9.6 | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | WLAN | 9.46 | ±9.6 | | 10023 | | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.39 | ±9.6 | | 10024 | 100000 | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 9.57 | ±9.6 | | 10025 | | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 6.56 | ±9.6 | | 10026 | and the same of th | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 12.62 | ±9.6 | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 9.55 | ±9.6 | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 4.80 | ±9.6 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 3.55 | ±9.6 | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | GSM | 7.78 | ±9.6 | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 5.30 | ±9.6 | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.87 | ±9.6 | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 1.16 | ±9.6 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 7.74 | ±9.6 | | 0035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 4.53 | ±9.6 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 3.83 | ±9.6 | | 0037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 8.01 | ±9.6 | | 0038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.77 | ±9.6 | | 0039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.10 | ±9.6 | | 0042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ±9.6 | | 0044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 | | 0048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.6 | | 0049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ±9.6 | | 0056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 | | 0058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.6 | | 0059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 | | 0060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6 | | 0062 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ±9.6 | | 0062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ±9.6 | | 0064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ±9.6 | | 0065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 | | 0066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ±9.6 | | 0067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ±9.6 | | 0068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.12 | ±9.6 | | 0069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.6 | | 0071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 10.56 | ±9.6 | | 0072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mops) | WLAN | 9.83 | ±9.6 | | 0073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mops) | WLAN | 9.62 | ±9.6 | | 0074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 9.94 | ±9.6 | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.30 | ±9.6 | | 076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.77 | ±9.6 | | 077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ±9.6 | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | WLAN | 11.00 | ±9.6 | | 082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | CDMA2000 | 3.97 | ±9.6 | | 090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | AMPS
GSM | 4.77 | ±9.6 | | 097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 6.56 | ±9.6 | | 098 | CAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.6 | | 099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 3.98 | ±9.6 | | 100 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 9.55
5.67 | ±9.6 | | 101 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 102 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 103 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 104 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ±9.6 | | 105 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ±9.6 | | 108 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ±9.6 | | 109 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 110 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 111 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ±9.6 | Certificate No: EUmm-9424_Mar23 | 10112 | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |-------|---|---|---------|---------------|------------| | 10113 | 100000000000000000000000000000000000000 | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6 | | 10114 | | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 10115 | CAD | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.10 | ±9.6 | | 10116 | CAD | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.46 | ±9.6 | | 10117 | CAD | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.15 | ±9.6 | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.07 | ±9.6 | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.59 | ±9.6 | | 10140 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | WLAN | 8.13 | ±9.6 | | 10141 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10142 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 6.53 | ±9.6 | | 10143 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 5.73 | ±9.6 | | 10144 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.35 | ±9.6 | | 10145 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 6.65 | ±9.6 | | 10146 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4MHz, 16-QAM) | LTE-FDD | 5.76 | ±9.6 | | 10147 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.41 | ±9.6 | | 10149 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.72 | ±9.6 | | 10150 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.42 | ±9.6 | | 10151 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 6.60 | ±9.6 | | 10152 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.28 | ±9.6 | | 10153 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 9.92 | ±9.6 | | 10154 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 10.05 | ±9.6 | | 10155 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 5.75 | ±9.6 | | 10156 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 6.43 | ±9.6 | | 10157 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 5.79 | ±9.6 | | 10158 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10159 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 10160 | CAF | LTE-FDD (SC-FDMA, 50% RB,
15MHz, QPSK) | LTE-FDD | 6.56 | ±9.6 | | 10161 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 5.82 | ±9.6 | | 10162 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 6.58 | ±9.6 | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 5.46 | ±9.6 | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.21 | ±9.6 | | 10169 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 6.79 | ±9.6 | | 10170 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 5.73 | ±9.6 | | 10171 | AAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6,52 | ±9.6 | | 10172 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TOD | 6.49 | ±9.6 | | 10173 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TOD | 9.21 | ±9.6 | | 10174 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TOD | 9.48 | ±9.6 | | 10175 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 10.25
5.72 | ±9.6 | | 10176 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10177 | CAJ | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10178 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10179 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10180 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10181 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10182 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10183 | AAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10184 | CAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10185 | CAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ±9.6 | | 10186 | | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10187 | | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10189 | AAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10193 | CAD | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ±9.6 | | 10194 | CAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6 | | 10195 | CAD | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ±9.6 | | 10196 | CAD | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 10197 | | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 | | 10198 | | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 10219 | CAD | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ±9.6 | | 10220 | CAD | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 | | 10221 | CAD | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 10222 | CAD | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ±9.6 | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ±9.6 | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ±9.6 | | UID
10225 | CAC | Communication System Name | Group | PAR (dB) | UncE k = 2 | |--------------|-----|--|----------|----------|------------| | 10225 | | · · · · · · · · · · · · · · · · · · | WCDMA | 5.97 | ±9.6 | | 10227 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ±9.6 | | 10228 | | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ±9.6 | | 10229 | CAE | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 | | 10230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10231 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10232 | CAH | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.19 | ±9.6 | | 10233 | CAH | LTE-TOD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10234 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 10.25 | ±9.6 | | 10235 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.21 | ±9.6 | | 10236 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10237 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, GPSK) | LTE-TDD | 10.25 | ±9.6 | | 10238 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM) | LTE-TDD | 9.21 | ±9.6 | | 10239 | CAG | | LTE-TDD | 9.48 | ±9.6 | | 10240 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 10.25 | ±9.6 | | 10241 | CAC | LTE-TDD (SC-FDMA, 1 MB, 15MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.21 | ±9.6 | | 10242 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.82 | ±9.6 | | 10243 | CAC | LTE-TOD (SC-PDMA, 50% RB, 1.4MHz, 64-QAM) | LTE-TDD | 9.86 | ±9.6 | | 10244 | CAE | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ±9.6 | | 10245 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 | | 0246 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)
LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 10.06 | ±9.6 | | 0247 | CAH | ITE-TOD (SC-PDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 | | 0248 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ±9.6 | | 0249 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ±9.6 | | 0250 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 0251 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ±9.6 | | 0252 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.6 | | 0253 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ±9.6 | | 0254 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ±9.6 | | 0255 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6 | | 0256 | CAC | LTE-TDD (SC-FDMA, 50% RB, 15MHz, QPSK) | LTE-TDD | 9.20 | ±9.6 | | 0257 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ±9.6 | | 0258 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.08 | ±9.6 | | 0259 | CAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 | | 0260 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3MHz, 16-QAM) | LTE-TDD | 9.98 | ±9.6 | | 0261 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.97 | ±9.6 | | 0262 | CAH | LTE-TOD (SC-FDMA, 100% RB, 3MHZ, QPSK) | LTE-TDD | 9.24 | ±9.6 | | 0263 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 9.83 | ±9.6 | | 0264 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ±9.6 | | 0265 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.23 | ±9.6 | | 0266 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 | | 0267 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 10.07 | ±9.6 | | 0268 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.30 | ±9.6 | | 0269 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM) | LTE-TDD | 10.06 | ±9.6 | | 0270 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK) | LTE-TDD | 10.13 | ±9.6 | | 0274 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | LTE-TDD | 9.58 | ±9.6 | | 0275 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ±9.6 | | 0277 | CAA | PHS (QPSK) | WCDMA | 3.96 | ±9.6 | | 0278 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6 | | 0279 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.38) | PHS | 11.81 | ±9.6 | | 290 | AAB | CDMA2000, RC1, SO55, Full Rate | PHS | 12.18 | ±9.6 | | 0291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.91 | ±9.6 | | 292 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.46 | ±9.6 | | 293 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6 | | 295 | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 3.50 | ±9.6 | | 297 | AAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | CDMA2000 | 12.49 | ±9.6 | | 298 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.81 | ±9.6 | | 299 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 5.72 | ±9.6 | | 300 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.39 | ±9.6 | | 301 | AAA | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) | LTE-FDD | 6.60 | ±9.6 | | 302 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) | WiMAX | 12.03 | ±9.6 | | 303 | AAA | IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, GPSK, PUSC, 3 CTRL symbols) | WiMAX | 12.57 | ±9.6 | | 304 | AAA | IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC) | WiMAX | 12,52 | ±9.6 | | 305 | AAA | IFFE 802 16a WIMAY (21:15, 10 mg (AMM), 64QAM, PUSC) | WiMAX | 11.86 | ±9.6 | | 306 | AAA | IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols) | WiMAX | 15.24 | ±9.6 | | | | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols) | WiMAX | 14.67 | ±9.6 | | 10307 | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |-------|------------|---|----------|--------------|-------------------| | 10308 | | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols) | WiMAX | 14.49 | ±9.6 | | 10309 | - | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC) | WiMAX | 14.46 | ±9.6 | | 10310 | | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols) | WiMAX | 14.58 | ±9.6 | | 10311 | | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols) | WIMAX | 14.57 | ±9.6 | | 10313 | | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ±9.6 | | 10314 | 110000 | IDEN 1:6 | IDEN | 10.51 | ±9.6 | | 10315 | | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) | iDEN | 13.48 | ±9.6 | | 10316 | _ | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6
Mbps, 96pc duty cycle) | WLAN | 1.71 | ±9.6 | | 10317 | AAD | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | WLAN | 8.36 | ±9.6 | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 10.00 | ±9.6 | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 6.99 | ±9.6 | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 3.98 | ±9.6 | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 2.22 | ±9.6 | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 0.97 | ±9.6 | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.10 | ±9.6 | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 5.22 | ±9.6 | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ±9.6 | | 10400 | AAE | IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle) | Generic | 6.27 | ±9.6 | | 10401 | AAE | IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10402 | AAE | IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 8.53
3.76 | ±9.6 | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | | ±9.6 | | 10406 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 3.77 | ±9.6 | | 10410 | AAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | LTE-TDD | 5.22
7.82 | ±9.6 | | 10414 | AAA | WLAN CCDF, 64-QAM, 40 MHz | Generic | 8.54 | ±9.6 | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) | WLAN | 1.54 | ±9.6 | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10417 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) | WLAN | 8.14 | ±9.6 | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) | WLAN | 8.19 | ±9.6 | | 10422 | AAC | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ±9.6 | | 10423 | AAC | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 | | 10424 | AAC | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 | | 10425 | AAC | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6 | | 10426 | AAC | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6 | | 10427 | AAC | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ±9.6 | | 10430 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ±9.6 | | 10432 | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)
LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 | | 10433 | AAD | LTE-FDD (OFDMA, 15MHz, E-1M 3.1) | LTE-FDD | 8.34 | ±9.6 | | 10434 | AAB | W-CDMA (BS Test Model 1, 64 DPCH) | LTE-FDD | 8.34 | ±9.6 | | 10435 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | WCDMA | 8.60 | ±9.6 | | 10447 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 7.82 | ±9.6 | | 10448 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.56 | ±9.6 | | 10449 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.53 | ±9.6 | | 10450 | AAD | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.51 | ±9.6 | | 10451 | AAB | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | LTE-FDD | 7.48 | ±9.6 | | 10453 | AAE | Validation (Square, 10 ms, 1 ms) | WCDMA | 7.59 | ±9.6 | | 10456 | AAC | IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) | Test | 10.00 | ±9.6 | | 10457 | AAB | UMTS-FDD (DC-HSDPA) | WCDMA | 8.63 | ±9.6 | | 10458 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.62 | ±9.6 | | 10459 | AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 6.55
8.25 | ±9.6 | | 10460 | AAB | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9) | LTE-TOD | 8.30 | ±9.6 | | 10463 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2.3.4.7.8.9) | LTE-TDD | 7.82 | ±9.6 | | 10465 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10466 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 10467 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10468 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10469 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | 10470 | AAG
AAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10471 | | LIE-ILIU ISCAFIMA 1 RR 10MHz 18 OM III Cubicano 00 4 7 00 | LTE-TDD | 8.32 | The second second | | UID
10472 | AAG | Communication System Name | Group | PAR (dB) | UncE k = 2 | |--------------|-----|---|---------|----------|------------| | 10472 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 10474 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10475 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10477 | AAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 10478 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10479 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 10480 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 10481 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.18 | ±9.6 | | 10482 | AAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.45 | ±9.6 | | 10483 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.71 | ±9.6 | | 10484 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.39 | ±9.6 | | 10485 | AAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.47 | ±9.6 | | 10486 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.59 | ±9.6 | | 10487 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.38 | ±9.6 | | 10488 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.60 | ±9.6 | | 10489 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.70 | ±9.6 | | 10490 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.31 | ±9.6 | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ±9.6 | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.41 | ±9.6 | | 10494 | AAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.55 | ±9.6 | | 10495 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 10496 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.37 | ±9.6 | | 10497 | AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.54 | ±9.6 | | 10498 | AAC | TE-TDD (SC-FDMA, 100% RB, 1.4MHz, QPSK, UL Subtrame=2,3,4,7,8,9) | LTE-TDD | 7.67 | ±9.6 | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.40 | ±9.6 | | 10500 | AAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.68 | ±9.6 | | 10501 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.67 | ±9.6 | | 10502 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.44 | ±9.6 | | 10503 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.52 | ±9.6 | | 10504 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.72 | ±9.6 | | 10505 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.31 | ±9.6 | | 10506 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ±9.6 | | 10507 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 10508 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.36 | ±9.6 | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.55 | ±9.6 | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.99 | ±9.6 | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.49 | ±9.6 | | 10512 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.51 | ±9.6 | | 10513 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.74 | ±9.6 | | 10514 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.42 | ±9.6 | | 10515 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc
duty cycle) | WLAN | 8.45 | ±9.6 | | 10516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) | WLAN | 1.58 | ±9.6 | | 10517 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) | WLAN | 1.57 | ±9.6 | | 10518 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) | | 1,58 | ±9.6 | | 10519 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10520 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | | 10521 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) | WLAN | 7.97 | ±9.6 | | 10522 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) | WLAN | 8.08 | ±9.6 | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) | WLAN | 8.08 | ±9.6 | | 10525 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10526 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10527 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle) | WLAN | 8.21 | ±9.6 | | 10528 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10529 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10531 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle) | WLAN | 8.43 | | | 10532 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10533 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) | WLAN | 8.38 | | | 10534 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10535 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10536 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) | WLAN | 8.32 | ±9.6 | | 10537 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle) | WLAN | 8.44 | ±9.6 | | 10538 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 10540 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle) | | CO. 2364 | 954.75 | | UID
10541 | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |--------------|-----|--|-------|----------|------------| | 10542 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle) | WLAN | 8.46 | ±9.6 | | 10543 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle) | WLAN | 8.65 | ±9.6 | | 10544 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) | WLAN | 8.65 | ±9.6 | | 10545 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle) | WLAN | 8.47 | ±9.6 | | 10546 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 0547 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10548 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 0550 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10551 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle) | WLAN | 8.38 | ±9.6 | | 10552 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10553 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 0554 | AAD | IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle) IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 0555 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | 0556 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle) | WLAN | 8.47 | ±9.6 | | 0557 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) | WLAN | 8.50 | ±9.6 | | 0558 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) | WLAN | 8.52 | ±9.6 | | 0560 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle) | WLAN | 8.61 | ±9.6 | | 0561 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.73 | ±9.6 | | 0562 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.56 | ±9.6 | | 0563 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle) | WLAN | 8.69 | ±9.6 | | 0564 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 0565 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 0566 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mops, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 0567 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) | WLAN | 8.13 | ±9.6 | | 0568 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 34 Mbps, 99pc duty cycle) | WLAN | 8.00 | ±9.6 | | 0569 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 0570 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) | WLAN | 8.10 | ±9.6 | | 0571 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) | WLAN | 8.30 | ±9.6 | | 0572 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) | WLAN | 1.99 | ±9.6 | | 0573 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | WLAN | 1.99 | ±9.6 | | 0574 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) | WLAN | 1.98 | ±9.6 | | 0575 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) | WLAN | 1.98 | ±9.6 | | 0576 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 0577 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) | WLAN | 8.60 | ±9.6 | | 0578 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 0579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) | WLAN | 8.49 | ±9.6 | | 0580 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) | WLAN | 8.36 | ±9.6 | | 0581 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 582 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) | WLAN | 8.35 | ±9.6 | | 0583 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | 0584 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 0585 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) | WLAN | 8.60 | ±9.6 | | 586 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 587 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) | WLAN | 8.49 | ±9.6 | | 588 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) | WLAN | 8.36 | ±9.6 | | 589 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 590 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) | WLAN | 8.35 | ±9.6 | | 591 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | 592 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) | WLAN | 8.63 | ±9.6 | | 593 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 0594 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) | | 8.64 | ±9.6 | | 595 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 596 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 597 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.71 | ±9.6 | | | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | 599 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.50 | ±9.6 | | 600 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 601 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.88 | ±9.6 | | 602 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 603 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 604 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) | WLAN | 9.03 | ±9.6 | | 605 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) | | 8.76 | ±9.6 | | 606 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.97 | ±9.6 | | | | IEEE 000 11. WIE GOLD | WLAN | 8.82 | ±9.6 | | 607 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |-------|-----|--|-----------|----------|------------| | 10609 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.57 | ±9.6 | | 10610 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10611 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.70 | | | 10612 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10613 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle) | WLAN | | ±9.6 | | 10614 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10615 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 10616 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle) | | 8.82 | ±9.6 | | 10617 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10618 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10619 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10620 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10621 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.87 | ±9.6 | | 10622 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10623 | AAC | IEEE 802.11ac WiFi
(40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.68 | ±9.6 | | 10624 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10625 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle) | WLAN | 8.96 | ±9.6 | | 10626 | AAC | IEEE 802 11ap WIE (90 MU) MCCO 00 - 1 | WLAN | 8.96 | ±9.6 | | 10627 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10628 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle) | WLAN | 8.88 | ±9.6 | | 10629 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle) | WLAN | 8.71 | ±9.6 | | 10630 | | IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle) | WLAN | 8.85 | ±9.6 | | 10630 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | - | - | IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10632 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10633 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10634 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle) | WLAN | 8.80 | ±9.6 | | 10635 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10636 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10637 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10638 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10639 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle) | WLAN | 8.85 | ±9.6 | | 10640 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle) | WLAN | 8.98 | ±9.6 | | 10641 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle) | WLAN | 9.06 | ±9.6 | | 10642 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle) | WLAN | 9.06 | ±9.6 | | 10643 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle) | WLAN | 8.89 | 175/10/20 | | 10644 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle) | WLAN | 9.05 | ±9.6 | | 10645 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) | WLAN | 9.11 | ±9.6 | | 10646 | AAH | LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2,7) | LTE-TDD | | ±9.6 | | 10647 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) | LTE-TDD | 11.96 | ±9.6 | | 10648 | AAA | CDMA2000 (1x Advanced) | CDMA2000 | 11.96 | ±9.6 | | 10652 | AAF | LTE-TDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%) | | 3.45 | ±9.6 | | 10653 | AAF | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 6.91 | ±9.6 | | 10654 | AAE | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 7.42 | ±9.6 | | 10655 | AAF | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ±9.6 | | 10658 | AAB | Pulse Waveform (200Hz, 10%) | LTE-TDD | 7.21 | ±9.6 | | 10659 | AAB | Pulse Waveform (200Hz, 20%) | Test | 10.00 | ±9.6 | | 10660 | AAB | Pulse Waveform (200Hz, 40%) | Test | 6.99 | ±9.6 | | 10661 | AAB | Pulse Waveform (200Hz, 60%) | Test | 3.98 | ±9.6 | | 10662 | AAB | Pulse Waveform (200Hz, 80%) | Test | 2.22 | ±9.6 | | 10670 | AAA | Bluetooth Low Energy | Test | 0.97 | ±9.6 | | 10671 | AAC | | Bluetooth | 2,19 | ±9.6 | | 10672 | AAC | IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) | WLAN | 9.09 | ±9.6 | | 10672 | - | IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) | WLAN | 8.57 | ±9.6 | | 10674 | AAC | IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | | AAC | IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10675 | AAC | IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | 10676 | AAC | IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10677 | AAC | IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10678 | AAC | IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10679 | AAC | IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10680 | AAC | IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) | WLAN | 8.80 | ±9.6 | | 10681 | AAC | IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) | WLAN | 8.62 | ±9.6 | | 10682 | AAC | IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10683 | AAC | IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10684 | AAC | IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) | WLAN | 8.26 | ±9.6 | | 10685 | AAC | IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) | WLAN | 8.33 | - | | 10686 | AAC | IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle) | WLAN | 8.28 | ±9.6 | | | | 5.7.7.7 | TILAN | 0.40 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |-------|------|---|-------|----------|------------| | 10687 | AAC | IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10688 | AAC | IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10689 | AAC | IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10690 | AAC | IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10691 | AAC | IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10692 | AAC | IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10693 | AAC | IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10694 | AAC | IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) | WLAN | 8.57 | ±9.6 | | 10695 | AAC | IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10696 | AAC | IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.91 | ±9.6 | | 10697 | AAC | IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.61 | ±9.6 | | 10698 | AAC | IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10699 | AAC | IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10700 | AAC | IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10701 | AAC | IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10702 | AAC | IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10703 | AAC | IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10704 | AAC | IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) | WLAN | 8.56 | ±9.6 | | 10705 | AAC | IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10706 | AAC | IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) | WLAN | 8.66 | ±9.6 | | 10707 | AAC | IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) | WLAN | 8.32 | ±9.6 | | 10708 | AAC | IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10709 | AAC | IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | 10710 | AAC | IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10711 | AAC | IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | | 10712 | AAC | IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) | WLAN | 8.67 | ±9.6 | | 10713 | AAC | IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | 10714 | AAC | IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) | WLAN | 8.26 | ±9.6 | | 10715 | AAC | IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10716 | AAC | IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) | WLAN | 8.30 | ±9.6 | | 10717 | AAC | IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | 10718 | AAC | IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) | WLAN | 8.24 | ±9.6 | | 10719 | AAC | IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10720 | AAC | IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) | WLAN | 8.87 | ±9.6 | | 10721 | AAC | IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10722 | AAC | IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10723 | AAC | IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10724 | AAC | IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | 10726 | AAC | IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10727 | AAC | IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | 10728 | AAC | IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle) | WLAN | 8.66 | ±9.6 | | 10729 | AAC | IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle) | WLAN | 8.65 | ±9.6 | | 10730 | - | IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | 10730 | AAC | IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | 10732 | AAC | IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10732 | AAC | IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle) | WLAN | 8.46 | ±9.6 | | 10734 | AAC | IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | 10734 | AAC | IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10736 | AAC | IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | 10736 | AAC | IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle) | WLAN | 8.27 | ±9.6 | | 10738 | AAC | IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10739 | AAC | IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10740 | AAC | IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10741 | AAC | IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | 10742 | AAC | IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | 10742 | AAC | IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle) IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle) | WLAN | 8.43 | ±9.6 | | 10744 | 1000 | IEEE 802.11ax (160 MHz, MCSU, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10745 | AAC | IFFE 802 11av (160 MHz, MCS2, 90pc duty cycle) | WLAN | 9.16 | ±9.6 | | 10746 | | IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle) | WLAN | 8.93 | ±9.6 | | 10747 | AAC | IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle) | WLAN | 9.11 | ±9.6 | | 10748 | AAC | IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) | WLAN
 9.04 | ±9.6 | | 10749 | AAC | IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle) | WLAN | 8.93 | ±9.6 | | 10749 | AAC | IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | 10751 | AAC | IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10752 | AAC | IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | | 10 | out (100 mm. moos, sope duty cycle) | WLAN | 8.81 | ±9.6 | | UID
10753 | AAC | Communication System Name | Group | PAR (dB) | UncE k = 2 | |--------------|-------------------|---|---------------|--------------|------------| | 10754 | AAC | IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle) | WLAN | 9.00 | ±9.6 | | 10755 | AAC | IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10756 | AAC | IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.64 | ±9.6 | | 10757 | AAC | IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10758 | AAC | IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10759 | AAC | IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10760 | AAC | IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10761 | AAC | IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10762 | AAC | IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.58 | ±9,6 | | 10763 | AAC | IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10764 | AAC | IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle) | WLAN | 8.53 | ±9.6 | | 10765 | AAC | IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 10766 | AAC | IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 10767 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | WLAN | 8.51 | ±9.6 | | 0768 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ±9.6 | | 0769 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10770 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10771 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 0772 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 0773 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 | | 10774 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ±9.6 | | 0775 | AAD | 5G NR (CP-OFDM, 50% RB, 5MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10776 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 | | 0777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 0778 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 0779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0780 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 | | 0781 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 | | 0782 | AAD | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 | | 0783 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ±9.6 | | 0784 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 | | 0785 | AAD | 5G NR (CP-OFDM, 100% RB, 15MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.29 | ±9.6 | | 0786 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 0787 | AAD | 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 0788 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ±9.6 | | 0789 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 0790 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10791 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 0792 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ±9.6 | | 0793 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 7.92 | ±9.6 | | 0794 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ±9.6 | | 0795 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82
7.84 | ±9.6 | | 0796 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6 | | 10797 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 0798 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 | | 0799 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 | | 0801 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 | | 0802 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ±9.6 | | 0803 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 | | 0805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 0809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 0817 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 0818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ±9.6 | | 0820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 0821 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 0822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 0823 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 0824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | | | 0825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 0827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 | | | The second second | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | JUNE TOU | 0.42 | ±9.6 | | UID
10829 | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |--------------|---|---|---------------|--------------|--------------| | 10830 | 7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 10831 | | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ±9.6 | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ±9.6 | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ±9.6 | | 10834 | - | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ±9.6 | | 10836 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ±9.6 | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ±9.6 | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ±9.6 | | 10843 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ±9.6 | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ±9.6 | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 0863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 0864 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0869 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR1 TDD | 5.89 | ±9.6 | | 0870 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 0871 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.86 | ±9.6 | | 0872 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz,
16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 0873 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ±9.6 | | 10874 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6 | | 0875 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 6.65 | ±9.6 | | 0876 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ±9.6 | | 0877 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.39 | ±9.6 | | 0878 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ±9.6 | | 0879 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ±9.6 | | 0880 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ±9.6 | | 0881 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.38 | ±9.6 | | 0882 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 0883 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | | 5.96 | ±9.6 | | 0884 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ±9.6 | | 0885 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ±9.6 | | 0886 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | | 6.61 | ±9.6 | | 0887 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 6.65
7.78 | ±9.6 | | 8880 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | | ±9.6 | | 0889 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.35 | ±9.6 | | 0890 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ±9.6 | | 0891 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ±9.6 | | 0892 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ±9.6 | | 0897 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ±9.6 | | 0898 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | | | 0899 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6
±9.6 | | 0900 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0901 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0902 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0903 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0904 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0905 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0906 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 0907 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ±9.6 | | 0908 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ±9.6 | | | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ±9.6 | | 0909 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | | | |