

BelAir20E

BelAir20E

User Guide

Release: 12.0

October 11, 2011 Document Date: Document Number: BDTM02201-A01

Document Status: Standard

Security Status: Confidential

613-254-7070 **Customer Support:**

I-877-BelAirI (235-2471)

techsupport@belairnetworks.com

The information contained in this document is confidential and proprietary to BelAir Networks. Errors and Omissions Excepted.

Specification may be subject to change. All trademarks are the property of their respective owners.

Protected by U.S. Patents: 7,171,223, 7,164,667, 7,154,356, 7,030,712 and D501,195. Patents pending in the U.S. and other countries.

BelAir Networks, the BelAir Logo, BelAir200, BelAir200D, BelAir100D, BelAir100S, BelAir100C, BelAir100T, BelAir20D, BelAir20E, BelAir20ED, BelAir10DM, BelAir100i, BelAir100SN, BelAir100SNE, BelAir100N, BelAir100P, BelView and BelView NMS are trademarks of BelAir Networks Inc.

[©] Copyright 2011 by BelAir Networks.

BelAir20E User Guide Contents

Contents

About This Document	. 3
System Overview	. 4
BelAir20E Configuration Interfaces	. 6
Command Line Interface Basics	
BelAir20E Access Methods	27
User and Session Administration	. 35
IP Settings	44
System Settings	49
BelAir20E Auto-configuration	58
Ethernet or LAN Interface Settings	64
Card Settings	
Wi-Fi Radio Configuration Overview	. 7 1
Configuring Wi-Fi Radio Parameters	
Configuring Wi-Fi Access Point Parameters	. 80
Wi-Fi AP Security	100
Wi-Fi Backhaul Link Configuration	115
Mobile Backhaul Mesh	123
Mobile Backhaul Point-to-point Links	127
Operating in High Capacity and Interference Environments	138
	145
Network Address Translation	149
Universal Access Method	154
Using Layer 2 Tunnels	163
C	177
Layer 2 Network Configuration	
Performing a Software Upgrade	197
For More Information	205
Technical Support	
Definitions and Acronyms	208
Conformity and Regulatory Statements	210
Appendix A: Node Configuration Sheets	22 I
Appendix B: Mesh Auto-connection Example	224
Appendix C: Scripting Guidelines	
Appendix D: BelAir20E Factory Defaults	
Detailed Table of Contents	
	ムンコ

About This Document

About This Document

This document provides the information you need to install and configure the BelAir20E[™], and the procedures for using the BelAir20E Command Line Interface (CLI).

This document may contain alternate references to the product. <u>Table 1</u> shows possible synonyms to the product name.

Table 1: Product Name Synonyms

Product Name	Synonym
BelAir20™, BelAir20E™, BelAir20EO™	BA20

Typographical Conventions

This document uses the following typographical conventions:

- Text in < > indicates a parameter required as input for a CLI command; for example, < IP address >
- Text in [] indicates optional parameters for a CLI command.
- Text in { } refers to a list of possible entries with | as the separator.
- Parameters in () indicate that at least one of the parameters must entered.

Related Documentation

The following titles are BelAir reference documents:

- BelAir20E Quick Install Guide
- BelAir20E Troubleshooting Guide

System Overview

System Overview

The BelAir20E Access Point (AP) is an evolution of BelAir Networks indoor solution and part of BelAir Networks industry leading product portfolio. The BelAir20E adds standards-based beamforming, five Gigabit Ethernet ports (one WAN port with PoE and four LAN ports), integrated antennas, and full 802.11n compliance (802.11n-2009) to BelAir Networks leading low cost, high capacity indoor access.

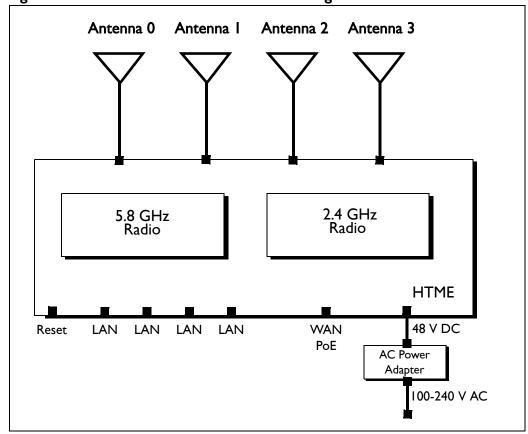
The next generation BelAir20E continues to lead with the industry's highest performance and most flexible indoor access node. Offering all the same features and management as the other BelAir products, the BelAir20E has been optimized for managed hot spot applications, with Edge Policy Enforcement using centralized control and a true Plug-and-Play architecture. And, with the latest fully compliant 802.1 In, it is ideal for even the most demanding applications, including voice and video. The BelAir20E also provides connectivity between indoor and outdoor networks, enabling true standards-based seamless mobility as users move from outside to inside.

The operating temperature of the BelAir20E is -20 °C to +50 °C.

The BelAir20E is available in following variants:

- The BelAir20E-11 is available for the USA only. Operators of the BelAir20E-11 can set the country of operation only to US. Similarly, the operating channels, antenna gain, and the transmit power levels can be set only to values that are valid for the USA.
- The BelAir20E-IIR is available for countries other than the USA. Operators
 of the BelAir20E-IIR can set the country of operation to any BelAir
 approved country. Similarly, the operating channels, antenna gain, and the
 transmit power levels can be set to values that are valid for the specified
 country of operation.

Hardware Description


Figure 1 on page 5 shows the relationship between the main BelAir20E hardware modules.

BelAir20E User Guide System Overview

Figure 1: BelAir20E Hardware Module Block Diagram

The BelAir20E consists of the following modules:

- one High Throughput Module Evolved (HTME) providing:
 - —a wireline 10/100/1000 Base-TX WAN Ethernet interface to the Internet
 - —four wireline 10/100/1000 Base-TX LAN Ethernet interfaces
 - —a 2.4 GHz Wi-Fi radio and a 5.8 GHz Wi-Fi radio using fully compliant 802.1 In links. E Each radio can act as an Access Point (AP) or provide backhaul links. An AP provides user traffic wireless access to the BelAir20E. Backhaul links connect to other BelAir radios to create a radio mesh.
- · four integrated dual-band antennas
- an external connector field

BelAir20E Configuration Interfaces

BelAir20E Configuration Interfaces

The BelAir20E can be accessed and configured using the following configuration interfaces:

- the command line interface (CLI)
- the SNMP interface
- the Web interface (using either HTTPS or HTTP)

All three interfaces (CLI, SNMP and Web) have the same public IP address. All three also access the same BelAir20E node database. That means that changes made with one interface are seen immediately through the other interfaces.

Command Line Interface

The CLI allows you to configure and display all the parameters of a BelAir20E unit, including:

- system parameters
- · system configuration and status
- radio module configuration and status
- user accounts
- BelAir20E traffic statistics
- layer 2 functionality, such as those related to bridging and VLANs
- Quality of Service parameters
- alarm system configuration and alarms history

Each unit can have up to nine simultaneous CLI sessions (Telnet or SSH). For a description of basic CLI commands and tasks see "Command Line Interface Basics" on page 12.

SNMP Interface

The Simple Network Management Protocol (SNMP) provides a means of communication between SNMP managers and SNMP agents. The SNMP manager is typically a part of a network management system (NMS) such as HP OpenView, while the BelAir20E provides the services of an SNMP agent. Configuring the BelAir20E SNMP agent means configuring the SNMP parameters to establish a relationship between the manager and the agent.

BelAir20E Configuration Interfaces

The BelAir20E SNMP agent contains Management Information Base (MIB) variables. A manager can query an agent for the value of MIB variables, or request the agent to change the value of a MIB variable.

Refer to the following sections:

- "SNMP Configuration Guidelines" on page 27
- "SNMP Command Reference" on page 28

Integrating the BelAir20E with a Pre-deployed NMS In addition to providing support for the SNMP MIBs described in <u>Table 2</u>, BelAir Networks provides a number of enterprise MIB definitions that you can integrate with your Network Management System (NMS). <u>Table 3 on page 8</u> describes the BelAir20E SNMP MIBs. A copy of the BelAir20E SNMP MIBs is available from the BelAir Networks online support center at: www.belairnetworks.com/support/index.cfm.

Table 2: Standard SNMP MIBs

File Name	Description
BRIDGE-MIB.mib	implements RFC1493
IANAifType-MIB.mib	defines standard interface types assigned by the Internet Assigned Numbers Authority (IANA)
IEEE802dot1 I-MIB.mib	IEEE MIB to manage 802.11 devices
IF-MIB.mib	implements RFC2863
IP-MIB.mib	defines IP and ICMO data types
PerfHist-TC-MIB.mib	defines data types to support 15-minute performance history counts
RADIUS-ACC-CLIENT-MIB.mib	implements RFC2620
RADIUS-AUTH-CLIENT-MIB.mib	implements RFC2618
RSTP-MIB.mib	implements 802.1w RSTP
SNMP-COMMUNITY-MIB.mib	defines data types to support co-existence between SNMP versions
SNMP-FRAMEWORK-MIB.mib	implements RFC3411
SNMP-MPD-MIB.mib	implements RFC3412

BelAir20E Configuration Interfaces

Table 2: Standard SNMP MIBs (Continued)

File Name	Description
SNMP-NOTIFICATION-MIB.mib	implements RFC3413
SNMP-TARGET-MIB.mib	implements RFC3413
SNMP-USER-BASED-SM-MIB.mib	implements RFC3414
SNMPv2-CONF.mib	implements RFC1450
SNMPv2-MIB.mib	implements RFC1907
SNMPv2-SMI.mib	implements RFC1450
SNMPv2-TC.mib	implements RFC1450
SNMP-VIEW-BASED-ACM-MIB.mib	implements RFC3415

Table 3: BelAir Enterprise MIBs

File Name	Description				
BELAIR-IEEE802DOT I I-CLIENT.mib BELAIR-IEEE802DOT I I.mib	defines features that are not supported by the standard IEEE802.11 MIB				
BELAIR-IP.mib	defines BelAir IP data types				
BELAIR-MESH.mib	defines BelAir multipoint-to-multipoint data types				
BELAIR-MOBILITY.mib	defines data types to support mobile backhaul mesh and point-to-point links				
BELAIR-PHYIF-MAPPING.mib	defines data types to support universal slots				
BELAIR-PRODUCTS.mib	defines product object IDs				
BELAIR-RSTP.mib	defines RSTP data types				
BELAIR-SMI.mib	defines BelAir top level OID tree				
BELAIR-SYSTEM.mib	defines basic OAM features such as software download, temperature and BelAir alarms				
BELAIR-TC.mib	defines BelAir data types				
BELAIR-TUNNEL.mib	defines L2TP data types				

BelAir20E Configuration Interfaces

Table 3: BelAir Enterprise MIBs (Continued)

File Name	Description
BELAIR-WRM.mib	defines BelAir WiMAX data types

The procedure for importing the SNMP MIB definition files depends on the deployed NMS platform. Refer to your NMS platform documentation for details.

Web Interface

BelAir Networks has verified that the BelAir20E Web interface operates correctly with the following web browsers:

- Microsoft Internet Explorer version 6.0, service pack 2
- Mozilla Firefox version 1.5, or later

Accessing the Web Interface

You can access the Web interface using either secure HTTP (HTTPS) or HTTP. Both HTTP and HTTPS are enabled when each BelAir20E node is shipped. Each unit can have up to five simultaneous CLI sessions (HTTP or HTTPS).

By default, the BelAir20E Web interface has an associated time-out value. If the interface is inactive for 9 minutes, then you are disconnected from the interface. To reconnect to the interface, you need to log in again.

Accessing the System Page with Secure HTTP or with HTTP

To log in to the BelAir20E Web interface and access the main page using HTTPS or HTTP, do the following steps:

I Open your Web browser and specify the IP address of the BelAir20E node you want to access.

The default IP address of each BelAir20E node is: 10.1.1.10. Figure 2 shows the resulting Login page.

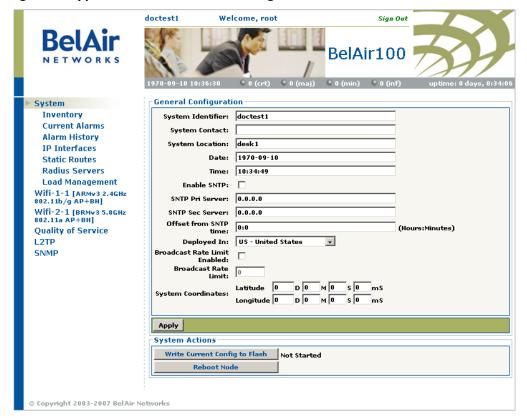

BelAir20E Configuration Interfaces

Figure 2: Typical Login Page

2 Enter a valid user name, such as root, and a valid password.
Note: The specified password is case sensitive.
Figure 3 on page 10 shows a typical resulting main page for the Web interface.

Figure 3: Typical Web Interface Main Page

BelAir20E Configuration Interfaces

Stopping a Session

To stop a Web interface session, click on the Logout button located in the top right corner each page. See Figure 3.

Additional Troubleshooting Tools

The Web interface provides the following tools to display radio performance metrics:

- · a throughput meter
- histogram display of various performance metrics

These tools are only available with the Web interface. For full details, see the BelAir20E Troubleshooting Guide.

Command Line Interface Basics

Command Line Interface Basics

Use this chapter to familiarize yourself with basic CLI tasks, including:

- "Connecting to the BelAir20E" on page 12
- "Starting a CLI Session" on page 12
- "Command Modes" on page 14
- "Abbreviating Commands" on page 18
- "Command History" on page 18
- "Special CLI Keys" on page 19
- "Help Command" on page 19
- "Common CLI Commands" on page 23

Connecting to the BelAir20E

You can connect to the BelAir20E default address using one of the following methods:

- through the BelAir20E radio interface
- by connecting directly to the Ethernet port on the BelAir20E

CAUTION!

Do not connect the BelAir20E to an operational data network before you configure its desired IP network parameters. This may cause traffic disruptions due to potentially duplicated IP addresses.

The BelAir20E unit must connect to an isolated LAN, or to a desktop or laptop PC configured to communicate on the same IP sub-network as the BelAir20E.

Using the Radio Interface

Use a desktop or laptop PC equipped with a wireless 802.11a, 802.11b, 802.11g or 802.11n compliant interface as required, configured with a static IP address on the same subnet as the default OAM IP address (for example, 10.1.1.1/24). For the required configuration procedure, refer to your PC and wireless interface configuration manuals or contact your network administrator. The PC will connect to the BelAir20E through the radio interface.

Connecting to the Ethernet Port

Use a cross-connect RI45 cable to connect the Ethernet port of the unit.

For a detailed procedure, refer to the *BelAir20E Installation Guide*.

Starting a CLI Session

Start a Telnet or secure shell (SSH) client and connect to the BelAir20E IP address. If you are configuring the BelAir20E for the first time, you must use the

Command Line Interface Basics

BelAir20E default IP address (10.1.1.10). The BelAir20E prompts you for your user name and password.

The default super-user account is "root". The default password is "admin 123".

If the login is successful, the BelAir20E prompt is displayed. The default prompt is "#", if you login as root. Otherwise, the default prompt string is ">".

- **Note 1:** The terminal session locks after four unsuccessful login attempts. To unlock the terminal session, you must enter the super-user password.
- Note 2: BelAir20E CLI commands are not case sensitive (uppercase and lowercase characters are equivalent). However, some command parameters are case sensitive. For example, passwords and any Service Set Identifier (SSID) supplied with the *radio* commands are case sensitive. Also, all parameters of the *syscmd* commands are case sensitive.
- Note 3: Later, you will see that you can configure the BelAir20E to have more than one interface with an IP address. For example, you can configure Virtual LANs and management interfaces each with their own IP address. If you do this, make sure your Telnet or secure shell (SSH) connections are to a management interface. This ensures maximum responsiveness for your session by keeping higher priority management IP traffic separate from other IP traffic.

Command Line Interface Basics

SSH Session Example of Initial Login

With secure shell, the system prompts you twice for your password.

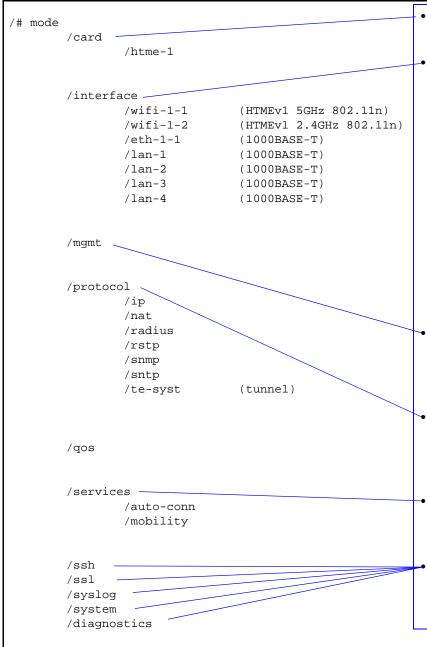
Telnet Session Example of Initial Login

With Telnet, the system prompts you only once for your password.

Command Modes

The BelAir20E CLI has different configuration "modes". Different commands are available to you, depending on the selected mode.

Each card in the BelAir20E has at least one associated physical interface. Some examples of physical interfaces are a Wi-Fi radio or an Ethernet interface.


Use the *mode* command to display the modes that are available. Because each physical interface and each card in the BelAir20E has its own mode, displaying the modes also displays a profile summary of the BelAir20E. See Figure 4.

Command Line Interface Basics

Figure 4: Sample Output of mode Command

- The node has one card. The HTME card is in slot 1.
- The node has the following physical interfaces:
 - —Interface *wifi-1-1* is associated with the HTME 5.8 GHz radio.
 - —Interface *wifi-1-2* is associated with the HTME 2.4 GHz radio.
 - —Interface eth-I-I is associated with the HTME card's Ethernet interface.
 - —Interfaces lan-1 to lan-4 are associated with the HTME card's LAN interfaces.
- The mgmt mode allows you to control user accounts, which authentication to use, and whether you can access the node with Telnet.
- You can control the IP, RADIUS, RSTP, SNMP, SNTP, L2TP and NAT protocols through the protocol mode and its submodes.
- You can control auto-connect and backhaul mobility through the services mode and its submodes.
- These modes allow you to control SSH, SSL, Syslog and system settings. You can also run diagnostics.

Command Line Interface Basics

<u>Table 4</u> describes the modes that are supported.

Table 4: Command Line Interface Modes

Mode	Description				
"root" mode (/)	The top or root level of the CLI commands.				
Card Managemen	nt: /card/ <card_type>-<n></n></card_type>				
one of: • htme- <n> • htme is High Throughput Module, evolved • <n> is slot number Physical Interfaces: /interface/<iface>-<n>-<m></m></n></iface></n></n>					
one of: • wifi- <n>-<m> • eth-<n>-<m> • lan-<n></n></m></n></m></n>	 Configure the BelAir20E physical interfaces: <iface> is the type of physical interface. One of: — wiff: 802.1 la/b/g/n, HTME radios — eth: 1000Base-TX, HTME Ethernet — lan: 1000Base-TX, HTME LAN</iface> <n> is the slot number where the interface is located in the BelAir platform</n> <m> is port number. <m> is I for most interfaces. The HTME card can have multiple ports representing multiple Wi-Fi radios operating different frequencies. Some configurations may have multiple Ethernet or LAN ports.</m></m> 				
Node Management					
mgmt	Configure user accounts, user authentication and Telnet access				
Protocol Management: /protocol/ <protocol></protocol>					

Command Line Interface Basics

Table 4: Command Line Interface Modes (Continued)

Mode	Description
one of: • ip • nat • radius • rstp • snmp • sntp • te- <eng></eng>	Configure the following protocols: • IP parameters for node and VLANs • NAT • RADIUS for user sessions • RSTP • SNMP • SNTP • L2TP tunnel engine (te). BelAir platforms can have one tunnel engine per system (syst).
Services: /service	s/ <service></service>
one of: • auto-conn • mobility	Configure the following services: Auto-configurationBackhaul mobility
Administration	
qos	Configure Quality of Service (QoS) parameters
ssh	Configure Secure Shell (SSH) parameters
ssl	Configure Secure Socket Layer (SSL) parameters
syslog	Configure the destination of SYSLOG messages See the <i>BelAir20E Troubleshooting Guide</i> for details.
system	System and node configuration and administration
diagnostics	Run link diagnostics.

You can move between modes with the *cd* command. For instance, you can move from *root* mode to *system* mode using the command:

/# cd /system /system#

Command Line Interface Basics

- **Note 1:** The prompt changes to match the current mode. You can further customize the prompt to show the switch name or a 20-character string that you define.
- Note 2: Access to a mode is only allowed if the user has sufficient privileges to execute commands in that mode.

When you access a given mode, only the commands pertaining to that mode are available. For example, accessing *snmp* mode provides access to SNMP commands. For a physical interface, this means that only the commands that apply to that specific type and version of interface are available when you access a particular physical interface. For example, if you access an HTMEvI interface, only the commands that apply to an HTMEvI Wi-Fi radio are available.

Entering ? displays the commands that apply to the currently accessed mode. Entering ?? or help displays the commands that apply to the currently accessed mode plus common commands that are available in all modes.

Users may execute commands from other modes than the current one, by prefixing the desired command with the slash character '/' followed by the mode's name. For instance, entering:

```
/system# /protocol/snmp/show community
```

executes a command from *snmp* mode while in *system* mode.

Abbreviating Commands

You must enter only enough characters for the CLI to recognize the command as unique.

The following example shows how to enter the *mgmt* mode command *show telnet status*:

```
/mgmt# sh t s
```

Command History

You can use the *history* command to display a list of the last commands that you have typed.

Example

```
/# history
8 h
9 hi
10 ?
11 show user
12 cd /system
13 show loads
14 show sessions
```


Command Line Interface Basics

```
16  cd interface/wifi-1-1/
17  ?
18  show
19  show ssid table
20  show statistics
21  history
```

Special CLI Keys

Command Completion

You can ask the CLI to complete a partially typed command or mode name by pressing the *tab* key. If the command or mode name cannot be completed unambiguously, the CLI presents you with a list of possible completions. For instance, entering:

```
/system# show co{tab}
```

produces the following output:

```
Available commands:
show communications
show config-download status
show coordinates
show country [detail]
```

Execution of the Last Typed Command

You may repeat the last command, by entering the !key twice, followed by carriage return.

Executing the Previous Commands

You may browse through the command history by using the up and down arrow keys of a VT100 or compatible terminal. You can also execute a certain command from the command history by entering the ! key, followed by the command number (as displayed in the *history* command output) and carriage return.

Help Command

```
?
?? [<command>]
help [<command>]
```

These commands display:

- a list of commands available in the current mode
- help on a particular command available in the current mode
- help on commands starting with the given keyword in the current mode

Entering "??" is equivalent to entering "help".

Command Line Interface Basics

Available Commands

Entering ? displays the commands that apply to the currently accessed mode. For example:

```
/mgmt# ?
Available commands :
adduser <user-name> -p <passwd> [ -d <default-mode>] [-g <grp-name>]
deluser <user-name>
moduser <user-name> [ -p <passwd>] [ -d <default-mode>] [-g <grp-name>]
set authentication-login {local | radius <list>}
set telnet {enabled|disabled}
show authentication-login
show telnet status
show user
```

Entering ?? or help displays the commands that apply to the currently accessed mode plus common commands that are available in all modes. For example:

```
/mgmt# ??
Available commands :
adduser <user-name> -p <passwd> [ -d <default-mode>] [-g <grp-name>]
deluser <user-name>
moduser <user-name> [ -p <passwd>] [ -d <default-mode>] [-g <grp-name>]
set authentication-login {local | radius <list>}
set telnet {enabled|disabled}
show authentication-login
show telnet status
show user
alias [<replacement string> <token to be replaced>]
cd <path>
clear-screen
console lock
exit
help [ command ]
history
mode [<mode_name>]
passwd
ping <ip addr> [-l <size>]
run script <script file> [<output file>]
version
whoami
config-save [{active|backup} remoteip <server> remotefile <filename>
[{tftp | ftp [user <username> password <password>]}]]
config-restore remoteip <ipaddress> remotefile <filename> [{tftp | ftp
[user <username> password <password>]}] [force]
show date
su <username>
```

Keyword Help

Entering ?? or help followed by a keyword displays all possible commands starting with that keyword. For example:

```
/mgmt# ?? show
Available commands :
```


Command Line Interface Basics

```
show authentication-login
    Description : show authentication login status and RADIUS servers
configuration
show telnet status
    Description : shows the status of the telnet.
show user
    Description : List all valid users, along with their permissible mode.
show date
    Description : show current system date and time
```

Help for a Specific Command

When help is needed for a specific command, enter ?? or help followed by the command within quotes. For example:

```
/mgmt# help "adduser"
Available commands :
adduser <user-name> -p <passwd> [ -d <default-mode>] [-g <grp-name>]
    Description : Create a user.
```

Help with Abbreviations

When an abbreviation is used in the help string, all matching commands are listed with the description. For example:

```
/mgmt# ?? s
Available commands
set authentication-login {local | radius <list>}
   Description : defines how login session will be authenticated.
set telnet {enabled|disabled}
   Description : enable or disable CLI access via the telnet protocol.
show authentication-login
   Description : show authentication login status and RADIUS servers
configuration
show telnet status
   Description : shows the status of the telnet.
show user
   Description: List all valid users, along with their permissible mode.
show date
   Description : show current system date and time
su <username>
   Description: Substitute present user with the given user.
```

Saving your Changes

If you change any settings from the system defaults, you must save those changes to the configuration database to make sure they are applied the next time the BelAir20E reboots. Similarly, you can restore the entire configuration database from a previously saved backup copy.

Saving the Configuration Database

This command allows you to save the current configuration of the entire BelAir20E node. This includes all system, layer 2 and radio settings.

Command Line Interface Basics

When used without its optional parameters, the *config-save* command saves the configuration database for the active software load to persistent storage. The stored configuration is automatically applied at the next reboot.

When used with its optional parameters, the *config-save* command also transfers the configuration database to a remote server.

If active is specified, the config-save command saves the configuration database for the active software load to persistent storage and then transfers it to a remote server. If backup is specified, the configuration database for the active software load is not saved. Instead, the configuration database for the active software load that was saved previously to persistent storage, is transferred to a remote server.

You can use either TFTP or FTP to communicate with the remote server. By default, the *config-save* command uses TFTP. If you specify FTP, you can also specify the username and password. The default FTP username is *anonymous* and the default FTP password is root@<nodeip>, where <nodeip> is the IP address of node making the request. If you do not use the default FTP username, the FTP server must be configured to accept your username and password.

Restoring the Configuration Database

This command transfers the configuration database from a remote server to the active software load in persistent storage. This allows you to restore the entire configuration database from a previously saved backup copy.

Use the *reboot* command for the new configuration to take effect.

You can use either TFTP or FTP to communicate with the remote server. By default, the *config-restore* command uses TFTP. If you specify FTP, you can also specify the user name and password. The default FTP user name is *anonymous* and the default FTP password is root@<nodeip>, where <nodeip> is the IP address of node making the request. If you do not use the default FTP username, the FTP server must be configured to accept your username and password.

The optional *force* parameter suppresses version checking on the configuration file that is being downloaded. You can use a backup copy that was created with a different version of software than the current software installed on the unit. If you do, BelAir Networks strongly recommends that you fully and thoroughly verify the configuration and operation of the unit after you reboot the system and before you save the restored configuration.

Command Line Interface Basics

Example

/# cd system

/system# config-restore remoteip 122.45.6.123 remotefile unitA.conf

Common CLI Commands

In addition to any previously described commands, the following commands are always available, regardless of your current mode.

Terminating your CLI Session

exit

Use this command to terminate your own CLI session at any time.

Changing Your Password

passwd

This command lets you change your current password. First, you are asked to enter your old password. Then you must enter your new password twice, to verify that you have typed it correctly.

Note: The specified password is case sensitive, must consist of alphanumeric characters, must be at least six characters long, and cannot exceed 20 characters.

CAUTION!

If you forget the super-user account password, you may be unable to use all the unit's management functions and you may need to reset the unit's configuration to factory defaults.

Example

passwd

Old Password:

Enter New Password: Reenter the Password:

Password updated Successfully

Clearing the Console Display

clear-screen

This command clears your console display window.

Locking the Console Display

console lock

This command lock your console display window. You must enter your

password to unlock it.

Displaying the Current Software Version

version

This command displays the version of the currently running BelAir software load.

Example

/# version

Command Line Interface Basics

```
Version is BA20E 12.0.0.D.2011.01.19.14.32 (r36096)
```

Displaying the Current Date and Time

show date

This command displays the current date and time.

Example I

The following example displays the current date and time when it is set manually.

```
/# show date
Current date: 2007-05-10 06:52:20
```

Example 2

The following example displays the current date and time when using a Simple Network Time Protocol (SNTP) server and a time offset of -4 hours and 30 minutes. See "Configuring the System Date and Time" on page 51 for details.

```
/# show date
Current date: 2006-07-21 13:15:16 (UTC)
Current date: 2006-07-21 08:45:16
```

Displaying Current User

whoami

This command displays current user.

Example

```
/# whoami
/# Current User is root
```

Switching User Accounts

su <username>

This command changes the user account you are currently using. To return to the original user account, use the *exit* command.

Example

```
/# whoami
Current User is root
/# su guest
/> whoami
Current User is guest
/> exit
/# whoami
Current User is root
```

Replacing a Token by a String

alias [<replacement string> <token to be replaced>]

This command replaces the specified token by the given string. It is provided for customers writing scripts. See "Scripting Guidelines" on page 234.

Command Line Interface Basics

Example

/# alias gu guest

Pinging a Host or Switch

```
ping <host> [-1 <size>]
```

This command pings a host machine or switch using the host name or IP address.

The following options are supported:

-/ size specifies the size of the ping request packets to be sent.

Examples

The following example shows typical ping output:

```
/# ping 10.1.1.100 -1 128
PING 10.1.1.100 (10.1.1.100): 128 data bytes
136 bytes from 10.1.1.100: icmp_seq=0 ttl=128 time=2.0 ms
136 bytes from 10.1.1.100: icmp_seq=1 ttl=128 time=1.2 ms
136 bytes from 10.1.1.100: icmp_seq=2 ttl=128 time=1.0 ms
--- 10.1.1.100 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 1.0/1.4/2.0 ms
```

Starting a Telnet Session

```
telnet <ip address> [<port_number>]
```

This command lets you start a Telnet session to another machine, such as another BelAir node, by specifying the IP address. By default t, Telnet uses port 23. You can also specify an alternate port number.

Radio Configuration Summary

```
show interface summary
```

This command displays a summary of the configuration of all radio interfaces.

Example

The following example shows a typical output for a BelAir20.

Command Line Interface Basics

Access:

AP admin state: Enabled

Backhaul:

link admin state: Disabled

link id: BelAirNetworks

topology: mesh

BelAir20E Access Methods

BelAir20E Access Methods

When a BelAir20E is shipped from the factory, all access methods (CLI, SNMP, Telnet, HTTP, HTTPS, SSH) are enabled. You can use these interfaces to configure the system's IP networking parameters.

This chapter describes the CLI commands you can use to configure these access methods.

Note: Some access methods, such as HTTP and HTTPS, are configured while in SSL mode.

SNMP Configuration Guidelines

This section describes how to configure the BelAir20E to communicate to either an SNMPv1/v2 server or an SNMPv3 server.

SNMPv1/v2 Servers

To configure an SNMP community, use the *set community* command described in <u>"Communities" on page 29</u>.

For sending traps, use the *set trap* command described in <u>"Traps" on page 29</u> to configure the node with the parameters of the destination SNMP manager.

Refer to <u>"SNMP Command Reference" on page 28</u> for detailed descriptions of all SNMP commands.

SNMPv3 Servers

To configure an SNMP user, use the *set user* command described in <u>"Users" on page 30</u>.

For sending notifications, use the *set notify* command described in "Notifications" on page 30 to configure the node with the parameters of the destination SNMP manager.

Refer to <u>"SNMP Command Reference" on page 28</u> for detailed descriptions of all SNMP commands, including entities that need to be predefined.

SNMP Naming Restrictions

SNMP community names, user names, and notification names must not contain the following characters:

- —bar (|)
- —semicolon (;)
- —percent (%)
- —double quotation mark (")

BelAir20E Access Methods

SNMP Command Reference

The following sections show you how to configure SNMP functions.

SNMP Agent

/protocol/snmp/set snmp-agent {enabled | disabled}

/protocol/snmp/show snmp-agent

The set snmp-agent command enables or disables SNMP access.

SNMP Configuration

/protocol/snmp/show config [{v2 | v3 | all}]

Use the *show config* command to display the current SNMP configuration. Passwords are only displayed to users with *root* privileges. See <u>"User Privilege"</u>

Levels" on page 35 for details.

Example I

/protocol/snmp# show config v2

EngineId: 80003d9805000d67091448

Community configuration:

IndexNameIP AddressPrivilege1public0.0.0.0ReadOnly2private10.1.1.70ReadWrite

Trap configuration:

Index IP address Community Version
1 10.1.1.70 public v1v2

Example 2

/protocol/snmp# show config v3

EngineId: 80003d9805000d67006902

User configuration:

 User Name
 IP address
 Auth Password
 Privacy Password
 Privilege

 Test
 0.0.0.0
 MD5 md5md5md5
 DES_CBC
 TEST
 ReadWrite

Notification configuration:

 Name
 Type
 IP address
 Timeout Retry Auth Password
 Privacy Password

 TRAP
 trap
 10.1.1.70
 1250
 2
 MD5 md5md5md5
 DES_CBC TRAP

BelAir20E Access Methods

Communities

The set community command configures the SNMP community security. You can configure up to 10 communities. The community is assigned with privileges.

The delete community command deletes the specific community information.

The *show* command displays the SNMP community configuration.

Assigning an IP address of 0.0.0.0 to an SNMP community of a node allows node access by all managers configured for that community. See <u>"Example I" on page 29</u>. To limit access to a single manager, enter the manager's IP address. See <u>"Example 2" on page 29</u>.

Example I

/protocol/snmp# set community 1 community-name belair ipaddr 0.0.0.0 privilege readonly

In this example, all managers configured with the SNMP community of *belair* can access the node for read only functions.

Example 2

```
/protocol/snmp# set community 1 community-name belair200 ipaddr 10.10.10.11 privilege readonly /protocol/snmp# set community 2 community-name belair100 ipaddr 20.20.20.20 privilege readwrite /protocol/snmp# set community 3 community-name belcom ipaddr 30.30.30.30 privilege readonly
```

In the previous example, the manager at IP address 20.20.20.20 configured with the SNMP community of *belair100* has read-write access to the node.

Example 3

/protocol/snmp# show community

Index	Name	IP Address	Privilege
1 2	<pre>public private</pre>	0.0.0.0 10.1.1.70	ReadOnly ReadWrite

Traps

```
/protocol/snmp/set trap <index> mgr-addr <ip_addr> community <name> version \{v1|v2|both\} /protocol/snmp/delete trap <index> /protocol/snmp/show trap
```

The *set trap* command configures the parameters of the SNMPv2 trap manager. You can configure up to 10 traps.

The *delete trap* command deletes the specified trap manager information.

BelAir20E Access Methods

The *show trap* command displays the SNMPv2 trap manager configuration information.

Example I

/protocol/snmp# set trap 1 mgr-addr 40.40.40.40 community bel1 version v1 /protocol/snmp# set trap 2 mgr-addr 41.41.41.41 community bel2 version v2

Example 2

/protocol/snmp# show trap

Index	IP address	Community	Version
1	10.1.1.70	public	v1v2

Users

The *set user* command defines an SNMPv3 user. You can define up to 10 users, each with different authentication and privacy settings.

The *ipaddr* parameter specifies the IP address associated with this user. The *access* parameter specifies the level of access granted to this user.

The *<password>* parameter is the password required by the user to access SNMP data. A user must supply this password if using a MIB browser.

The BelAir20E uses DES encryption to encrypt SNMP packets. The *priv-DES* parameter specifies the encryption key required to encrypt or decrypt the packet.

The *delete user* command deletes the definition of the specified SNMP user.

The *show* command displays the configured users. Passwords are only displayed to users with *root* privileges. See "User Privilege Levels" on page 35 for details.

Example I

/protocol/snmp# set user v3md5 ipaddr 0.0.0.0 access readwrite auth md5 md5md5md5

Example 2

/protocol/snmp# show user

User Name	IP address	Auth	Password Privacy	Password	Privilege
v3md5	0.0.0.0	MD5	md5md5md5 None	none	ReadWrite
Notifications	/protocol/snmp/set	notif	Ty <notifyname> typipaddr <ip_addr:< th=""><th>pe {Trap > [timeout</th><th>Inform} <1-1500>]</th></ip_addr:<></notifyname>	pe {Trap > [timeout	Inform} <1-1500>]

October 11, 2011 Confidential Page 30 of 267

BelAir20E Access Methods

The *set notify* command enables notifications to be sent to an SNMPv3 manager for the specified notification name. You can configure up to 10 notification names.

The *ipaddr* parameter specifies the IP address associated with this notification.

The *timeout* parameter specifies how many seconds to wait for an acknowledgement before resending the SNMP packet. The *retries* parameter specifies the number of times to resend the SNMP before declaring a failure.

The *<password>* parameter is the password associated with this notification.

The BelAir20E uses DES encryption to encrypt SNMP packets. The *priv-DES* parameter specifies the encryption key required to encrypt or decrypt the packet.

The *delete notify* command disables notifications from being sent for the specified notification name.

The *show notify* command displays the current SNMP notify configuration. Passwords are only displayed to users with *root* privileges. See <u>"User Privilege Levels" on page 35</u> for details.

Example I

/protocol/snmp# set notify trap1 type trap ipaddr 10.1.1.70

Example 2

/protocol/snmp# show notify								
Name	Type	IP address	Timeout	Retry	Auth	Password	Privacy	Password
trap1	trap	10.1.1.70	1500	3	None	none	None	none
trap2	trap	10.1.1.70	1250	3	None	none	None	none
trap3	trap	10.1.1.70	1250	2	None	none	None	none
trap4	trap	10.1.1.69	1500	3	SHA	shasha	None	none
trap5	trap	10.1.1.69	1500	3	MD5	md5md5	None	none
trap6	trap	10.1.1.11	1500	3	None	none	None	none
trap7	trap	10.1.1.12	1250	3	None	none	None	none
trap8	trap	10.1.1.12	1250	3	MD5	md5md5	DES_CBC	JEKTEST
trap9	trap	10.1.1.9	1250	3	MD5	md5md5	DES_CBC	bob
trap10	trap	10.1.1.8	50	1	MD5	md5md5	DES_CBC	bob

Authentication Traps

/protocol/snmp/set authentication-trap {enable|disable}
/protocol/snmp/show authentication-trap status

These commands enable or disable the ability to send authentication traps.

BelAir20E User Guide BelAir20E Access Methods

Engine Identifier /protocol/snmp/show engineid

This command displays the current engine identifier.

Telnet /mgmt/telnet {enable|disable}
/mgmt/show telnet status

The telnet command enables or disables Telnet access to the unit.

The *show* command displays the status of the Telnet interface.

Example I

/#cd /mgmt/
/mgmt# telnet enable

Example 2

cd /mgmt/

/mgmt# show telnet status

Telnet: Enabled

HTTP /ssl/set http {enable|disable}

/ssl/show http status

These commands enable or display the HTTP interface. The show command

displays the current status.

Secure HTTP /ssl/set secure-http {enable | disable }

/ssl/show secure-http status

These commands enable or display the secure HTTP interface. The show

command displays the current status.

SSH The following sections show you how to configure the Secure Shell (SSH)

functions.

SSH Access /ssh/show ssh status

This command displays the status of the SSH interface.

SSL The following sections show you how to configure the Secure Socket Layer

(SSL) functions.

Displaying Server

/show ssl server-cert

Certificate This command displays the server-certificate for SSL.

BelAir20E Access Methods

Configuring the Server Certificate

To configure the server certificate:

- I Create the RSA key pair. See "Creating RSA Key Pair" on page 33.
- 2 Create a certificate request. See "Creating Certificate Request" on page 33.

 The certificate request is displayed on the screen.
- 3 Copy the certificate request to a file and send it to the Certificate Authority (CA) that will generate the certificate.
- 4 When the CA responds with the certificate, configure the BelAir20E SSL configuration to use it. See "Configuring the Server Certificate" on page 33.
- 5 Save the SSL configuration. See "Saving an SSL Configuration" on page 33.

Creating RSA Key Pair

```
/ssl/ssl gen key {rsa} <no. of bits>
```

This command creates a new RSA key pair. The input value of *no of bits* can be 512 or 1024.

Example

```
/#cd ssl
/ssl# ssl gen key rsa 1024
```

Creating Certificate Request

/ssl/ssl gen cert-req algo rsa sn <SubjectName>

This command creates a certificate request using the RSA key pair and *SubjectName*. The subject name is the identification of the switch or the switch's IP address.

Example

```
/#cd ssl
/ssl# ssl gen cert-req algo rsa sn 10.1.1.10
```

Configuring the Server Certificate

/ssl/ssl server-cert

This command imports a server certificate provided by a CA.

When you use this command, you are prompted to enter the certificate. To do so, open the certificate and copy its contents to the CLI.

Note: The application that you use to open the certificate may insert additional line breaks and spaces at the end of each line of the certificate. Make sure to remove these extra line breaks and spaces when you copy the certificate to the CLI.

Saving an SSL Configuration

/ssl/ssl save

This command saves the SSL configuration.

BelAir20E Access Methods

Example

/#cd ssl /ssl# ssl save

User and Session Administration

User and Session Administration

This chapter describes user administration functions with the following topics:

- "User Privilege Levels" on page 35
- "User Accounts" on page 38
- "Configuring Authentication for User Accounts" on page 39
- "CLI and Web Sessions" on page 41

User Privilege Levels

User accounts on the BelAir20E can be assigned the following three privilege levels:

- An observer user can execute only the following commands:
 - —most *show* commands
 - —the *help* and ?commands
 - —the *passwd* command
 - —the *clear-screen* and *exit* commands
 - —the cd and mode commands
 - —the *history* command
 - —the whoami command
 - —the *ping* command
- A *normal* user can execute any CLI command, except those reserved for the super-user.
- The *super-user* can execute any CLI command. <u>Table 5 on page 35</u> lists the CLI commands that are reserved for the super-user.

Each unit can have any number of observer users and normal users, but only one super-user account, called *root*.

Table 5: Super-user commands

User and Session Administration

Table 5: Super-user commands (Continued)

```
Mgmt Commands
adduser <user-name> -p <passwd> [-d <mode>] [-g <group>]
deluser <user-name>
moduser <user-name> [ -p <passwd>] [ -d <mode>] [-g <group>]
show user
set telnet {enabled|disabled}
set authentication-login {local | radius <list>}
show authentication-login
System Commands
set country <country_name>
set global-session-timeout <period>
terminate session <session_index>
cancel upgrade
reboot [{force}]
commit load
set next-load {A|B|current|inactive}
syscmd restoreDefaultConfig
/Card/<card_type>-n Commands
reboot [{force}]
/Protocol/IP Commands
set interface {system | vlan <1-2814>}
                               static <ip addr> <mask> [delay-activation]
```


User and Session Administration

Table 5: Super-user commands (Continued)

```
renew ip {system | vlan <1-2814>}
SSL Mode Commands
set http {enable|disable}
set secure-http {enable|disable}
show http status
show secure-http status
show server-cert
ssl gen cert-req algo rsa sn <SubjectName>
ssl gen key {rsa} <no. of bits>
ssl save
ssl server-cert
Syslog Mode Commands
logserver {enable [<ip address>] | disable}
monitor logging {enable | disable}
loglevel {debug|info|notice|warn|error|critical|alert|emerg}
/Protocol/SNMP Mode Commands
set snmp-agent {enabled | disabled}
set community <CommunityIndex>
                        community-name <name> ipaddr <ip_addr>
                         privilege {readonly|readwrite}
delete community <CommunityIndex>
set trap <index> mgr-addr <ip_addr>
                         community <name> version {v1|v2|both}
delete trap <index>
set user <UserName> ipaddr <IP_addr>
               access {readonly | readwrite}
             [auth {md5 | sha} <password> [priv-DES <passwd>]]
delete user <UserName>
```


User and Session Administration

Table 5: Super-user commands (Continued)

User Accounts

```
/mgmt/adduser <user-name> -p <passwd> [-d <mode>] [-g <group>]
/mgmt/deluser <user-name>
/mgmt/moduser <user-name> [-p <passwd>] [-d <mode>] [-g <group>]
/mgmt/show user
```

The adduser command creates a new user account.

The *deluser* command deletes a user account. The default login, "root", cannot be deleted.

The *moduser* command modifies the parameters of a user account. For this command, the *group* parameter does not apply to changes to the *root* account.

The *show user* command lists all valid user accounts, the mode in which they start their session and their maximum privilege level. For example, under *Groups,* normal users display *NORMAL OBSERVER* while the *root* account displays *root NORMAL OBSERVER*.

The *mode* parameter sets the command mode that a user accesses when they log in. If unspecified, it defaults to a slash (/) so the user begins their session in root mode. Users with observer privileges must start their sessions in root mode.

The *group* parameter specifies the user account's privilege level. It can be *OBSERVER* or *NORMAL*. If unspecified, the user account has observer privileges.

To use this command, you must be in *mgmt* mode.

Note 1: The specified password is case sensitive, must consist of alphanumeric characters, must be at least six characters long, and cannot exceed 20 characters. Changes the super-user account require that you provide the super-user password.

Note 2: The specified group is case sensitive.

If you use a RADIUS server to authenticate users as they login, you must specify the user's privilege level in the RADIUS *Reply-Message* field. Specifically,

User and Session Administration

the *Reply-Message* field must contain in plain text one of the following: *root*, *NORMAL* or *OBSERVER*. These entries in RADIUS are case sensitive, so make sure the user privilege levels are entered exactly as specified. If the privilege levels are unspecified in RADIUS, then the BelAir20E provides the user with *observer* privileges.

Example I

/mgmt# adduser testuser -p userpwd - d system

Example 2

/mgmt# deluser xyz

Example 3

In the following example, the user *guest* begins their session in *interface* mode and their password is changed to "guest 123".

/mgmt# moduser guest -p guest123 -d interface

Example 4

/mgmt# show user USER	MODE	GROUPS
root user1 user2 user3	/ / interface	root NORMAL OBSERVER OBSERVER OBSERVER NORMAL OBSERVER

Configuring Authentication for User Accounts

You can use a RADIUS server to authenticate users as they login to their accounts. This applies to all user accounts including *root*.

Authentication Mode

```
/mgmt/set authentication-login {local|radius <list>}
/mgmt/show authentication-login
```

These commands determine how the BelAir20E authenticates users.

The *local* setting means that the BelAir20E uses the locally stored password and user account information to authenticate the user. This is the default setting.

The *radius* setting means that the BelAir20E uses a RADIUS server to authenticate the user. The *list* parameter specifies the index used in the RADIUS server list. Refer to "RADIUS Servers" on page 40.

User and Session Administration

Example I

/mgmt# set authentication-login radius 1,2

Example 2

mgmt# show authentication-login

Authentication Login is radius

Radius Authentication server table

Index	: 1
Radius Server Address	: 10.1.3.254
UDP port number	: 1812
Radius Client Address	: 10.1.3.48
Timeout	: 3
Index	: 2
Radius Server Address	: 10.1.3.253
UDP port number	: 1812
Radius Client Address	: 10.1.3.48
Timeout	: 3

RADIUS Servers

These commands allow you to specify a list of RADIUS servers that you can use to authenticate users. The list can contain up to 10 servers.

The *IP addr* parameter specifies the IP address of the RADIUS server.

The *shared-secret* parameter specifies the password for access to the RADIUS server.

The *authport* parameter ranges from 0 to 65535. It specifies the UDP port number of the RADIUS server (typically 1812).

The *acctport* parameter ranges from 0 to 65535. It specifies the UDP port number for RADIUS accounting data (typically 1813).

The *interface* parameter specifies the interface to associate the BelAir20E RADIUS client to. This can be the unit's system interface or any VLAN interface. The default value is *system*.

User and Session Administration

The *timeout* parameter ranges from 2 to 300. It specifies the interval (in seconds) after which the RADIUS client considers that the remote server has timed out if a reply is not received. The default value is 10 seconds.

The *reauthtime* parameter ranges from 0 to 50000000. It specifies the RADIUS re-authentication time (in seconds). This forces the BelAir20E to check all connected clients with the RADIUS server (that is, make sure they are still allowed to access the network) at the specified interval. You only need to configure this parameter if it is not specified on the RADIUS server. Setting the interval to zero disables this feature. The maximum interval time is 2147483647. If you enter a higher number, the value is set to its maximum.

Note: Make sure the user's privilege level are correctly specified in the RADIUS *Reply-Message* field. Refer to "User Accounts" on page 38.

Example I

/protocol/radius# set server 3 172.16.1.20 my-secret12345 authport 1812 acctport 1813 interface system timeout 15 reauthtime 1

Example 2

/protocol/radius# set server-state 3 enabled

CLI and Web Sessions

The BelAir20E allows you to manage CLI and Web session, such as listing and terminating sessions as well as configuring the idle timeout period.

Session Management

/system/show sessions
/system/terminate session <session index>

The *show sessions* command lists all active CLI and Web interface sessions. The current session is flagged with an asterisk besides its session index number.

The *terminate session* command allows you to terminate any CLI or Web session.

Example

/syste	m#	snow	ses	ssions
index us		ser		type
1	r	oot		telnet
9	r	oot		telnet
11[*]	ro	oot		web

IP address	since	last-cmd	timeout	tssh	logging
10.9.9.14	0:27:57 0:22:09	0:01:43 0:00:00	0:30:00 0:30:00		
10.9.9.14	0:13:51	0:13:51	1:00:00	IIIaccivc	accive

In this example, the current session is session II with an idle period set at I hour.

User and Session Administration

Configuring the Session Timeout Interval

```
/system/set global-session-timeout <period>
/system/set session-timeout <period>
/system/show global-session-timeout
```

By default, a CLI session is automatically disconnected if it is idle for longer than 30 minutes. These commands allows you to change the idle period, preventing unwanted disconnections. The idle period is specified in minutes. Setting a period of 0 prevents any automatic disconnection.

The set global-session-timeout command changes the idle period of all CLI sessions. Its <period> parameter ranges from I to I440; that is up to 24 hours. You cannot specify 0 as the global session idle period. You must be logged in as root to use this command.

The set session-timeout command changes the idle period of only the current CLI sessions. Its <period> parameter ranges from 0 to 1440; that is up to 24 hours. The session timeout period overrides the global timeout period.

The new idle period takes effect immediately and to all current and future sessions; until changed with these commands again.

The *show* command displays the settings for the global timeout period. To see the setting for the session, use the */system/show sessions* command.

Example

```
/system# set idle-timeout 60
```

CLI Prompt Customization

```
/system/set prompt selection [default|string|switch-name}
/system/set prompt string <20-char_string>
/system/show prompt
```

The *set prompt selection* command customizes the prompt for CLI sessions. The choices are as follows:

- default, where the CLI prompt includes the current command mode only
- switch-name, where the CLI prompt includes the current command mode and the first eight characters of the switch name described in <u>"System Identification Parameters"</u> on page 50
- string, where the CLI prompt includes the current command mode and the 20-character string as defined by the set prompt string command. The string can consist of any 20 ASCII characters, except for the semicolon (;).

The *show prompt* command displays the current prompt settings.

User and Session Administration

Examples

/system#set prompt string BelAir-128-50-46-189
/system#set prompt selection string
[BelAir-128-50-46-189]/system#system switch BA20E-A
[BelAir-128-50-46-189]/system#set prompt selection switch-name
[BA20E-A]/system#set prompt selection switch-name
[BA20E-A]/system#set prompt selection default
/system# show prompt

User-defined string: BelAir-128-50-46-189

prompt selection: default

IP Settings

This chapter contains procedures for managing BelAir20E IP parameters as follows:

- "Displaying IP Parameters" on page 44
- "Configuring IP Parameters" on page 45
 - "Configuring Dynamic IP Addressing" on page 45
 - "Renewing the IP Address" on page 46
 - —"Auto-IP" on page 46
 - "Setting a Static IP Address and Subnet Mask" on page 47
 - "Static IP Routes" on page 47
- "Configuring the Domain Name System Lookup Service" on page 48
- "Configuring IP Address Notification" on page 48

CAUTION!

The BelAir20E uses internal IP addresses in the range of 192.168.1.x, 192.168.2.x and 192.168.3.x. As a result, do not configure the BelAir20E to use any IP addresses within these ranges.

Displaying IP Parameters

/protocol/ip/show config

The /protocol/ip/show config command displays a detailed view of the system's IP configuration.

Example

/protocol/ip# show config

Interfaces:

Interface	Current e Address	Current Netmask	Address Alloc Type	D	Configured/ Fallback Address	Configured/ Fallback Netmask	Accept DHCP Parameters
System	10.9.9.20	255.255.255.0	Static		10.9.9.20	255.255.255.0	Disabled

AutoIP: Enabled

Routes:

Destination Netmask Gateway Interface Active
----No static routes currently configured

DNS:

Domain name lookup: disabled Configured domain name: Configured primary DNS server: 0.0.0.0 Configured secondary DNS server: 0.0.0.0

Configuring IP Parameters

You can configure:

- dynamic IP addressing
- a static IP address and subnet mask, as well as static IP routes.

Configuring Dynamic IP Addressing

The set interface command specifies that a Dynamic Host Configuration Protocol (DHCP) server provides IP addresses for the node. This includes IP addresses for the node's management interface as well as any VLANs it may have. If you specify a new VLAN, then that VLAN is created. The del ip vlan command deletes VLAN IP parameters previously created with the set interface command.

If the IP address is dynamically set, BelAir Networks recommends that you also configure the *switch name*, *location* and *contact* parameters. These parameters then allow you to identify the node if you later need to do a remote CLI session. Refer to "System Identification Parameters" on page 50.

In addition to providing the IP address, the DHCP server can be used to supply additional parameters including:

- · a TFTP server and a script file name
- DNS server IP address and a domain name
- a SNTP server list and time offset

The *accept-dhcp-params* parameter controls whether the node accepts additional parameters from the DHCP server or not. Refer to "DHCP Options" on page 58 for details.

The *delay-activation* parameter specifies that the new IP parameters do not take effect until after you execute a *config-save* command. BelAir Networks recommends that you always specify *delay-activation* if you change the system IP parameters. Otherwise you will need to start a new CLI session using the new IP address to execute the *config-save* command to save your changes.

Note I: DHCP servers usually have the ability to assign a default route to DHCP clients. Make sure that the DHCP server assigns only one default route, even you are using many different IP interfaces on the same BelAir platform (for example, a management IP interface and a VLAN IP interface).

Note 2: You must configure the DHCP server lease time to be one minute or longer.

Note 3: If the network contains nodes with static IP addressing and nodes with dynamic IP addressing, make sure the DHCP server does not issue addresses that been previously issued statically.

Example

/protocol/ip# set interface system dynamic fallback-ip 92.121.68.34 255.255.255 accept-dhcp-params disabled delay-activation

The previous command changes the system interface to:

- accept a dynamic IP address, and no other parameters, from a DHCP server
- if the DHCP server cannot be reached, use an IP address of 92.121.68.34 and an IP mask of 255.255.255.255

The changes do not take effect until you use the *config-save* command to save your changes.

Renewing the IP Address

```
/protocol/ip/renew ip {system | vlan <1-2814>}
```

This command is used when the node is configured to dynamically receive IP addresses. See "Configuring Dynamic IP Addressing" on page 45.

Issuing this command causes the DHCP server to renew the IP address of the node's management interface or of the VLAN.

CAUTION!

Using this command may cause the DHCP server to change the IP address of the node's management interface. If this happens you may need to reconnect to the node using the new IP address.

Auto-IP

```
/protocol/ip/set auto-IP {enabled | disabled}
```

This command lets you configure the auto-IP feature which complements the fallback IP when you configure dynamic IP addressing. Auto-IP is useful when multiple nodes have been configured with the same fallback IP.

The auto-IP feature automatically configures the node to have a specific default IP address based on the node's MAC address if it cannot get an IP address from the DHCP server or when it is in factory default mode.

When auto-IP is enabled, the default IP address is 169.254.1.x with a mask of 255.255.0.0, where x is the last byte of the node's MAC address. When you can connect a laptop directly to the unit, the laptop also auto-configures itself with an IP address 169.254.x.x and a mask of 255.255.0.0 if it is in DHCP mode. You can then use the laptop to start a CLI session into the unit with its 169.254.1.x address.

The default setting is enabled.

Setting a Static IP Address and Subnet Mask

The *set interface* command specifies that the node uses static IP addressing for the node's management interface as well as any VLANs it may have. If you specify a new VLAN, then that VLAN is created. The *del ip vlan* command deletes VLAN IP parameters previously created with the *set interface* command.

The *delay-activation* parameter specifies that the new IP parameters do not take effect until after you execute do a *config-save* command. BelAir Networks recommends that you always specify *delay-activation* if you change the system IP parameters. Otherwise you will need to start a new CLI session using the new IP address to execute the *config-save* command to save your changes.

Example

```
/protocol/ip# set interface system static 92.121.68.34\ 255.255.255.255 delay-activation
```

The previous command changes the system interface to have a static IP address of 92.121.68.34 and an IP mask of 255.255.255.255. The changes do not take effect until you use the *config-save* command to save your changes.

Static IP Routes

```
/protocol/ip/add route <dest ip addr> <dest mask> gw <gateway>
/protocol/ip/del route <dest ip addr> <dest mask> gw <gateway>
```

The *ip route add* command adds extra static IP routes. If your units needs to communicate with an IP interface from another sub-network, you must add the appropriate routes to the remote IP interface. Contact your administrator to obtain the IP address and mask of the remote IP interface.

The ip route del command deletes a static route.

Use the gateway parameter to specify the IP address of the network gateway.

Configuring the Domain Name System Lookup Service

```
/protocol/ip/set dns server {primary | secondary} <ip_address>
/protocol/ip/del dns server {primary | secondary}
/protocol/ip/set dns domain name <customer.com>
/protocol/ip/del dns domain name
```

The BelAir20E provides a Domain Name System (DNS) lookup service by providing a DNS client that resolves computer names to IP addresses. If the local DNS server fails, a query to the public network is made.

The set dns server command specifies the IP address of a primary and secondary DNS server. The del dns server command erases the current IP address.

The set dns domain name command specifies the default domain name required to perform Fully Qualified Domain Name requests. The del dns domain name command erases the current domain name.

The IP addresses of the DNS servers and the default domain name can also be specified automatically through DHCP. See "DHCP Options" on page 58.

Configuring IP Address Notification

```
/protocol/ip/set ip-addr-notification {enabled | disabled}
```

When this setting is *enabled*, the node sends out its IP addresses as traps to the configured trap destinations every 60 minutes. The notification interval is not currently configurable. By default, this setting is *disabled*.

System Settings

System Settings

This chapter contains procedures for managing BelAir20E parameters as follows:

- "Country of Operation" on page 49
- "System Identification Parameters" on page 50
- "Custom Fields" on page 50
- "Configuring the System Date and Time" on page 51
- "GPS Coordinates" on page 53
- "LED Control" on page 53
- "Setting the Network Egress Point" on page 54
- "Limiting Broadcast Packets" on page 54
- "Displaying Unit Inventory Information" on page 55
- "Defining a Maintenance Window" on page 55
- "Displaying System Up Time" on page 55
- "Displaying the Running Configuration" on page 56
- "Restarting the Node" on page 56
- "Creating and Using Script Files" on page 56
- "Enabling or Disabling Session Logging" on page 56

Country of Operation

/system/show country [detail]
/system/set country <country_code>

Note: These commands apply only to BelAir units purchased outside of the United States of America and its territories. For units purchased in the United States of America and its territories, the unit's country code is *US* and cannot be changed.

These commands allow you to adjust the radios in your unit to conform to the regulatory requirements for your country. This includes valid radio channel ranges as well as transmit power levels and the use of Dynamic Frequency Selection (DFS), a regulatory requirement in some jurisdictions.

The show country command displays the current country of operation. Specifying the detail parameter also displays both the name and the ISO 3066 identity code for all supported countries.

The *set country* sets the country of operation for your unit. The <country_code> parameter is the ISO 3066 identifier for the country as listed by the *show country detail*. The default value is *US*.

CAUTION!

Improper setting of a unit's country setting may exceed regulatory requirements and void the operator's right to operate the radio equipment.

Contact BelAir Networks for details regarding country specific approvals. Additional country settings are also available by contacting BelAir Networks.

System Identification Parameters

These commands let you manage system identification parameters such as switch name, switch contact information and physical switch location. The <name> parameter is limited to 32 characters.

Example

The following example sets the switch name to BA20E-A, the contact information to BelAirNetworks and its location to PoleNumber I.

```
/system# system-id switch BA20E-A contact BelAirNetworks location PoleNumber1
```

Custom Fields

These commands let you manage the contents of up to five data fields that you can use to store any information of your choosing. Each field can store up to 50 characters except for custom field I which is limited to 32 characters. Custom field data is saved with the node's configuration data.

Example

```
/system# show custom fields
Custom Field 1: Mesh main node
Custom Field 2: Used for experiments
Custom Field 3: Zone 3 master
Custom Field 4: Services customer xyz
Custom Field 5: First in service
```


System Settings

Configuring the System Date and Time

The system date and time can be configured:

- manually
- using a Simple Network Time Protocol (SNTP) server

In both cases, you can use an offset to convert the displayed Coordinated Universal Time (UTC) to local time.

The IP addresses of the SNTP servers and the time offset can also be specified automatically through DHCP. See "DHCP Options" on page 58.

Manual Date and Time Configuration

```
/system/set date <YYYY-MM-DD> [time <hh:mm:ss>]
/system/set time <hh:mm:ss>
/system/set time offset <hour_offset:minute_offset>
/system/show date
/system/show timeoffset
```

The set date and set time commands set the current date and time. The value must be formatted as follows:

- · YYYY is the year
- MM is the month
- · DD is the date
- hh specifies the hour
- · mm specifies the minutes
- · ss specifies the seconds

You must enter the exact date and time format as specified; that is, four digits for the year and two digits for the month, day, hour, minutes and seconds.

The set time offset command configures an offset that is used to convert the displayed UTC time to local time. The hour_offset portion of the parameter ranges from -12 to +13. The minute_offset portion of the parameter ranges from 0 to 59.

Example I

```
/system# set date 2004-02-10 time 06:50:00
```

Example 2

/system# set time 08:45:00

Example 3

/system# set time offset -4 30

Example 4

```
/system# show date
Current date: 2011-08-11 23:04:46 (UTC)
Current date: 2011-08-11 17:04:46
```

Managing an SNTP Server

The BelAir20E supports the Simple Network Time Protocol (SNTP) by providing an SNTP client that can synchronize the unit date and time with any SNTP compatible external time server.

The set ip-address command lets you identify a primary and secondary SNTP server by specifying its host name or IP address, or disable this functionality. If the SNTP client cannot synchronize the unit date and time with the primary SNTP server, it attempts to synchronize with the secondary unit.

The set timeoffset command configures an offset that is used to convert the displayed UTC time to local time. The hour_offset portion of the parameter ranges from -12 to +13. The minute_offset portion of the parameter ranges from 0 to 59.

The set status {enable | disable} command enables or disables the SNTP client. To use this service, you must configure the IP address of at least one SNTP server either manually or through DHCP. When the SNTP client is enabled, the BelAir20E's clock is reset to use UTC.

The *show status* and the *show config* commands display whether the SNTP process is running or not and the effective (actual) information used by the SNTP client as well as the information stored by the BelAir20E. Differences may be caused by the setting of the *accept-dhcp-params* parameter. See "DHCP Options" on page 58.

Example I

```
/protocol/sntp# set ip-address primary 10.1.1.2
```

Example 2

/protocol/sntp# set timeoffset -4 30

Example 3

/protocol/sntp# show status
SNTP process is running

GPS Coordinates

/system/set coordinates [latitude <-90,+90>] [longitude <-180,+180>]
/system/show coordinates

These commands allow you to specify the exact geographic location of a BelAir unit. You can then use the Global Positioning System (GPS) coordinates to locate a unit in the field.

The *show coordinates* command displays the unit's coordinates.

Example

```
/system# set coordinates latitude 76 longitude -120 /system# show coordinates latitude: ...... 76.000000 longitude: ..... -120.000000
```

LED Control

You can use the following commands to control the LED behavior of the BelAir20E:

- "Find Me Function" on page 53
- "LED Enable or Disable" on page 53

Find Me Function

```
/system/find-me {start|stop}
```

This command helps you determine the physical location of a unit.

When you start the *find me* function, the unit's power LED starts a green and red flashing cycle.

LED Enable or Disable

```
/system/show visual-indicators-status
/system/set visual-indicators {off | enable}
```

This command lets you turn enable or disable the LEDs of a unit.

Setting the Network Egress Point

```
/system/show system-egress-point
/system/set system-egress-point {yes {direct|indirect gateway-ip <ip_addr>}|no}
```

In a BelAir network, a node can act as an egress point to an outside network, usually the Internet, for the backhaul traffic of many other nodes. The other nodes may be connected to the egress node through point-to-point, point-to-multipoint or multipoint-to-multipoint links.

This command lets you specify whether or not the current unit has such an egress point, and the type of connection.

- Use *direct* when the node is connected directly to the outside network through its Ethernet port or a DSL modem.
- Use indirect when the node is connected to the outside network through a
 Wi-Fi link, WiMAX link, or third-party device. In such cases, you must
 supply the IP address of the device that is connected to the outside
 network.

The default setting is yes direct.

Limiting Broadcast Packets

```
/system/show broadcast-filter config
/system/set broadcast-filter rate <filter_rate>
/system/set broadcast-filter status {enable|disable}
```

In a BelAir network, each node limits the rate at which broadcast packets are sent. The *show broadcast-filter* command displays the current broadcast rate.

The set broadcast-filter rate command lets you set the maximum rate at which broadcast packets are sent in packets/second. The <filter_rate> parameter ranges from 100 to 1000. The default setting is 200.

Use the *set broadcast-filter status* command to disable broadcast packet filtering.

See also:

- "Filtering Broadcast and Multicast Packets" on page 96
- "Broadcast to Unicast Packet Conversion" on page 96

Example

```
/system# show broadcast-filter config

Broadcast Filter Configuration

Broadcast Filter Rate :200
```


Displaying Unit Inventory Information

/system/show phyinv

This command displays the manufacturing parameters (name, serial number and part version numbers) of the equipment parts contained in a unit.

Example - BelAir20E

/system# show phyinv

System Name: BA20E-11

Type Class Serial number Assembly code BA order code

BelAir20 indoor K00000001 BA20E

Physical Inventory Table

Slot Card type Version Serial number Assembly code 1 HTME 1.1.1 K000000001 B2XH131AA-A A01

Physical Interface Table

Name	Type	Slot	Card type	Description
wifi-1-1	Wifi 802.11	1	HTME	HTMEv1 5GHz 802.11n
wifi-1-2	Wifi 802.11	1	HTME	HTMEv1 2.4GHz 802.11n
eth-1-1	Ethernet	1	HTME	1000BASE-T
lan-1	Ethernet	1	HTME	1000BASE-T
lan-2	Ethernet	1	HTME	1000BASE-T
lan-3	Ethernet	1	HTME	1000BASE-T
lan-4	Ethernet	1	HTME	1000BASE-T

Defining a Maintenance Window

/system/set maintenance-window {{enabled {hh:mm hh:mm} | disabled }}
/system/show maintenance-window

Use these commands to define and enable a maintenance window where generated alarms do not count against the alarm threshold. For details, see "Setting the Tunnel Down Alarm Threshold" on page 175.

By default, the maintenance window is enabled and runs from midnight (00:00) to 7 am (07:00).

Specified window start and end times are rounded down to the nearest 15-minute increment.

Example

/system# set maintenance-window enabled 00:14 03:20

The previous command sets the maintenance window to run from midnight (00:00) to 3:15 am.

Displaying System Up Time

/system/show sysuptime

This command displays the time the system has been operating.

Example

/system# show sysuptime System Up Time: 234 days, 16:45:32.34

Displaying the Running Configuration

/system/show running-configuration

This command displays the configuration that the node is currently operating with. It executes a series of *show* commands with results displayed on the CLI screen. Use the scroll bar of the Telnet or SSH window to see any particular section of the output.

Restarting the Node

/system/reboot [{force}]
/system/show restart-reason

The *reboot* command restarts the entire node. You must confirm your intent before the node is rebooted.

Under some circumstances, a reboot may be prevented because of processing from other user sessions. Use the *force* parameter to override these restrictions and restart the node regardless.

The show restart-reason command displays the reason for the last restart.

See also "Restarting a Card" on page 70.

Example

/system# show restart-reason

Previous reboot was a cold restart initiated by user.

Creating and Using Script Files

You can use script files to:

- make repetitive tasks quicker and easier to do
- automate the configuration of a node when it starts up. See <u>"BelAir20E Auto-configuration" on page 58.</u>

To help create your scripts, follow the guidelines in "Scripting Guidelines" on page 234.

Enabling or Disabling Session Logging

/system/set session-logging {enable | disable}

When session logging is enabled, all commands entered during a CLI session are recorded in a command log file. However, if you run repetitive scripts, you may want to disable logging to avoid filling the file with the same sets of commands.

System Settings

This command allow you to enable or disable session logging. The default setting is *enable*. Use the */system/show sessions* command to see the current setting.

Use the /syslog/export logs command to access the command log file. Refer to the BelAir20E Troubleshooting Guide for a detailed description.

BelAir20E Auto-configuration

BelAir20E Auto-configuration

With auto-configuration, the BelAir20E can automatically obtain a script file after it powers up. The unit then configures itself based on the content of the file. Auto-configuration minimizes the amount of manual intervention required to pre-configure the unit before you install it. To create a valid script file, refer to the guidelines listed in "Creating and Using Script Files" on page 56.

The following sections describe the different ways you can automatically supply a script file to the BelAir20E:

- "DHCP Options" on page 58
- "DNS" on page 61
- "Configuration Download Profile" on page 62

All methods are independent, but can be used in conjunction with each other. For example, you can use DHCP options to download a script file that configures the configuration download profile. You then use the configuration download profile to download a second script file for the rest of the BelAir20E.

DHCP Options

With this method, the BelAir20E uses the exchange of DHCP packets with a DHCP server as a means of exchanging information during startup. The BelAir20E uses DHCP Options 12, 60, 55 and 43 to retrieve extra information during startup and to supply the DHCP server with information about itself.

The BelAir20E provides the system identifier host name through DHCP Option 12 and the vendor class identifier *BelAir Networks* through DHCP Option 60.

Through DHCP Option 55, the DHCP server provides the BelAir20E with the following parameters in addition to basic IP parameters (address, subnet mask and default route) described in "Configuring Dynamic IP Addressing" on page 45:

- TFTP server IP address and script file name. These parameters cause a TFTP session to be created and the script file to be downloaded and executed during startup.
- DNS domain name. Only one domain name is valid at any one time per BelAir20E and not per interface. See "Configuring the Domain Name System Lookup Service" on page 48.

BelAir20E Auto-configuration

- DNS server IP addresses. Up to two DNS servers are supported. See "Configuring the Domain Name System Lookup Service" on page 48.
- IP address for a time server. Two time servers are supported for use by the SNTP service. See "Managing an SNTP Server" on page 52.
- time offset value used by the SNTP service. See "Managing an SNTP Server" on page 52.

Through DHCP Option 43, the BelAir20E provides the DHCP server with the following parameters about the itself:

- assembly code, as shown with the /system/show phyinv command
- serial number, as shown with the /system/show phyinv command
- MAC address
- version of the active software load, as shown with the /system/show loads command
- GPS coordinates, as shown with the /system/show coordinates command
- switch name, as shown with the /system/show system-id command
- custom field I, as shown with the /system/show custom fields command

You can use the information from DHCP Option 55 to configure the BelAir20E management interface or one of its VLAN interfaces.

After the BelAir20E receives these parameters, it configures the interface in question. At startup, it downloads the script file from the TFTP server and executes it.

DHCP options can only be enabled for one interface. For example, if you enable DHCP options for the management interface, you are prevented from enabling them for a VLAN interface until you first disable them for the management interface.

By default, the BelAir20E accepts all parameters provided by the DHCP server. However, you can configure the BelAir20E to accept or reject any individual parameter. By accepting only specific parameters, you can control how much of the BelAir20E is auto-configured. For example, if you do not want to use a script file from the TFTP server, you can set the *accept-tftp-download* parameter to *disabled*. See "Accepting Specific DHCP Parameters" on page 60.

BelAir20E Auto-configuration

Data provided by the DHCP server overrides any data configured locally. During operation, if the DHCP server provides updated data, the BelAir20E continues operation with the updated data.

Pre-requisites

To use DHCP options, your DCHP server must be configured to supply the information requested by the BelAir platform. In particular, make sure of the following:

- Your DHCP server supplies a list of SNTP servers instead of NTP servers and that they are listed in order of preference.
- Your DHCP server assigns only one default route, even you are using many different IP interfaces on the same BelAir platform (for example, a management IP interface and a VLAN IP interface).

Configuring and Using DHCP Options

To use DHCP options, you must:

- I Set the default IP address assignment of an interface to *dynamic* and set the *accept-dhcp-params* parameter to *enabled*. See "Configuring Dynamic IP Addressing" on page 45.
- 2 Specify which specific parameters to accept from DHCP server. See "Accepting Specific DHCP Parameters" on page 60.

The BelAir20E then contacts the DHCP server to request the parameters.

Accepting Specific DHCP Parameters

These commands control whether the individual parameters supplied by the DHCP server are accepted or not by the BelAir20E. To use this command you must first set the default IP address assignment for the interface to *dynamic* and set the *accept-dhcp-params* parameter to *enabled*. See "Configuring Dynamic IP Addressing" on page 45.

By default, the node accepts all parameters from the DHCP server; that is, each of these parameters is set to *enabled*.

The *dns-domain* parameter controls the domain name option used to perform DNS requests. Only one domain name is valid at any one time per BelAir20E. See "Configuring the Domain Name System Lookup Service" on page 48.

BelAir20E Auto-configuration

The *dns-server* parameter controls DNS server IP addresses. Up to two DNS servers are supported. See "Configuring the Domain Name System Lookup Service" on page 48.

The *tftp-download* parameter controls two DHCP options: TFTP server IP address and script file. Enabling this option causes a TFTP session to be created and the script file to be downloaded and executed during startup.

The *time-server* parameter controls the IP address for a time server. Two time servers are supported. This information is used by the SNTP service. See "Managing an SNTP Server" on page 52.

The *time-offset* parameter controls the time offset value that is used by the SNTP service. See "Managing an SNTP Server" on page 52.

The TFTP server IP address and the script file are downloaded and executed only during a startup. If the script on the server changes, it is not sent to the node until the next time the node reboots or starts up.

If DNS and SNTP data on the DHCP server changes, then it is sent to the node whenever the node renews DHCP information. The new DNS and SNTP data then takes effect immediately.

In all cases, DNS and SNTP data provided by the DHCP server overrides any data configured locally.

DNS

With this method, the BelAir20E uses DNS to connect to an FTP server containing a script file to be executed during startup.

When the BelAir20E starts up with factory default settings, it looks for a DHCP server to assign its IP address.

If the DHCP server provides a TFTP server IP address and script file name, then the BelAir20E performs auto-configuration based on these values. See "DHCP Options" on page 58.

If DHCP server does not provide a TFTP server IP address and script file name, then the BelAir20E obtains the script file based on DNS information from the DHCP server as follows:

- I The BelAir20E uses DHCP to obtain the DNS server IP address and domain name from the DHCP server.
- 2 The BelAir20E attempts to open a session to an FTP host called bnconfigserv using local DNS settings. The host name bnconfigserv is hard-coded in the BelAir20E and cannot be changed. If unsuccessful, it opens

BelAir20E Auto-configuration

an FTP session to *bnconfigserv.* < *domain_name* > (for example, *bnconfigserv.belairnetworks.com*). In either case:

- —The FTP username used by the BelAir20E is bn_%02x_%02x_%02x_%02x_%02x_%02x_%02x. For example, if the MAC address of the BelAir20E is 00:0d:67:0c:21:76, then the username on the FTP server is bn_00_0d_67_0c_21_76. The username must be in lower case and must exist in the FTP server.
- —The FTP password used is the md5sum of the username. To obtain this, do *echo <username> | md5sum*. Omit the spaces and dash at the end of the md5sum output.
- 3 In the FTP home directory for the user, the BelAir20E looks for a script file named *bn_config.cfg*.

Configuration Download Profile

With the configuration download profile you specify:

- the filename of the script file
- the server from which to get the script file
- a user-name and password

You can specify the server by either its IP address or its name. If both are specified, the IP address has precedence. The default name is *belairconfig.com*.

The script file is downloaded and executed only during a startup. If the script on the server changes, it is not sent to the node until the next time the node reboots or starts up.

Pre-requisites

To use a configuration download profile, your server must be configured with the appropriate user accounts and passwords. The account must contain a valid script file.

Also, if you identify the server with a name, you need a DNS server to resolve names to IP addresses.

Using a Configuration Download Profile

These commands provision the configuration download profile.

BelAir20E Auto-configuration

The server may be identified by supplying either its IP address or providing its name. The default server name is belairconfig.com. The default protocol is FTPS. The default user name and password is anonymous. The default filename is auto-config.txt. By default, the configuration download file is disabled.

Example

/system#show config-download status

config-download adminStatus: enabled config-download server: 0.0.0.0

config-download servername: belairconfig.com config-download user-name: auto-config.txt config-download password: anonymous config-download filename: auto-config.txt

config-download protocol: ftp

Ethernet or LAN Interface Settings

Ethernet or LAN Interface Settings

This chapter describes how to configure the Ethernet or LAN interfaces provided by your unit's HTME card. The following topics are covered:

- "Managing the Ethernet or LAN Interface Settings" on page 64
- "Managing Egress Node Traffic" on page 64

To display statistics, see the BelAir20E Troubleshooting Guide.

Managing the Ethernet or LAN Interface Settings

The set ethernet command controls the operational settings of the Ethernet interface. The auto setting causes the interface to automatically discover the correct settings to communicate with the other Ethernet device. If you do not use the auto setting, you can manually set the interface speed to either 10 or 100 Mbps and the mode to either full or half-duplex.

The *show status* command displays the current operational Ethernet interface settings. The current operational settings are a result of the negotiation that occurs with another Ethernet device and may be different than that configured locally.

Example

```
/interface/eth-1-1# show status
Type : 1x1000baseTx [Electrical: Single]
Admin Status : Enabled
Link State : Up
Speed : 100 Mbps
Mode : Full Duplex
Auto-Negotiation : Enabled
Mac Address : 00:0D:67:0C:23:38
```

Managing Egress Node Traffic

In a BelAir network, the Ethernet or LAN port of a node can act as an egress point for the backhaul traffic of many other nodes. The other nodes may be connected to the egress node through point-to-point, point-to-multipoint or multipoint-to-multipoint links.

Ethernet or LAN Interface Settings

VLAN Conversion

```
/interface/eth-<n>-<m>/show pvid
/interface/eth-<n>-<m>/set pvid {<vlan_id>|untagged}
/interface/eth-<n>-<m>/set reverse-pvid {<vlan_id>|untagged}
/interface/lan-<n>/show pvid
/interface/lan-<n>/set pvid {<vlan_id>|untagged}
/interface/lan-<n>/set reverse-pvid {<vlan_id>|untagged}
```

These commands let you convert the VLAN tagging of traffic entering or leaving the Ethernet or LAN port of an egress node:

- The set pvid command applies when traffic between BelAir nodes uses VLAN IDs and these VLAN IDs must be removed before the traffic leaves the node through the Ethernet or LAN port to the external network. If you use the set pvid command and specify a VLAN ID, untagged VLAN packets coming from external network through the Ethernet or LAN port are converted to tagged packets with the specified VLAN ID before they are sent to the BelAir nodes. Similarly, packets that are tagged with the specified VLAN ID are sent to the external network through Ethernet or LAN port as untagged VLAN packets.
- The set reverse-pvid command applies when traffic between BelAir nodes is untagged and must be tagged with a VLAN ID before it leaves the node through the Ethernet or LAN port to the external network. If you use the set reverse-pvid command and specify a VLAN ID, untagged VLAN packets coming from BelAir Nodes are converted to tagged packets with the specified VLAN ID before they are sent through the Ethernet or LAN port to the external network. Similarly, packets that are tagged with the specified VLAN ID arriving from the external network through the Ethernet or LAN port are converted to untagged packets before being sent to the BelAir nodes.

If you specify the keyword *untagged* instead of VLAN ID, then packets are not converted as they enter or leave the Ethernet or LAN port of the egress node. The default setting is *untagged*.

VLAN Filtering

```
/interface/eth-<n>-<m>/show vlans
/interface/eth-<n>-<m>/add vlan {<vlan_id>|untagged}
/interface/eth-<n>-<m>/delete vlan {<vlan_id>|untagged}
/interface/lan-<n>/show vlans
/interface/lan-<n>/add vlan {<vlan_id>|untagged}
/interface/lan-<n>/delete vlan {<vlan_id>|untagged}
/interface/lan-<n>/delete vlan {<vlan_id>|untagged}
```

You can create a list containing up to four VLAN IDs to control which traffic enters or leaves the Ethernet or LAN port of an egress node. Only packets that are tagged with a VLAN ID in the list are allowed to enter or leave the Ethernet or LAN port of the egress node.

Ethernet or LAN Interface Settings

These commands let you manage list of VLAN IDs. By default, the list is empty meaning that all traffic is allowed to enter or leave the Ethernet or LAN port of the egress node. If you add a VLAN ID to the list, then only traffic belonging to that VLAN can enter or leave the Ethernet or LAN port of the egress node. If you add the keyword *untagged* to the list, then only untagged traffic can enter or leave the Ethernet or LAN port of the egress node.

Card Settings

This chapter contains the following topics that describe card operations:

- "Determining which Cards are in a Node" on page 67
- "Displaying Card Information" on page 68
- "Card Administrative State" on page 70
- "Restarting a Card" on page 70

<u>Table 6</u> lists the location of documentation for physical interface parameters.

Table 6: Physical Interface Parameter Settings

Physical Interface Type	Refer to
Wi-Fi	 "Wi-Fi Radio Configuration Overview" on page 71 "Configuring Wi-Fi Radio Parameters" on page 72 "Configuring Wi-Fi Access Point Parameters" on page 80 "Wi-Fi AP Security" on page 100 "Wi-Fi Backhaul Link Configuration" on page 115 "Mobile Backhaul Mesh" on page 123 "Mobile Backhaul Point-to-point Links" on page 127
Ethernet (1000Base-TX)	"Ethernet or LAN Interface Settings" on page 64

Determining which Cards are in a Node

/mode /card/mode

Use the *mode* command to determine <card_type> and <n>.


```
Example I
```

```
/# mode
        /card
                 /htme-1
        /interface
                               (HTMEv1 5GHz 802.11n)
(HTMEv1 2.4GHz 802.11n)
                 /wifi-1-1
                 /wifi-1-1
/wifi-1-2
                                 (1000BASE-T)
                 /eth-1-1
                 /lan-1
                                  (1000BASE-T)
                 /lan-2
                                  (1000BASE-T)
                 /lan-3
                                  (1000BASE-T)
                 /lan-4
                                  (1000BASE-T)
        /mgmt
        /protocol
                 /ip
                 /radius
                 /rstp
                 /snmp
                 /sntp
                                   (tunnel)
                 /te-syst
        /qos
        /services
                 /auto-conn
                 /mobility
        /ssh
        /ssl
        /syslog
        /system
        /diagnostics
```

Example 2

```
/card# mode /htme-1
```

Displaying Card Information

The following sections describe commands that display card parameters.

Displaying the Card Physical Data

/card/<card_type>-<n>/show info

This command displays various physical aspects of the card.

Example

Displaying the Card Physical Interfaces

This command displays the physical interfaces that the card provides.

BelAir20E User Guide Card Settings

Example

```
/card/htme-1# show interfaces
htme: has the following interfaces:
        wifi-1-1
        wifi-1-2
        eth-1-1
        lan-1
        lan-2
        lan-3
        lan-4
```

Displaying the Card CPU and Memory Usage

```
/card/<card_type>-<n>/show cpuocc
/card/<card_type>-<n>/show meminfo
```

The show cpuoce command displays the card's CPU idle rate. The show meminfo displays card memory usage data.

Examples

```
/card/htme-1# show cpuocc
CPU-idle: 97.0
```

In the previous example, the card CPU is 97% idle and 3% occupied

/card/htme-1# show meminfo MemTotal: 125068 kB 54996 kB 0 kB 31424 kB

MemFree:
Buffers:
Cached:
SwapCached:
Active:
Inactive: 0 kB 19808 kB 20784 kB 11856 kB Active(anon): Active(anon):

Inactive(anon):

0 kB
7952 kB Inactive(file): 7932 kB 20784 kB Unevictable: 0 kB Mlocked: 0 kB HighTotal: 0 kB 0 kB HighFree: LowTotal: 125068 kB 54996 kB LowFree: 0 kB SwapTotal: SwapFree: 0 kB 0 kB 0 kB Dirty: Writeback: 9196 kB AnonPages: 9876 kB Mapped: Shmem: 2688 kB

Note: The type and amount of card memory usage data may vary depending on the card's software version.

Card Administrative State /card/<card_type>-<n>/show state
/card/<card_type>-<n>/set state {enabled | disabled}

These commands manage the card's administrative state.

Example

/card/htme-1# show state
Admin:Up Status:running

Restarting a Card

/card/<card_type>-<n>/reboot [{force}]

This command restarts a specific card. You must confirm your intent before the card is rebooted.

Under some circumstances, a reboot may be prevented because of processing from other user sessions. Use the *force* parameter to override these restrictions and restart the card regardless.

Wi-Fi Radio Configuration Overview

Wi-Fi Radio Configuration Overview

Available Wi-Fi Radios

Table 7 on page 71 lists the available BelAir Wi-Fi radios.

Table 7: BelAir Wi-Fi Radio Summary

Radio Module	Operating Frequency	Platform	Can Operate as Access Point?	Supported Backhaul Topologies
HTMEvI	2.4/5.8 GHz	BelAir20E	Yes	mp-to-mp p-to-mp p-to-p

Configuration Process

Use the following process to configure a Wi-Fi radio:

- I Configure basic radio parameters. See "Configuring Wi-Fi Radio Parameters" on page 72.
- 2 Configure AP parameters, if required. See <u>"Configuring Wi-Fi Access Point Parameters" on page 80</u> and <u>"Wi-Fi AP Security" on page 100</u>.
- 3 Configure backhaul parameters. See <u>"Wi-Fi Backhaul Link Configuration" on page 115.</u>
- 4 Configure mobile backhaul mesh parameters. See <u>"Mobile Backhaul Mesh"</u> on page 123

Configuring Wi-Fi Radio Parameters

Configuring Wi-Fi Radio Parameters

This chapter describes how to display and configure Wi-Fi radio parameters, including:

- "Displaying Wi-Fi Radio Configuration" on page 73
- "Displaying Configuration Options" on page 74
- "Operating Channel" on page 74
- "Antenna Gain" on page 76
- "Transmit Power Level" on page 76
- "Link Distance" on page 77
- "Dynamic Frequency Selection" on page 77
- "Collision Aware Rate Adaptation" on page 78
- "Rate Aware Fairness" on page 78
- "802.11n Aggregation" on page 78
- "Minimum Receive Threshold" on page 78
- "Changing Wi-Fi Interface Admin State" on page 79

To configure parameters that are specific to Wi-Fi Access Points (APs), see "Configuring Wi-Fi Access Point Parameters" on page 80.

To configure parameters that are specific to backhaul radios, including the different types of backhaul links, see <u>"Wi-Fi Backhaul Link Configuration" on page 115.</u>

See also:

- "Configuring Wi-Fi Access Point Parameters" on page 80
- "Wi-Fi AP Security" on page 100
- "Wi-Fi Backhaul Link Configuration" on page 115
- "Mobile Backhaul Mesh" on page 123

Configuring Wi-Fi Radio Parameters

Displaying Wi-Fi Radio Configuration

This command displays various aspects of the radio's configuration.

Example - Typical BelAir20E

```
/interface/wifi-1-1# show config all
Slot: 1, Card Type: htme, revision: 1, Port: 1, Radio: HTMEv1 5GHz
802.11n
admin state: ..... Enabled
channel: ..... 149
 mode: ..... ht40plus
 mimo: ..... 3x3
 tx power: ...... 18.0 (dBm per-chain), 23.0 (dBm total)
antenna location: ..... External Port
antenna index: ..... 1
antenna gain: ..... 5.0 (link distance: ..... 1 (km)
base radio MAC : ..... 00:0d:67:0c:21:90
Access:
 AP admin state: ..... Enabled
 secure addresses (vlan): ... none
 client blacklist: ..... none
 dhcp unicast: ..... Disabled
 deauth dos defense: ..... Disabled
 client auth trap: ..... Disabled
Misc:
 rts-cts threshold: ..... 100
 broadcast filter status: ... Disabled
 broadcast filter rate: .... 200
QOS:
     ..... Enabled
 uapsd: ..... Enabled
 mapping: ..... UP/DSCP
 voice acm: ..... Disabled
 video acm: ..... Disabled
Common Backhaul:
 privacy: ..... AES
 key: .....
 mesh-min-rssi.....-100 (dbm)
Stationary Backhaul:
 link admin state: ..... Disabled
 link id: ..... BelAirNetworks
 topology: ..... mesh
Mobile Backhaul:
 mobile admin state: ..... Disabled
 mobile link id: ......
 mobile link role: ..... ss
Blacklist:
 No blacklist entries
Link Failure Detection: ..... Disabled
Backhaul T1 Bandwidth limit:.. Disabled
```


Configuring Wi-Fi Radio Parameters

Displaying Configuration Options

/interface/wifi-<n>-<m>/show available-config-options

This command displays valid channel, antenna gains and transmit power values for your unit. The displayed values vary depending on the country of operation.

Example - Typical BelAir20E

```
/interface/wifi-1-1# show available-config-options
Channels:
[Mode=ht20]
 36 37 38 39 40 41 42 43 44 45
 46
    47
        48
[Mode=ht40+]
         38 39 40 41 42 43
 36 37
                                   44
[Mode=ht40-]
 40 41 42 43 44 45 46 47
                                   48
[Mode=ht20]
 149 150 151 152 153 154 155 156 157 158
 159 160 161 162 163 164 165
[Mode=ht40+]
 149 150 151 152 153 154 155 156 157
[Mode=ht40-]
 153 154 155 156 157 158 159 160 161
External antenna gain list:
 0.00 5.00 9.00
Tx power values for channel [149] and antenna gain [5]:
 18 17 16 15 14 13 12 11 10 9
```

Operating Channel

Note: The specific syntax and options for the *set channel* command varies depending on the type of radio being configured. Use the */interface/wifi-<n>-<m>/?* command to display the options and syntax that apply to you.

The set channel command lets you specify the channel settings for a Wi-Fi radio. Use the show available-config-options command to display valid channel numbers. The displayed values vary depending on the country of operation. Refer to your RF plan and site survey to determine which value you should use.

CAUTION!

Improper setting of channel, antenna gain and transmit power may exceed regulatory requirements and void the operator's right to operate the radio equipment. Refer to the *BelAir Radio Transmit Power Tables* to determine valid combinations of channel, antenna gain and transmit power for your country.

Configuring Wi-Fi Radio Parameters

If the unit is a member of a multipoint-to-multipoint mesh cluster, the channel must be set to match the one used by the multipoint-to-multipoint mesh cluster.

If a unit is equipped with many radios for backhaul, their channels must be separated by at least 35 MHz (that is, seven channel numbers) to avoid radio interference resulting in poor data communication quality. For example, channel numbers 53 and 61 can be used together, but not 53 and 59.

The *secondary* parameter applies to any radio supplying Dynamic Frequency Selection (DFS), a regulatory requirement in some jurisdictions. The *secondary* parameter sets an optional secondary channel for use with DFS. The default value is 0, instructing DFS to operate as if the secondary channel is the same as the primary channel. If you change the channel number from the default value and if you do not specify a secondary channel, then your secondary channel is set to be the same as your primary channel. DFS behaves the same way regardless of whether your secondary channel is the same as the primary channel or whether your secondary channel is 0. Refer to your RF plan and site survey to determine if you need to set a secondary channel other than 0 or your primary channel.

The *channel-bandwidth* parameter applies to the WCSvI only. It sets the bandwidth of the channel you want to use. The specified bandwidth is in kHz.

The *channel-mode* parameter applies to all 2.4 and 5.8 GHz radios. It sets the 802.11n channel mode.

The *auto* and *background-scan* parameters apply to 2.4 GHz radios only. The *auto* parameter causes the radio to search for surrounding APs. At startup, the system scans all channels in a given channel mode to collect several parameters. The channel providing the best quality is selected.

The *background-scan* parameter assists the auto feature in determining the channel settings to use. By default background scan is disabled.

If background scan is enabled, the system periodically does an off-channel scan of a foreign channel where it collects more channel quality data.

After a sufficient number of background scans have occurred, the system re-calculates the best channel to use based on:

- the most recent data for the home channel and all foreign channels
- the historic data of all foreign channels

Configuring Wi-Fi Radio Parameters

If a foreign channel is at least 20% better the home channel, then the system switches to the new channel.

The *re-scan-channel* command causes the radio to perform another search.

See also:

- "Country of Operation" on page 49
- the BelAir Radio Transmit Power Tables

Antenna Gain

/interface/wifi-<n>-<m>/set antenna-gain <gain>

This command lets you specify the gain of the antenna installed with your unit. Use the *show available-config-options* command to display valid gain values (in dBi). The displayed values vary depending on the country of operation and the channel in use.

You must set the *<gain>* parameter to match the gain of the antenna installed in your unit. For all countries except Korea, the default access antenna gain is 8 dBi. For Korea, the default access antenna gain is 6 dBi.

CAUTION!

Improper setting of channel, antenna gain and transmit power may exceed regulatory requirements and void the operator's right to operate the radio equipment. Refer to the *BelAir Radio Transmit Power Tables* to determine valid combinations of channel, antenna gain and transmit power for your country.

See also:

- "Country of Operation" on page 49
- "Operating Channel" on page 74
- the BelAir Radio Transmit Power Tables

Transmit Power Level

This command sets the transmit power for a Wi-FI radio. The range of <tx-power-value> is limited to be valid for your country of operation, physical channel in use, and type of antenna that is installed. Use the *show available-config-options* command to display valid transmit power values (in dBm). The displayed values vary depending on the country of operation and channel in use.

The default setting is to have the radio transmit at maximum power.

Configuring Wi-Fi Radio Parameters

The *secondary* parameter applies only to 5.8 GHz radios. It sets the transmit power for an optional secondary channel for use with Dynamic Frequency Selection (DFS), a regulatory requirement in some jurisdictions. The default is to have the same transmit power level for both the primary and secondary channel. Refer to your RF plan and site survey to determine if you need to set a different power level for the DFS secondary channel.

CAUTION!

Improper setting of the transmit power may exceed regulatory requirements and void the operator's right to operate the radio equipment.

See also:

- "Country of Operation" on page 49
- "Operating Channel" on page 74
- "Antenna Gain" on page 76

Link Distance

/interface/wifi-<n>-<m>/set link-distance <distance>

This command adjusts the unit's MAC timers to compensate for the additional time to receive acknowledgements because the other unit is farther. The distance parameter has a range of 0 to 40 and is specified in kilometers. The default value is 1 km.

Dynamic Frequency Selection

/interface/wifi-<n>-<m>/show dfs

This command displays current Dynamic Frequency Selection (DFS) settings, a regulatory requirement in some jurisdictions. DFS is automatically implemented depending on the country of operation.

See also:

- "Country of Operation" on page 49
- "Operating Channel" on page 74
- "Transmit Power Level" on page 76

Example

/interface/wifi-1-1# show dfs

DFS admin state : enabled current channel : 53

channel #		DFS required	radar detected	holdoff-time remaining
L = = 1	53	no	no	0 (sec)
secondary:	53	no	no	0 (sec)

Configuring Wi-Fi Radio Parameters

Collision Aware Rate Adaptation

Collision Aware Rate Adaptation (CARA) is an advanced algorithm that turns RTS on and off when it detects a collision. This allows frames that failed due to the collision to get through without compromising the transmission rate (that is, the RTS is sent at Impbs and clears the channel of collisions for the high rate data packet).

By default, CARA is enabled.

Rate Aware Fairness

/interface/wifi-<n>-<m>/set rate-aware-fairness {enable|disable}

Rate aware fairness is a transmission algorithm that chooses dynamic retreat and progress thresholds based on the transmission rate of the station being transmitted to, and the size of the packet.

Normally, when the AP has a client with a slower connection, all other clients are throttled down to that same rate. Rate Aware Fairness overcomes this issue by trying to give clients equal amounts of air-time instead of equal numbers of packets.

By default, rate aware fairness is disabled.

802.11n Aggregation

/interface/wifi-<n>-<m>/set tx-aggr {enable|disable}

This command applies to the HTM and DRU only.

This command enables or disables transmit aggregation for the radio. Transmit aggregation is an 802. In feature where multiple MSDUs or MPDUs are packed together to reduce the overhead and average them over multiple frames, thus increasing the user level data rate.

The default setting is enable.

Minimum Receive Threshold

This command sets a minimum signal strength threshold to prevent associations with weak radio signals. Associations are only created between radios with a signal strength greater than the specified threshold.

The default setting is disabled.

Configuring Wi-Fi Radio Parameters

Changing Wi-Fi Interface Admin State

/interface/wifi-<n>-<m>/set admin-state {enable|disable}

This command controls the state of the Wi-Fi interface including all links. When set to *enable*, the Wi-Fi interface is in the operational state. When set to *disable*, the Wi-Fi interface and all associated functions are disabled. The default is *disabled*.

Use the /interface/wifi-<n>-<m>/show config command to view the current admin state of the Wi-Fi interface.

Configuring Wi-Fi Access Point Parameters

Configuring Wi-Fi Access Point Parameters

This chapter describes how to display and configure Wi-Fi Access Point (AP) parameters, including:

- "Displaying AP Configuration" on page 81
- "AP Custom Rates" on page 81
- "Displaying Associated Wireless Clients" on page 83
- "Displaying Wireless Client Details" on page 85
- "Disconnecting a Wireless Client" on page 85
- "Wireless Client Load Balancing" on page 85
- "Configuring RTS-CTS Handshaking" on page 86
- "Specifying the Beacon Period" on page 86
- "Displaying Client Association Records" on page 87
- "Changing AP Admin State" on page 88
- "AP Service Set Identifiers" on page 88
 - "Displaying the SSID Table" on page 89
 - —"Displaying SSID Details" on page 90
 - "Default Management SSID" on page 90
 - "Configuring SSIDs" on page 91
 - "Upstream User Priority Marking" on page 92
 - —"Setting Traffic Limits" on page 93
 - —"Providing Vendor Specific Information" on page 93
 - "Changing SSID Admin State" on page 94
- "Out-of-service Advertising" on page 95
- "Filtering Broadcast and Multicast Packets" on page 96
- "Broadcast to Unicast Packet Conversion" on page 96
- "Limiting Upload and Download Rates" on page 97
- "ARP Filtering" on page 97

Configuring Wi-Fi Access Point Parameters

- "ARP to Unicast Conversion" on page 98
- "802.11b Protection" on page 98

See also:

- "Configuring Wi-Fi Radio Parameters" on page 72
- "Wi-Fi AP Security" on page 100
- "Wi-Fi Backhaul Link Configuration" on page 115
- "Mobile Backhaul Mesh" on page 123

Displaying AP Configuration

Use the *show config access* command to display the current AP configuration. See "Displaying Wi-Fi Radio Configuration" on page 73 for details.

Example - Typical BelAir20E

```
/interface/wifi-1-1# show config access
Slot: 1, Card Type: htme, revision: 1, Port: 1, Radio: HTMv1 5GHz
802.11n
admin state: ..... Enabled
channel: ..... 149
 mode: ..... ht40plus
 mimo: ..... 3x3
 tx power: ...... 18.0 (dBm per-chain), 23.0 (dBm total)
antenna location: ..... External Port
antenna index: ..... 1
antenna gain: ..... 5.0 (
link distance: ..... 1 (km)
base radio MAC : ..... 00:0d:67:0c:21:90
Access:
 AP admin state: ..... Enabled
 secure addresses (vlan): ... none
 client blacklist: ..... none
 dhcp unicast: ..... Disabled
 deauth dos defense: ..... Disabled
 client auth trap: ..... Disabled
 rts-cts threshold: ..... 100
 broadcast filter status: ... Disabled
 broadcast filter rate: ..... 200
```

AP Custom Rates

These commands let you customize the modulation rates used by your 802. In radio by building a list of rates to include. Putting a rate on the list allows the radio to use that rate.

Configuring Wi-Fi Access Point Parameters

The *show* command displays modulation rates that are currently on the list; that is, the rates that the radio uses. Rates that have short preamble are indicated with *sp*.

Use the *set* command to enable or disable the custom rates feature. By default, the custom rates feature is disabled.

Once you enabled custom rates, use the *add* and *del* parameters to create the specific list of rates that you need. The *<rate_string>* parameter is one of rates output by the *show custom-rates* command.

If you use the *set* command without specifying a custom rate, a list of valid custom rates is displayed.

Note: Adding a rate does not mean that the radio automatically begins to use that rate. The modulation rate selected by a radio depends on several factors. The custom rates list is just one of those factors.

Example 1 - Using Custom Rates

Example 2 - Using Custom Rates

Configuring Wi-Fi Access Point Parameters

Displaying Associated Wireless Clients

/interface/wifi-<n>-<m>/show clients [ssid <ssid_index>]

This command displays the list of associated wireless clients for a given SSID. If no SSID is specified, the displayed list shows all associated clients and their SSID.

The *ssid index* parameter must be a valid SSID index.

In the resulting output:

- The time field displays how long the client has been associated to the BelAir radio.
- The IP field lists the client's IP address. (s) indicates static IP addressing.
- The *identity* field lists the 802.1X client identity. It is present for dot1x or WPA SSIDs.
- The *auth* field lists the authentication state of the client. See <u>Table 8</u>.
- The *dhcp* field lists the client DHCP state (applicable only if client uses dynamic IP addressing). See <u>Table 9 on page 83</u>.

Table 8: Auth Field Value Descriptions

Value	Description
unauth	default or initial state
auth	client is authorized for Open or WEP privacy
eapAuth	client is authorized for dot1x, WPA1 or WPA2 privacy
pskErr	Possible wrong WPAPSK key configured on client
radto	For dot1x, WPA1 or WPA2. Problems connecting to radius server, possibly because of a network problem.
cltto	For dot1x, WPA1 or WPA2. Problems sending EAP packets to client.

Table 9: DHCP Field Value Descriptions

Value	Description
init	Client has just connected and has not yet started a DHCP sequence

Configuring Wi-Fi Access Point Parameters

Table 9: DHCP Field Value Descriptions (Continued)

Value	Description
disc	Client has sent a DHCP Discover message and is waiting for a DHCP Offer message to get its IP address. (Applicable only if client does not already have a valid IP address. Otherwise client sends DHCP Request message.)
offer	Server has responded to the DHCP Discover message with a DHCP Offer message. This packet tells the client its IP address. The client should then send a DHCP Request message to verify the IP address.
req	Client has sent the DHCP Request message to the server and is waiting for a DHCP Ack message to confirm the assigned IP address.
decl	Server has declined the client's DHCP request. Verify the server settings.
ack	Client has sent a DHCP Request message and the server has confirmed the assigned IP address. (a * appended to the value indicates a completed DHCP process.)
nack	Server has responded to the client's DHCP request with a DHCP Nack message. Verify the server settings.
relse	Client has sent a DHCP Release message.
inform	Client has sent a DHCP Inform message. Depending on the server, the server may respond with a DHCP Ack message. (a * appended to the value indicates a completed DHCP process.)
arpRes	Client has gone through one of the DHCP state transitions and replied to an ARP request for its IP address. (a * appended to the value indicates a completed DHCP process.)

Depending on the server configuration, if a client moves to a different subnet, it may need to timeout the current IP address (approx. 30 seconds) and then restart the DHCP sequence. During this process the client may use the standard default IP address for Microsoft Windows (169.254.X.X).

Example

/interface/wifi-2-1# show clients

Configuring Wi-Fi Access Point Parameters

SS-ID	vlan	mac addr	time	IP	identity	rssi	auth	dhcp
2-4	0	00:11:24:26:24:AA	4m	10.9.9.20(s)		-82	eapAuth	static

Displaying Wireless Client Details

```
/interface/wifi-<n>-<m>/show client <1|2|...|2007> [throughput] [stats]
```

This command displays the details of a wireless client that is associated or was recently associated with the AP. You determine the client number <1/2/.../2007> with the *show clients* command. See "Displaying Associated Wireless Clients" on page 83.

The throughput parameter displays additional information on traffic throughput.

The stats parameter allows displays additional information on packet statistics.

In the resulting output, the *age* parameter shows the time since the radio last received a data frame from the client and the *state* parameter shows *authenticated (2)* if the client is no longer associated.

Example

Disconnecting a Wireless Client

/interface/wifi-<n>-<m>/disconnect client <mac_address>

This command lets you disconnect the specified client from the AP.

You determine the client MAC address with the *show clients* command. See "Displaying Associated Wireless Clients" on page 83.

Wireless Client Load Balancing

/interface/wifi-<n>-<m>/set max-num-clients <max_num> [strict]

This command lets you set the maximum number of clients that can associate with the AP. Once the maximum is reached, new client associations are not immediately accepted.

Configuring Wi-Fi Access Point Parameters

While using this command, keep in mind the following:

- If you do not use the strict parameter, and a new client continues to try to
 associate after the client maximum is reached, the AP does accept it after
 three retries. (All association retries in a one minute interval is considered a
 single retry.)
- If you use the *strict* parameter, the AP does not accept a new client when
 the client maximum is reached, even if the new client to tries to associate
 repeatedly.
- Changing the client maximum does not take effect until two minutes later.
- Changing the client maximum does not disconnect any existing client.

The <max_num> parameter ranges from 0 to 256. The default is 256.

Configuring RTS-CTS Handshaking

/interface/wifi-<n>-<m>/set rts-cts {disabled|enabled <threshold>}

This command lets you enable or disable Request-to-Send (RTS) and Clear-to-Send (CTS) handshaking.

When enabled, handshaking occurs for packets larger than the threshold. The <threshold> parameter can range from I to 65536. The default value is 100.

By default, dynamic rate handshaking is disabled.

Specifying the Beacon Period

```
/interface/wifi-<n>-<m>/set beacon-period
{auto | <bp_value> [dtim <dt_value>]}
```

This command lets you specify the behavior of your beacon period for broadcast Service Set Identifiers (SSIDs). See also <u>"AP Service Set Identifiers"</u> on page 88.

If specified, the *<bp_value>* parameter specifies a fixed beacon period in milliseconds. It ranges from 100 to 400.

The optional <dt_value> parameter specifies the DTIM value. It ranges from I to 3.

If you select *auto*, the BelAir unit automatically adjusts the beacon period and DTIM value dynamically according to the number of MBSSIDs.

The default setting is to have a fixed beacon period of 100 ms with a DTIM value of 3.

Configuring Wi-Fi Access Point Parameters

Displaying Client Association Records

Every 15 minutes, the BelAir node generates wireless client association records. A client record includes the following information:

- The IP address, MAC address, VLAN, RSSI, DHCP state, and authentication state of the client.
- The radio interface and SSID index for the radio the Wi-Fi client is associated to.
- The start and end connection time, as well as the times a client has a throughput greater than 2 kBps or transmits more than 2 kB of traffic.

If a client connection crosses more than one 15-minute interval, another client record is generated for that client. A *continue* flag indicates that the client has another record in the next 15-minute interval.

The *num* entries parameter specifies the number of entries to display.

You can filter the output based on the following optional parameters:

- Use radio <radiolf_name> to filter for records of clients connected to a
 particular Wi-FI interface, such as wifi-2-1.
- Use vlan <vlan_id> to filter for records of clients using a particular VLAN, or no VLAN.
- Use mac-addr <mac_address> to filter for records with a client's MAC address.
- Use aggregation to show combined client records when a client connection crosses multiple 15-min boundary. Use start <start_idx> to show client records starting from a particular record index number. The starting index number is always unique.

Use the *show client-record detail* command to display details of a particular client record.

Example - Non Aggregated Records

/interface# show client-record 4

SSID Start Time Connect	IP	MAC	RSSI	Vlan	RX	TX Contir	ıue
ID Radio INX dd hh:mm:ss mm:ss	address	address	max avg n	nin Id	KB	KB flag	
11 wifi-2-1 1 11 06:42:57 15:02	10:1:1:7	00:18:de:c2:30:46	-25 -44 -	64 0	90	109 Yes	
10 wifi-2-1 1 11 06:27:55 15:02	10:1:1:7	00:18:de:c2:30:46	-25 -44 -	64 0	60	72 Yes	
9 wifi-2-1 1 11 06:12:53 15:02	10:1:1:7	00:18:de:c2:30:46	-25 -44 -	64 0	268	323 Yes	
8 wifi-2-1 1 11 05:57:51 15:02	10:1:1:7	00:18:de:c2:30:46	-25 -44 -	64 0	219	250 Yes	

Configuring Wi-Fi Access Point Parameters

Example - Aggregated Records

/interface# show client-record 20 aggregation

SSID Start Time	End Time	IP	MAC	RSSI	Vlan	RX	TX Cros	ss Byte	Cross Rate
ID Radio INX dd hh:mm:ss	dd hh:mm:ss	address	address	avg	Id	KB	KB dd l	nh:mm:ss	dd hh:mm:ss
1 wifi-2-1 1 11 04:57:41	11 04:59:40	10:1:1:7	00:18:de:c2:30:46	5 -42	0	5	4 11	04:58:42	not exceed
3 wifi-2-1 1 11 05:00:11	11 05:01:25	10:1:1:7	00:18:de:c2:30:46	5 -45	0	11	8 11	05:00:52	not exceed
4 wifi-2-1 1 11 05:08:02	11 06:57:59	10:1:1:7	00:18:de:c2:30:46	5 -44	0	1074	1255 11	05:08:21	not exceed

Example - Client Record Detail

Figure 5: Client Record Detail Example

```
/interface# show client-record detail 4
Client Record INX[4]:
                                                        When the client logged in
  Radio Interface: wifi-2-1
  SSID Idx: 1
  Start Time (mon-dd hh:mm:ss): 07-11 05:08:02
                                                        When the record ends
  End Time (mon-dd hh:mm:ss): 07-11 05:12:45
  Vlan ID: 0
                                                        Client RSSI information
  IP Address: 10:1:1:7
 MAC Address: 00:18:de:c2:30:46
                                                         Time when client crossed the 2 kbyte
 RSSI(dbm): max -25, min -64, avg -43
  Exceed Throughput(2KB) Time: 07-11 05:08:21
                                                        threshold.
 Throughput: Rx 35KB, Tx 33KB
Authenticate State: Authenticated(open/wep)
                                                        Same as show client detail command.
  DHCP State: Client sent ARP response
  Is Continued: Yes
                                                        If Yes, record continues into next
                                                        15-minute window.
```

Changing AP Admin State

/interface/wifi-<n>-<m>/set ap admin-state {enable | disable}

This command controls the state of the AP. When set to *enable*, the AP is in the operational state. When set to *disable*, the AP and all associated functions are disabled. The default is *enabled*.

AP Service Set Identifiers

Use the commands in this section to:

- configure AP Service Set Identifiers (SSIDs)
- map an SSID to a VLAN
- provide vendor specific information

Each AP supports up to 8 SSIDs. If associated clients use different SSIDs, then the BelAir20E can use the SSID to direct traffic to different VLANs.

Configuring Wi-Fi Access Point Parameters

Displaying the SSID Table

/interface/wifi-<n>-<m>/show ssid table

This command summarizes in table format the parameters of all configured SSIDs. In the resulting output:

- The broadcast setting is the default for SSID I. A broadcast setting means
 that the access radio responds to a broadcast probe request and that SSID
 information element is present in the beacon dataframe. A broadcast SSID
 has a Basic Service Set (BSS), a unique identifier having the same format as a
 MAC address.
- A suppressed setting means that the access radio responds only to a unicast probe request and that SSID information element is present in the beacon dataframe, but has a length of 0 and a null value. A suppressed SSID has a Basic Service Set (BSS), a unique identifier having the same format as a MAC address.

Example - Typical Output

/interface/wifi-1-1# show ssid table

SSID Information

 id	enabled	vlan	type	privacy	wb	sp	acl	bss	ssid
1	yes		Broadcast	none				00:0D:67:0C:21:98	RickBA20E-15-2
2	no		Suppressed	none				00:0D:67:0C:21:99	DefaultSsid2-2
3	no		Suppressed	none				00:0D:67:0C:21:9A	DefaultSsid2-3
4	no		Suppressed	none				00:0D:67:0C:21:9B	DefaultSsid2-4
5	no		Suppressed	none				00:0D:67:0C:21:9C	DefaultSsid2-5
6	no		Suppressed	none				00:0D:67:0C:21:9D	DefaultSsid2-6
7	no		Suppressed	none				00:0D:67:0C:21:9E	DefaultSsid2-7
8	no		Suppressed	none				00:0D:67:0C:21:9F	DefaultSsid2-8
==	=======	=====	========		====	===	===		

In the previous example:

- wb is for wireless bridge; see "Disabling or Enabling AP Wireless Bridging" on page 111
- sp is for secure port; see "AP Secure Port Mode" on page 112
- acl is for access control list; see <u>"Wireless Client Access Control List" on page 109</u>
- bss is for basic service set; see "Configuring SSIDs" on page 91
- a star (*) means that the feature is enabled for that particular SSID
- a double dash (--) means that the feature is not enabled for that particular SSID

October 11, 2011 Confidential Page 89 of 267

Configuring Wi-Fi Access Point Parameters

Displaying SSID Details

/interface/wifi-<n>-<m>/show ssid <ssid index> config

This command displays details of a particular SSID. Use the *show ssid table* command to determine *<ssid index>*.

Example

```
/interface/wifi-1-1# show ssid 3 config
Configuration for ssid 3
admin state: ..... Enabled
SSID: ..... DefaultSsid2-1
AP oos identifier: ..... outOfService..
mbssid state: ..... Enabled
type: ..... Broadcast
privacy mode: ..... none
rekey: ..... Disabled
key strict: ..... no
traffic mapped to vlan: ..... none
passthrough vlan(s): ..... disabled
wireless bridge state: ..... Disabled
group address filter: ..... none
upstream UP marking: ..... Disabled (0)
acl state: ..... Disabled
secure port state: ..... Disabled
arp unicast conversion state: .... Disabled
radius NAS identifier: ..... belair
radius accounting: ..... Disabled
radius station id unformatting: .. Disabled
radius account session id: ..... Disabled
secure addresses (vlan):
  No secure addresses configured
client blacklist:
 No blacklist entries
auto secure gateway: ..... enabled
                 Vlan
 00:0a:5e:49:1c:33 (500)
 00:0a:5e:49:1c:8b (600)
radius servers:
 No radius servers configured for this ssid
DHCP relay servers:
 Server[1] Addr: 10.1.100.88
     sub-option: 150/151 inserted
     sub-option151: vpn-selector
Option82 Insert Enabled.
```

Default Management SSID

By default, SSID 8 of each radio is a suppressed SSID preconfigured for a management session.

The default management SSID is *BelAir-<MAC_info>*, where <MAC_info> is the last six digits of the node's MAC address.

For example, if a node has a MAC address of *00:0D:67:08:48:98*, the default management SSID is *BelAir-084896*.

Configuring Wi-Fi Access Point Parameters

By default, SSID 8:

- uses WPA encryption with the following pre-shared key: *DefaultKey123*. Users may wish to change the security settings to suit their needs.
- is not mapped to a VLAN. Users may wish to map SSID 8 to a separate VLAN reserved for management sessions.

Refer to the following topics for details on changing the default settings for SSID 8:

- To change the SSID and map it to a VLAN, see "Configuring SSIDs" on page 91.
- To change the security settings, see <u>"Wi-Fi AP Security" on page 100</u>.

Configuring SSIDs

This command allows you to configure AP SSIDs.

The *ssid_string* parameter is the SSID setting. SSIDs are case sensitive and can contain up to 32 alphanumeric characters. To specify a blank string, input two double quotes ("").

The *ssid_index* parameter is an integer from I to 8. Use the *show ssid table* command to determine *<ssid_index>*.

For a description of the *broadcast* and *suppressed* parameters, see "Displaying the SSID Table" on page 89.

The *vlanID-list* parameter, if present, specifies a comma separated list of VLAN IDs. Each VLAN ID must be an integer from 1 to 2814. The list can contain up to eight VLAN IDs.

The *vlanID-list* parameter activates functionality to balance traffic among up to eight VLANs, based on the last three bits of the MAC address of the wireless client generating the traffic. The last three bits of the MAC address can range in value from 0 to 7. For example:

- Traffic from clients where the last three bits have a value of 0 is directed to the first VLAN on the list.
- Traffic from clients where the last three bits have a value of I is directed to the second VLAN on the list.

Configuring Wi-Fi Access Point Parameters

 Traffic from clients where the last three bits have a value of 6 is directed to the seventh VLAN on the list.

If the last three bits of the MAC address does not reference a VLAN on the list, then the client's traffic is directed to the first VLAN on the list.

If the *vlan* parameter is *none* and the wireless client is sending untagged traffic, then the traffic corresponding to the specified SSID is passed through the access radio without change. If the wireless client is sending tagged traffic, then you can use the *passvlanID-list* parameter.

The passvlanID-list parameter, if present, also specifies a comma separated list of VLAN IDs. As with the vlanID-list parameter, each VLAN ID must be an integer from I to 2814, and the list can contain up to eight VLAN IDs.

The *passvlanID-list* parameter applies to pre-tagged traffic; for example, generated from Linux wireless clients. If the traffic's VLAN tag matches a VLAN on the list, then that traffic is allowed to go through unchanged. Otherwise, the tagged traffic from the client is dropped.

If passvlanID-list is populated, then vlanID-list can specify only one VLAN ID. In such cases, untagged traffic from the client is tagged with the VLAN from vlanID-list. If the VLAN ID list is set to none, then untagged traffic from the client remains untagged.

If the passthrough VLAN list is *none*, tagged packets from a wireless client are dropped. Untagged packets from the client are tagged with the VLAN ID from *vlanID-list* according to the last three bits of the client's MAC address.

Upstream User Priority Marking

This command enables or disables the ability to set the User Priority (UP) value of any packet received by the AP for a particular SSID. The UP values are then used throughout the network to separate and prioritize traffic through Quality of Service (QoS) settings. See "Quality of Service Settings" on page 177 for details.

By default, upstream UP marking is disabled.

The *ssid_index* parameter must be a valid SSID index. See <u>"AP Service Set Identifiers" on page 88</u>

Configuring Wi-Fi Access Point Parameters

Setting Traffic Limits

This command allows you to control the amount of traffic the AP sends for a particular SSID:

- Use the *upstream* parameter to specify the amount sent to the network.
- Use the *downstream* parameter to specify the amount sent to wireless clients.
- Specify 0 to remove previously set limits.

Use the *show ssid table* command to determine *<ssid_index>*. Use the *show ssid <ssid index> config* command to see the currently configured values.

Providing Vendor Specific Information

You can enable DHCP relay functionality for the SSID with the set ssid <ssid_index> dhcp-relay command. For details see "Assigning SSID Traffic to Use DHCP Relay" on page 147.

Once DHCP relay functionality is enabled for the SSID, your BelAir20E automatically adds DHCP Option 82 information (that is, relay agent information) to the DHCP packets for that SSID sent to the wireless client and DHCP server.

By default, if Option 82 insertion is enabled, the relay agent information is packaged as part of Suboption 9. However, you can choose to instead use Suboption 150 (VLAN info) and 151 (VPN selection ID).

If you choose Suboption 9, the relay agent information is packaged as follows:

- agent circuit ID
- Subsuboption I, the MAC address of your BelAir20E
- Subsuboption 2, VLAN identifier
- Subsuboption 3, Radio MAC address
- Subsuboption 4, SSID: the SSID that is using the DHCP relay functionality
- Subsuboption 5, GPS coordinates

Configuring Wi-Fi Access Point Parameters

If you choose Suboption 150 and 151, the relay agent information is packaged as follows:

Suboption 150. The VLAN info is packaged as follows:

```
0x96, 0x04,0xn, 0xn, 0xn, 0xn
```

Where:

- —The first field is always 0x96, identifying Suboption 150.
- —The second field is always, 0x04, specifying the length of the VLAN info.
- —The last four fields are 0xn, where each value of n is a digit specifying the VLAN number.

For example, 0x96, 0x04, 0x1, 0x2, 0x0, 0x0 specifies VLAN 1200. VLAN 100 would be specified as 0x96, 0x04, 0x0, 0x1, 0x0, 0x0.

Suboption 151. The VPN selection ID is packaged as follows:

```
0x97, 0x0a, 0x00, 0xnn, 0xnn, 0xnn, 0xnn, 0xnn, 0xnn, 0xnn, 0xnn, 0xnn, 0xnn
```

Where:

- —The first field is always 0x97, identifying Suboption 151.
- —The second field specifies the length of the VPN selection ID.
- —The remaining fields specify an ASCII string of the VPN selection ID.

Use the *set ssid option82 insertion* command to control whether DHCP Option 82 (DHCP relay agent information) is inserted into packets or not.

If Option 82 insertion is enabled, use the *set ssid option82 use* command to control whether Suboption 9 or Suboptions 150 and 151 are used.

If Suboption 150 and 151 are selected, use the *set ssid option82-subopton151* command to specify the VPN selection ID. You can specify an ASCII string of up to 32 alphanumeric characters. To specify a blank string, input two double quotes ("").

If Suboption 150 and 151 are selected and a Suboption 151 string is undefined, the SSID string is used instead.

Changing SSID Admin State

```
/interface/wifi-<n>-<m>/set ssid <ssid_index> admin-state {enable|disable}
```

This command enables or disables a particular SSID. Use the *show ssid table* command to determine *<ssid index>*.

Configuring Wi-Fi Access Point Parameters

The default is *enabled* for SSID I and *disabled* for all others.

Out-of-service Advertising

These commands let you modify the SSIDs of a radio with an out-of-service string when a node loses its egress connection for longer than the period specified by <oos_delay>. The out-of-service string can be prepended to the existing SSID or it can replace the existing SSID. The out-of-service string can contain up to 14 characters. The default string is *outOfService..* and by default it replaces the SSID.

The out-of-service delay (<oos_delay>) ranges from 30 to 300 seconds. The default is 300 seconds. The out-of-service delay is set for the entire BelAir20E. Use the /system/show ap-oos-broadcast-delay command to display the current delay.

When a node's egress connection is declared out-of-service, the node also applies WPA AES encryption with a 16-character pre-shared key to all SSIDs except for the default management SSID. This is to to prevent a user from accidently connecting to an open SSID which is in out-of-service. The 16-character pre-shared key consists of the first 10 characters of the out-of-service identifier followed by the last six digits of the node's MAC address. If the out-of-service identifier is less than 10 characters, then period characters (.) are used to complete the first 10 characters of the pre-shared key.

The status of a node's egress connection is determined as follows:

- I If a tunnel is enabled, the egress status is the tunnel's status.
- 2 If a tunnel is not enabled and there is a cable modem in the system, the egress status is the modem's status.
- 3 If a tunnel is not enabled and there is no cable modem in the system, the egress status is the Ethernet link's status.

See also:

- "Default Management SSID" on page 90
- "Security Options for Wireless Clients" on page 100

Configuring Wi-Fi Access Point Parameters

Filtering Broadcast and Multicast Packets

```
/interface/wifi-<n>-<m>/set ssid <ssid_index> group-address-filter {none | ipv4}
```

This command filters all broadcast and multicast packets to and from a wireless client except for ARP and DHCP packets, allowing you to reduce the amount of broadcast and multicast traffic in the network.

The *ssid_index* parameter must be a valid SSID index. See <u>"AP Service Set Identifiers" on page 88</u>

Use the *none* setting to disable this function. Use *ipv4* to enable this function.

If wireless bridging is enabled, the default is *none*. If wireless bridging is disabled, the default is *ipv4*.

See also:

- "Limiting Broadcast Packets" on page 54
- "Broadcast to Unicast Packet Conversion" on page 96

Broadcast to Unicast Packet Conversion

This command lets you convert broadcast packets to unicast packets. Reducing the number of broadcast packets sent over wireless connections provides the following benefits:

- Broadcast packet are not retried in wireless transmissions, so in high interference environments wireless clients can miss their DHCP exchange.
- It reduces the bandwidth required for exchanges of DHCP messages.

The *ssid_index* parameter be a valid SSID index. See <u>"AP Service Set Identifiers" on page 88</u>.

The set ssid <ssid_index> dhcp-advanced command is set to none by default, meaning that it is disabled. In this case:

- All BOOTP packets, including DHCP packets, coming from the client are examined to determine if they are broadcast or unicast. This information is stored for use when the response arrives.
- All BOOTP packets, including DHCP packets, arriving from the network are examined. If needed, they are converted to match the format (broadcast or unicast) sent by the wireless client.

When the set ssid <ssid_index> dhcp-advanced command is set to upstream-unicast, it unsets the Request Broadcast bit for BOOTP packets,

Configuring Wi-Fi Access Point Parameters

including DHCP packets, originating from clients before sending those packets to the network. This means that the network should respond with unicast packets instead of broadcast packets.

The set ssid <ssid_index> dhcp-advanced command does not affect BOOTP packets arriving from the network. All BOOTP packets, including DHCP packets, arriving from the network are examined. If needed, they are converted to match the format (broadcast or unicast) sent by the wireless client.

See also:

- "Limiting Broadcast Packets" on page 54
- "Filtering Broadcast and Multicast Packets" on page 96

Limiting Upload and Download Rates

These commands let you specify the maximum rate (in bits per second) at which a client can upload or download data from the AP for a particular SSID.

The *ssid_index* parameter must be a valid SSID index. See <u>"AP Service Set Identifiers" on page 88</u>

Use the *unlimited* setting to disable this function.

If wireless bridging is enabled, the default is *none*. If wireless bridging is disabled, the default is *ipv4*.

See also:

- "Limiting Broadcast Packets" on page 54
- "Broadcast to Unicast Packet Conversion" on page 96

ARP Filtering

```
/interface/wifi-<n>-<m>/set arp-filtering {disabled|enabled}
```

This command enables or disables ARP filtering on radio traffic from the AP to the wireless client. When enabled, the radio only forwards ARP request packets to a currently connected client. Otherwise, the downstream ARP requests are dropped.

The default setting is disabled.

Configuring Wi-Fi Access Point Parameters

ARP to Unicast Conversion

These commands control the conversion of upstream ARP packets to unicast packets.

When enabled, this feature intercepts ARP requests from wireless clients and sends them only to known gateway MAC addresses. ARP responses from the gateway are sent to the wireless client without interception and manipulation.

When the AP starts, the ARP unicast conversion table is empty. So the first ARP packet from the client is sent out as is; no conversion happens. When the ARP response arrives, the AP records its information, including the unicast MAC address, in the conversion table. For the following ARP packets, the AP replaces the broadcast MAC address in the ARP packet with the unicast MAC address from the conversion table.

When a conversion table entry is used, a 4-second response timer is started. If the ARP response arrives within 4 seconds, then the entry remains valid. Otherwise the entry is deemed invalid and removed from the table. Each entry is removed after 4 hours of inactivity.

The table holds up to 128 entries.

The default setting is disabled.

Example

/interface/wifi-1-2# show arp-unicast-table

vlaid	ip	mac	expire	
5	10.1.5.53	00:10:18:27:bc:07	03:57:18	
0	10.1.1.53	00:10:18:27:bc:07	03:59:32	
90	10.1.90.53	00:10:18:27:bc:07	03:59:55	

802.11b Protection

/interface/wifi-<n>-<m>/set b-protection {disabled|enabled}

This command enables or disables 802.11b protection for the radio. Normally, an 802.11g AP uses CTS-to-self to interact with 802.11b APs. The transmitted packet is small, but in High Capacity and Interference environments the accumulated effect is a substantial performance penalty. This feature disables 802.11b protection for the radio, meaning that CTS-to-self are not sent and maximizing the throughput for wireless clients that operate in the 2.4 GHz range.

Configuring Wi-Fi Access Point Parameters

This feature improves performance if there are only a few 802.11b clients present and they are not generating large amounts of traffic. If not, the 802.11b clients may generate substantial numbers of collisions and actually impair traffic.

The default setting is enabled.

Wi-Fi AP Security

Wi-Fi AP Security

This chapter describes how you can set up security to encrypt your Wi-Fi transmissions so that your data cannot be deciphered if it is intercepted, and to prevent access to the network by unauthorized clients. The following topics are covered:

- "Security Options for Wireless Clients" on page 100
- "RADIUS Servers for Wireless Clients" on page 101
 - "Managing RADIUS Servers" on page 104
 - "Changing RADIUS Server Admin State" on page 105
 - "Assigning SSIDs to RADIUS Servers" on page 105
 - "RADIUS Pre-authentication" on page 105
 - "RADIUS Assigned VLAN" on page 106
 - "RADIUS Accounting" on page 106
- "Client Authentication and De-authentication Trap" on page 107
- "AP Privacy" on page 107
- "Wireless Client Blacklist" on page 109
- "Wireless Client Access Control List" on page 109
- "Controlling Inter-client Communication" on page 110
- "Protecting against Denial of Service Attacks" on page 113

See also:

- "Configuring Wi-Fi Radio Parameters" on page 72
- "Configuring Wi-Fi Access Point Parameters" on page 80
- "Wi-Fi Backhaul Link Configuration" on page 115
- "Mobile Backhaul Mesh" on page 123

Security Options for Wireless Clients

The BelAir20E has several options for wireless authentication and data encryption. The method that you use depends on your security needs and your network configuration.

If multiple SSIDs are configured, each SSID can be configured with its own security options.

The authentication options are:

- instruct the AP to connect to a Remote Authentication Dial In User Service (RADIUS) server in your network that keeps a list of accepted clients.
 RADIUS is a standard for user authentication. For this option, you need a RADIUS server. Multiple BelAir20E units can share the information from the same RADIUS server.
- use a pre-shared key. This is a simpler authentication option, but more difficult to maintain because pre-shared keys must be distributed to all users.

You can also create a list of accepted clients; that is, an Access Control List (ACL). This option is best suited for small networks.

The encryption options are:

- Wired Equivalent Privacy (WEP). This is a basic encryption scheme.
- Temporal Key Integrity Protocol (TKIP). This is an more advanced encryption scheme.
- Advance Encryption Standard (AES). This is the strongest encryption scheme.

BelAir Wi-Fi radios offer WEP, WPA, WPA2 and WPA2mixed privacy settings. With WPA2mixed, the wireless client can use WPA or WPA2, and the AP accepts them both. WPA, WPA2 and WPA2mixed privacy uses TKIP or AES encryption. Because of this, WPA, WPA2 and WPA2mixed provide much stronger security than WEP. For small networks, you can use WEP or WPA with pre-shared keys. For large networks, you can use WPA, WPA2 or WPA2mixed in combination with dot1x (a RADIUS server) authentication.

CAUTION!

RADIUS authentication, WPA or WPA2 can only be used with wireless clients that support these standards (both the operating system and the network card). For clients that only support WEP, select a combination with WEP.

Note: A network is as secure as its weakest link. If WEP is enabled, the overall level of network security will be that of WEP.

RADIUS Servers for Wireless Clients

To use RADIUS authentication, you need to configure at least one RADIUS server.

Wi-Fi AP Security

<u>Table 10</u> shows the attributes that are included in the *access-request* messages sent to the RADIUS server when using RADIUS (EAP) authentication.

Table 10: RADIUS Attributes

Name	ID	Description
RA_USERNAME	I	Client identity
RA_NAS_IP_ADDRESS	4	Node IP address configured with the /protocol/radius/set server command. See "Managing RADIUS Servers" on page 104.
RA_NAS_PORT	5	For accounting packets, contains the client association ID that ranges from 1 to 256. For RADIUS packets, contains the SSID index values (from
		0 to 15) + 100
RA_SERVICE_TYPE	6	Always 2
RA_FRAMED_MTU	12	Always /400
RA_STATE	24	Client state from the RADIUS server
RA_CLASS	25	Always 0
RA_VENDOR_SPECIFIC	26	Not used
RA_SESSION_TIMEOUT	27	RADIUS reauth time configured with the /protocol/radius/ set server command. See "Managing RADIUS Servers" on page 104.
RA_IDLE_TIMEOUT	28	Client timeout value, always 5 minutes
RA_TERMINATION_ACTION	29	Incoming only (θ for terminate or / for reauth)
RA_CALLED_STATION_ID	30	AP MAC address
		If station-id-unformatting is set to enable, colons are removed.
RA_CALLING_STATION_ID	31	Client MAC address
		If station-id-unformatting is set to enable, colons are removed.

Table 10: RADIUS Attributes (Continued)

Name	ID	Description
RA_NAS_IDENTIFIER	32	Name configured with the /interface/wifi- <n>-<m>/set ssid <ssid_index> radius command. See "RADIUS Accounting" on page 106.</ssid_index></m></n>
RA_ACCT_STATUS_TYPE	40	Always 1,2 or 3
RA_ACCT_INPUT_OCTET	42	Integer counter
RA_ACCT_OUTPUT_OCTET	43	Integer counter
RA_ACCT_SESSION_ID	44	Unique number generated by system.
RA_ACCT_AUTH	45	/ for RADIUS or 2 for local
RA_ACCT_SESSION_TIME	46	RADIUS reauth time configured with the /protocol/radius/ set server command. See "Managing RADIUS Servers" on page 104.
RA_ACCT_INPUT_PACKET	47	Integer counter
RA_ACCT_OUTPUT_PACKET	48	Integer counter
RA_TERMINATE_CAUSE	49	 One of: I for session terminated by user request 2 for session terminated due to lost carrier 4 for session terminated due to idle timeout 5 for session timeout 9 for session terminated due to NAS error 20 for session terminated due to reauth failure
RA_ACCT_INPUT_GIGAWORDS	52	Not used
RA_ACCT_OUTPUT_GIGAWORDS	53	Not used
RA_EVENT_TIMESTAMP	55	System time when the RADIUS packet is sent
RA_NAS_PORT_TYPE	61	Always 9 for port type of wireless
RA_TUNNEL_TYPE	64	Refer to "RADIUS Assigned VLAN" on page 106.
RA_TUNNEL_MEDIUM_TYPE	65	Refer to "RADIUS Assigned VLAN" on page 106.
RA_TUNNEL_PRIVATE_GROUP_ID	81	Refer to "RADIUS Assigned VLAN" on page 106.

Table 10: RADIUS Attributes (Continued)

Name	ID	Description
RA_CONNECT_INFO	77	Always CONNECT IMbps 802.11b
RA_EAP_MESSAGE	79	EAP packet
RA_MESSAGE_AUTHENTICATOR	80	Authentication string from RADIUS server
RA_INTERIM_INTERVAL	85	Not used

Managing RADIUS Servers

These commands let you manage the RADIUS server list used for authenticating wireless clients. The list can contain up to 16 RADIUS servers. After the list is configured, you can then assign which AP SSID uses which server on the list. See "Assigning SSIDs to RADIUS Servers" on page 105. By default, if a RADIUS server is unavailable, then the SSID uses the next RADIUS server in the list. You cannot delete a server if it is being used by an SSID.

The *server_ip address* parameter specifies the IP address of the RADIUS server.

The *shared secret* parameter specifies the password for access to the RADIUS server.

The *server_port* parameter ranges from 0 to 65535. It specifies the UDP port number of the RADIUS server. The default is 1812.

The *radius_acc_port* parameter ranges from 0 to 65535. It specifies the UDP port number for RADIUS accounting data. The default value is 1813.

The NAS IP address parameter specifies the Network Access Server (NAS) IP address for the BelAir20E RADIUS client. It is used when the unit is configured with multiple IP interfaces and matches the interface used to communicate with the given RADIUS server. The default value is the IP address of the unit's management interface, which is usually the system's default IP address.

Note: The *NAS IP address* parameter is entered statically with this command. If the VLAN IP addresses are determined dynamically with a DHCP

server, then an updated VLAN IP address is not automatically reflected into the *NAS IP address* parameter.

The *timeout* parameter ranges from 2 to 300. It specifies the interval (in seconds) after which the RADIUS client considers that the remote server has timed out if a reply is not received. The default value is 10 seconds.

The *reauthtime* parameter ranges from 0 to 50000000. It specifies the RADIUS re-authentication time (in seconds). This forces the BelAir20E to check all connected clients with the RADIUS server (that is, make sure they are still allowed to access the network) at the specified interval. You only need to configure this parameter if it is not specified on the RADIUS server. Setting the interval to zero disables this feature. The maximum interval time is 2147483647. If you enter a higher number, the value is set to its maximum.

Example

/protocol/radius# set server 3 172.16.1.20 my-secret12345 authport 1812 acctport 1813 interface 172.16.1.254 timeout 15 reauthtime 1

Changing RADIUS Server Admin State

/protocol/radius/set server-state <server_idx> {enable|disable}

This command enables or disables a particular RADIUS server on the server list. Use the *show servers* command to determine *server idx*.

Assigning SSIDs to RADIUS Servers

The *add* command specifies which RADIUS server to use to authenticate the specified SSID. The *del* command means that the specified RADIUS server stops authenticating the specified SSID. Use the */wifi-<n>-<m>/show ssid table* command to determine *<ssid_index>*. Use the */radius/show servers* command to determine *<server idx>*.

RADIUS Pre-authentication

This feature allows you to set up a centralized access control list at the RADIUS server instead of each AP. With this feature enabled, when an AP receives a client's association request, it composes an *access-request* message and sends it to a RADIUS server. If an *access-accept* message is received from the RADIUS server, the AP continues with the client's association procedure and grants access based on other criteria such as encryption type and key matching.

To use this feature, you must configure your RADIUS server to have a list of all allowed clients. Each entry in this list includes a user name and a password. The user name and the password must be set to the client's MAC address. The *delimiter* parameter specifies whether the RADIUS packets use a colon (:), a dash (-) or nothing as a delimiter when specifying a MAC address.

To reduce the message exchanges between the AP and RADIUS server, an AP maintains two cache tables: one for all allowed clients and another for all disallowed clients. When the AP receives a client's association request, it first searches both tables. If the client's information is in the allowed table, the AP bypasses RADIUS pre- authentication. If the client is in the disallowed table, it is rejected immediately. Cache entries in either table expire in two minutes.

The feature can be enabled or disabled on each SSID. Use the /wifi-<n>-<m>/ show ssid table command to determine <ssid_index>.

The default setting is disabled.

RADIUS Assigned VLAN

The BelAir20E can create VLANs as instructed by the RADIUS server. When this feature is activated, the RADIUS server instructs the BelAir20E to tag the authenticated packets to use the specified VLAN.

This feature has no BelAir CLI commands. To activate this feature, you must provision the following attributes on your RADIUS server:

- RA TUNNEL TYPE, set to /3
- RA TUNNEL MEDIUM TYPE, set to 6
- RA_TUNNEL_PRIVATE_GROUP_ID, configure to contain the VLAN to be created.

Refer to Table 10 on page 102.

RADIUS Accounting

These commands let you manage RADIUS accounting for wireless clients.

By default RADIUS accounting is disabled.

The *nas-id* < name > parameters specify the RADIUS Network Access Server (NAS) identifier. The default value for < name > is belair.

The *delimiter* parameter specifies whether the RADIUS packets use a colon (:), a dash (-) or nothing as a delimiter when specifying a MAC address.

The *append* parameter specifies RADIUS station ID formatting. The default setting is *ssid*, meaning that the *called-station-ID* and the *calling-station-ID* fields are formatted to include SSID information to the provided MAC address.

Client Authentication and De-authentication Trap

This command controls whether a trap is sent for this particular radio whenever a wireless client authenticates or de-authenticates; that is, disconnects from the radio. The trap can be used by any Network Management System to monitor client activities.

When the client trap is enabled and the trap delay is enabled, the trap is not sent out until 10 seconds after either of the following events:

- the client connects and stays connected
- the client is disconnected and stays disconnected

If the trap delay is disabled, then the trap is sent out immediately after either of the previous events.

When the client trap is disabled, the trap is not sent out.

The default is to have both the client trap and trap delay enabled.

AP Privacy

This command configures wireless privacy for a particular SSID. Use the *show* ssid table command to determine <ssid_index>. Use the show ssid <ssid_index> config command to show the current privacy settings.

The *dot1x-open* parameter specifies an open privacy setting, but uses a RADIUS server for SSID authentication. The RADIUS server authenticates a wireless client by its username and password. After accepting the client, the RADIUS server does not provide encryption keys. The data transmission is *open*.

WPA, WPA2 and WPA2mixed privacy uses TKIP or AES encryption. With WPA2mixed, the wireless client can use WPA or WPA2, and the AP accepts them both.

The *psk* parameter specifies using a pre-shared key for authentication. When specifying the pre-shared key, note the following:

- For wep40, the pre-shared key must be exactly 5 bytes.
- For wep104 with psk, the pre-shared key must be exactly 13 bytes.
- For wpa, wpa2 and wpa2mixed, the pre-shared key must be between 8 and 63 bytes long. The longer the key, the more secure the connection.
- The pre-shared key can be specified as a hexadecimal number or ASCII string. Hexadecimal numbers must be preceded by ∂X or ∂x . ASCII strings must not contain the following characters:
 - —bar (1)
 - -semicolon (;)
 - —question mark (?)
 - —double quotation mark (")

The *dot1x* parameter specifies using RADIUS (EAP) authentication. You must pre-configure a list of RADIUS servers. See <u>"RADIUS Servers for Wireless Clients" on page 101</u>.

The *rekey* parameter allows you to specify Group Key Rekey options to improve security. These options allow you to specify that a new group key (the key that is used for communication between the access radio and a group of clients) must be generated at regular intervals.

The default *rekey* setting is *no* meaning that the group key is not changed. If *rekey* is set to *n* seconds, the group key is changed after that time period. If *rekey* is set to *n* kpackets, the group key is changed after that many thousand packets.

If *strict* is set to *yes*, the group key changes immediately when one client leaves the network. The default is *no*. The *strict* setting applies to wpa and wpa2 encryption only.

Additional Considerations

Make sure to set the AP SSID to something other than the default before enabling wpa, wpa2 or wpa2mixed. The BelAir20E unit combines the password phrase with your SSID to create the key.

Note: Some configuration commands take longer than others to be applied to a radio module. For example, it can take up to 40 seconds per SSID for a WPA PSK configuration to be applied to radio. The delay varies depending on the amount of computing resources required to implement the configuration.

Wireless Client Blacklist

```
/interface/wifi-<n>-<m>/add client blacklist <mac-addr>
/interface/wifi-<n>-<m>/del client blacklist <mac-addr>
```

These commands let you add and remove a MAC address from a client blacklist. If a wireless client's MAC address matches an entry on the blacklist, the client cannot associate with the AP. The client blacklist can contain up to 16 entries. Each physical interface can have its own client blacklist.

Use the *show config access* command to display the current client blacklist entries.

Wireless Client Access Control List

You can create a local list of clients (an ACL) that controls access to the network. The list can contain up to 16 clients per SSID. Clients are identified by the MAC address of their network card. If you have multiple BelAir20E units in your network, you need to create this list for every AP.

You should only use an ACL as an extra security measure if:

- you cannot or prefer not to set up a RADIUS server
- your network provides access to network clients which do not support RADIUS authentication

In both cases, it is recommended that you enable pre-shared key encryption (WEP, WPA, WPA2 or WPA2mixed).

The *enabled* setting for the *set acl* command means that only the wireless clients on the ACL can access the network. All other clients are denied access. The *disabled* setting means that all wireless clients can access the network. See also <u>"AP Secure Port Mode" on page 112</u>.

Typically, you enable ACL mode only after you have added all the desired MAC addresses to the control list.

CAUTION!

When used with multiple SSIDs, this method affects wireless clients attempting to associate with any of the SSIDs.

Use the show ssid table command to determine <ssid index>.

Controlling Inter-client Communication

If wireless bridging is enabled for an SSID, then by default wireless clients associated to an AP and using that SSID can communicate to one another (assuming they are able to determine the IP addresses of their peer wireless clients).

For security reasons in a public network environment, it may be desirable to block inter-client communications.

CAUTION!

Provisioning inter-client communication can affect the wireless clients associated with all the SSIDs of that BelAir20E unit.

The goal is to prevent communications between associated wireless clients and still allow them to connect to the Internet. To do this, use one of the following methods.

Manual Provisioning of Gateway MAC Addresses

The following method offers the precise control of SSID communications:

- I Determine the MAC address of the Internet gateway(s) or router(s) in your network.
- 2 Disable wireless bridging for each AP in your network.
- 3 Disable inter-AP wireless client communications:
 - a Add the previously determined gateway MAC address or addresses to the secure MAC white list. This allows wireless clients to communicate with the Internet. The secure MAC white list typically contains the MAC address of the gateway interfaces.
 - b If the DHCP server for your network is on a different machine than the gateway, add the MAC address of the DHCP server machine to the secure MAC white list.
 - c Enable *secure port* mode for each of the APs in your network.

Wi-Fi AP Security

Automatic Discovery of Gateway MAC Addresses

The following method automates MAC address provisioning:

- I Disable wireless bridging for each AP in your network.
- 2 Disable inter-AP wireless client communications:
 - a Enable the *auto-secure gateway* feature for each of the APs in your network.
 - b Enable secure port mode for each of the APs in your network.

Determining the MAC Address of the Internet gateway

This step is only required if you want to manually provision the MAC addresses of the Internet gateway(s) or router(s) in your network.

Determining the MAC address of your Internet gateway(s) depends on the type of equipment you are using. Refer to your equipment's User Manual for the specific details.

You will need the MAC address of your gateways later to provision the secure MAC white list of the APs configured in *secure port* mode.

Disabling or Enabling AP Wireless Bridging

```
/interface/wifi-<n>-<m>/set ssid <ssid_index> wireless-bridge {enabled|disabled}
```

Use the *show ssid table* command to determine *<ssid index>*.

Disabling wireless bridging for an AP prevents wireless clients associated to that particular AP from communicating with one another.

It does not prevent a wireless client associated with one AP (AP "A") from communicating with a wireless client associated with another AP (AP "B"). The secure port mode prevents this. See "AP Secure Port Mode" on page 112.

By default, wireless bridging is enabled.

Disabling Inter-AP Wireless Client Communication

Disabling inter-AP wireless client communications involves setting up a secure MAC white list and enabling secure port mode for each AP.

Secure MAC White List

Use these commands only if you want to manually provision the MAC addresses of the Internet gateway(s) or router(s) in your network.

These commands add and remove a MAC address from the secure MAC white list. The MAC address can optionally be qualified with a mask and a traffic descriptor as follows:

- The mask is specified with the *secure-mac-mask* option. Use *ff* to indicate bits to accept. Use *00* to indicate bits to ignore. For example, a MAC address of 00:0d:67:0c:21:90 with a mask of ff:ff:ff:00:00:00 specifies all MAC addresses beginning with 00:0d:67. You can also customize the mask to exactly suit your needs by using values other than *ff* or *00*.
- The traffic descriptor can be one of all, untagged or a VLAN ID. Use a
 VLAN ID to specify the traffic of a particular VLAN. Use untagged to specify
 only untagged traffic. Use all to specify all traffic.

When configured in secure port mode, the AP forwards to the associated wireless clients only those Layer 2 (Ethernet) frames for which the source MAC address and VLAN matches an entry its white list. The white list can contain up to 32 entries. If a VLAN is not specified, it is assumed to have a value of zero.

In effect, while in this mode the AP acts as a firewall for all Layer 2 frames arriving from inside the network for the wireless clients. The secure MAC white list should only contain the MAC addresses of the gateway interfaces. Thus, wireless clients associated to other APs in the network are prevented from communicating with locally associated clients.

- Note I: The secure MAC white list is different from the list described in "Wireless Client Access Control List" on page 109. In a client ACL, only the listed MAC addresses are allowed to associate with an AP. The secure MAC white list controls data forwarding to the wireless clients from remote entities in the network.
- **Note 2:** If the gateway and DHCP servers on your networks are on different machines, you must put the MAC addresses of both machines on the secure MAC white list.

The content of the secure MAC white list takes effect only when the AP secure port mode is enabled.

AP Secure Port Mode

/interface/wifi-<n>-<m>/set ssid <ssid_index> secure-port {enabled|disabled}

Use the *show ssid table* command to determine *<ssid index>*.

To prevent wireless clients associated with different APs from communicating with each other, you must enable the secure port mode on each of the APs in your network.

By default, the secure port mode is disabled.

Note: Typically, you provision the secure MAC white list before enabling the secure port mode. This ensures that wireless clients that are already associated do not lose their connection to the Internet.

Auto-secure Gateway

Use this command only if you want to automatically discover the MAC addresses of the Internet gateway(s) or router(s) in your network. To use this command, you must set the ROUTER_IP option (DHCP option 3) on the DHCP server in your network.

Use the show ssid table command to determine <ssid index>.

This command starts the process of detecting the MAC addresses of the gateway for each VLAN in the system. Once it determines the MAC address, it adds it to the secure MAC white list. This feature also continuously monitors for changes in the gateway's MAC address updates the secure MAC white list accordingly.

By default, the auto-secure gateway functionality mode is disabled.

Note: If you are automatically discovering the MAC addresses of your network gateways, then you typically enable auto-secure gateway before enabling the secure port mode. This ensures that wireless clients that are already associated do not lose their connection to the Internet.

Protecting against Denial of Service Attacks

The BelAir20E provides protection against the following types of Denial of Service (DoS) attacks:

 deauthentication DoS, where deauthentication packets are maliciously sent to the BelAir platform causing it to terminate wireless sessions

The BelAir20E also automatically generates alarms when it detects the following conditions:

- If the BelAir20E detects more than 600 DHCP requests within 30 seconds, it raises a *DHCP_STARVATION* alarm.
- If the BelAir20E detects a client with a MAC address that matches any of the addresses in the secure MAC white list, it raises a SECURE_MAC_SPOOF alarm.

You can clear these alarms with the following command:

```
/interface/wifi-<n>-<m>/clear alarm {secure-mac-spoof | dhcp-starvation | deauth-dos}
```

Deauthentication DoS

/interface/wifi-<n>-<m>/set deauth dos defense {enabled|disabled}

When a deauthentication packet arrives and this feature is enabled, the BelAir platform waits 5 to 10 seconds before it terminates the wireless session. If the wireless client sends another data packet during that interval, then the previous deauthentication packet is deemed false and ignored. If the BelAir platform does not receive any data packets during the interval, then the session is terminated.

Use the /interface/wifi-<n>-<m>/show statistics command to display the number of potential attacks it has detected since you enabled the feature.

Wi-Fi Backhaul Link Configuration

Wi-Fi Backhaul Link Configuration

This chapter describes how to display and configure Wi-Fi backhaul parameters, including:

- "Displaying Backhaul Link Configuration" on page 115
- "Configuring Backhaul Link Identifier, Topology and Privacy" on page 116
- "Managing MP-to-MP Meshes" on page 118
 - —"Displaying the Mesh Topology" on page 118
 - "Setting a Link RSSI Threshold" on page 119
 - "Managing the Mesh Blacklist" on page 120
 - —"Mesh Auto-connections" on page 120
 - "Managing Mesh Auto-connections" on page 121
- "Egress Protection" on page 122
- "Changing Backhaul Link Admin State" on page 122

See also:

- "Configuring Wi-Fi Radio Parameters" on page 72
- "Configuring Wi-Fi Access Point Parameters" on page 80
- "Wi-Fi AP Security" on page 100
- "Mobile Backhaul Mesh" on page 123

Displaying Backhaul Link Configuration

Use the *show config backhaul* command to display the current backhaul configuration. See "Displaying Wi-Fi Radio Configuration" on page 73 for details.

Example - Typical BelAir20E

Wi-Fi Backhaul Link Configuration

```
Common Backhaul:
 privacy: ..... AES
 key: .....
 mesh-min-rssi......-100 (dbm)
Stationary Backhaul:
 link admin state: ..... Disabled
 link id: ..... BelAirNetworks
 topology: ..... mesh
Mobile Backhaul:
 mobile admin state: ..... Disabled
 mobile link id: .....
 mobile link role: ..... ss
Blacklist:
 No blacklist entries
Link Failure Detection: ..... Disabled
Backhaul T1 Bandwidth limit:.. Disabled
```

Configuring Backhaul Link Identifier, Topology and Privacy

```
/interface/wifi-<n>-<m>/set backhaul link ([identifier <link-id>]
    [topology {p2p|mesh|{star role {bs|ss} index <lnk_idx>}}]
    [privacy {{enabled key <pre_shared_key>}|disabled}])
```

This command configures the backhaul link identifier, the backhaul topology and backhaul privacy.

The backhaul link identifier identifies all members of a particular topology. The
/link_id> parameter is case sensitive and can be up to 32 alphanumeric characters:

- For Point-to-Point (P-to-P) links, BelAir Networks recommends that the link identifier describes the link; that is, the nodes it connects.
- For Point-to-Multipoint (P-to-MP) or Multipoint-to-Multipoint (MP-to-MP) links, the link identifier is also known as a mesh identifier. It is the same for all members of a particular mesh. A suitable link identifier is short phrase unique to the MP-to-MP mesh, for instance Company x Mesh A or Mesh Number 23.

When configuring a particular topology, you must configure all members to have:

- the same channel. Refer to "Operating Channel" on page 74 for the appropriate command
- · the same link identifier
- the same privacy settings

Wi-Fi Backhaul Link Configuration

As well, you must meet the requirements listed in Table 11 on page 117.

Table II: Wi-Fi Backhaul Configuration Requirements

Topology	Requirements
P-to-P	I Set the <i>topology</i> parameter to <i>p2p</i> .
P-to-MP (Star topology with one base station in the middle connecting up to eight subscriber stations)	 Set the topology parameter to star: Set the node's role. The node can be a base station (bs) or a subscriber station (ss). A base station is located at the center of the star and can support up to eight subscriber stations. Set the <lnk_idx> parameter. The link index identifies individual links in the star topology. It ranges from I to 8. For a subscriber station, you specify a single link index. For a base station, you specify all the link indexes that are used to connect to subscriber stations. Use a comma to separate multiple link indexes.</lnk_idx>
	To configure P-to-MP links configure the subscriber stations first followed by the base station.
MP-to-MP (Full mesh topology with each BelAir radio having up to eight links)	I Set the <i>topology</i> parameter to <i>mesh</i> .

The privacy setting determines whether AES privacy is used or not.

The pre-shared key must be exactly 32 bytes long (16 characters). The pre-shared key can be specified as a hexadecimal or ASCII string and must not contain the following characters:

- bar (|)
- semicolon (;)
- question mark (?)
- double quotation mark (")

Wi-Fi Backhaul Link Configuration

Managing MP-to-MP Meshes

This section describe additional commands to help you configure and manage an MP-to-MP mesh clusters, including:

- "Displaying the Mesh Topology" on page 118
- "Setting a Link RSSI Threshold" on page 119
- "Managing the Mesh Blacklist" on page 120
- "Mesh Auto-connections" on page 120
- "Managing Mesh Auto-connections" on page 121

Displaying the Mesh Topology

/interface/wifi-<n>-<m>/show backhaul status

This command displays the operating parameters of the MP-to-MP links you are connected to.

Example I and Example 2 that follow illustrate the output describing a mesh between three radios: RadioA, RadioB and RadioC.

Example 1: RadioA

/interface/wifi-4-1# show backhaul status

Backhau	l Links:					
Link	Radio MAC	State(L,R)	RSSI	Radio	Node IP	Node Name
[S] 1	00:0d:67:0b:55:17	fwd fwd	-49	wifi-3-1	180.1.5.120	
[S] 2	00:0d:67:0b:51:ed	fwd fwd	-54	wifi-3-1	180.1.4.150	

In the previous output, link I goes to RadioC and link 2 goes to RadioB.

RadioA is measuring a signal strength of -49 dBm from RadioC. RadioC has a MAC address of 00:0d:67:0b:55:17 and is physical interface wifi-3-1 on a node with IP address 180.1.5.120.

RadioA is measuring a signal strength of -54 dBm from RadioB. RadioB has a MAC address of 00:0d:67:0b:51:ed and is physical interface wifi-3-1 on a node with IP address 180.1.5.150.

Example 2: RadioB

/interface/wifi-3-1# show backhaul status

Backhaul Links:

Link	Radio MAC	State	e(L,R)	RSSI	Radio	Node IP	Node	Name
[S] 1	00:0d:67:0b:55:17	fwd	fwd	-68	wifi-3-1	180.1.5.120		
[S] 2	00:0d:67:08:63:31	fwd	fwd	-54	wifi-4-1	180.1.5.180		

Wi-Fi Backhaul Link Configuration

In the previous output, link I goes to RadioC and link 2 goes to RadioA.

RadioB is measuring a signal strength of -68 dBm from RadioC. As in example 1, RadioC has a MAC address of 00:0d:67:0b:55:17 and is physical interface wifi-3-1 on a node with IP address 180.1.5.120.

As in example I, RadioB is measuring a signal strength of -54 dBm from RadioA. RadioA has a MAC address of 00:0d:67:08:63:31 and is physical interface wifi-4-1 on a node with IP address 180.1.5.180.

Example 3: Mobile Backhaul Mesh

/interface/wifi-1-1# show backhaul status

Backhaul	Links:

Link	Radio Mac	State(L,R)	RSSI Radio	Node IP	Node Name
[M] 1	00:0d:67:09:23:6a	fwd fwd	-68 wifi-3-1	10.1.1.123	NYC_WALLST
[M] 1	00:0d:67:00:08:06	fwd UP	-71 wifi-3-1	10.1.1.122	NYC_BROADWAY

In the previous output, there are two mobile backhaul mesh links. One is forwarding while the other is listening.

Setting a Link RSSI Threshold

```
/interface/wifi-<n>-<m>/set backhaul mesh-min-rssi <rssi_value>
```

This command lets you set a signal strength threshold for creating mesh links. If a radio signal from another node is weaker than the specified threshold, then no link is created to that other node, except if there is no other link to either node at each end of the link. In that case, the link is still created even if the radio signal is weaker than the specified threshold.

This command applies only when a node is forming MP-to-MP links with other nodes. Existing links are not affected by this command.

The *rssi_value* parameter is specified in as a negative number in dBm. The default value is -100 dBm. Use the *show config backhaul* command to display the current value.

Example

```
/interface/wifi-1-1# set backhaul mesh-min-rssi -70
```

The previous command sets the link RSSI threshold to -70 dBm. If the signal from another radio is stronger than -70 dBm, then a backhaul link to that radio is created. If it is weaker than -70 dBm, then a link is not created.

Wi-Fi Backhaul Link Configuration

Managing the Mesh Blacklist

/interface/wifi-<n>-<m>/add backhaul blacklist <mesh_pt_MAC_addr>
/interface/wifi-<n>-<m>/del backhaul blacklist <mesh_pt_MAC_addr>

These commands allow you to control whether or not a link is used between two mesh points in an MP-to-MP mesh. To blacklist a link, you need to log in to both ends of the link and put the radio of other node on the local blacklist. For example, to prevent the use of a link between node A and B, you need to:

- I Log in to node A and add to its blacklist the MAC address of node B radio.
- 2 Log in to node B and add to its blacklist the MAC address of node A radio.

The MAC addresses of the node radios can be determined with the *show* backhaul status command.

Typically, these commands are used to disable an unstable link. This behavior may occur when either radio at each end of the link is operating at the limit of its sensitivity.

As well, these commands can be used to disable a particular link if the RF plan predicts low RSSI values for it.

Mesh Auto-connections

BelAir MP-to-MP meshes have the ability to detect when their egress node loses the ability to route traffic out of the mesh. When such a situation exists, each radio that is part of the affected mesh begins trying to find an alternate way of routing its traffic out of the mesh.

If the affected radio is part of a multi-radio platform, such as the BelAir I 00N, and the other radios are also part of a mesh, then it attempts to route its traffic through the other radios of its own platform.

If it cannot do so, then it begins scanning other channels to see if it can establish a link to another radio that is part of a neighboring mesh with an active egress node.

The affected radios stagger their attempts to "hunt" for a neighboring mesh to avoid overloading the neighboring radios and to allow time for their own egress node to re-establishing itself.

A link to a neighboring mesh only occurs when:

- The neighboring mesh has an active egress node.
- The first six bytes of the neighboring mesh identifier matches the local mesh identifier.

If there are several candidate meshes to connect to, then the link is made to the mesh that:

Wi-Fi Backhaul Link Configuration

- matches the longest possible mesh identifier string
- · has the better signal level
- has the minimum hop count to the egress node

Once a new link is established, the radio does not automatically revert back to the old mesh, even if the old mesh's egress node regains its ability to route traffic outside of the mesh. To do so, you must manually use one of the provided CLI commands.

Mesh auto-connect uses RSTP to establish the new mesh topology. Disabling RSTP disables this functionality.

See also:

- "Managing Mesh Auto-connections" on page 121
- "Setting the Network Egress Point" on page 54
- "Mesh Auto-connection Example" on page 224

Managing Mesh Auto-connections

```
/services/auto-conn/set admin-state {enabled|disabled}
/services/auto-conn/revert alternate-mesh
/services/auto-conn/show alternate-mesh
/services/auto-conn/show egress-node-list
/services/auto-conn/show config
/services/auto-conn/show status
```

These commands allow you to control mesh auto-connection capabilities.

Use the *set admin-state* command to enable or disable this capability. By default mesh auto-connections are enabled.

Use the *revert alternate-mesh* command to manually force a link to a neighboring mesh back to the original mesh.

Use the *show alternate-mesh* command to display the node's links to a neighboring mesh when the node's egress is lost.

Use the *show egress-node-list* command to display the list of egress nodes for the current mesh.

Use the *show config* command to display the current auto-connection configuration.

Use the *show status* command to display whether the auto-connection capability is enabled or disabled.

Refer to "Mesh Auto-connection Example" on page 224.

Wi-Fi Backhaul Link Configuration

Egress Protection

/interface/wifi-<n>-<m>/set backhaul protection-admin-state {enable|disable}

This command controls egress protection. The default setting is disable.

Egress protection provides extra redundancy for the BelAir20E's egress point. The egress point is the point where the BelAir20E's access traffic leaves the BelAir wireless network. This may be through an Ethernet connection, L2TP tunnel end-point, or a cable modem.

If the egress point fails and egress protection is enabled, the BelAir20E uses a Wi-Fi backhaul link to connect to another BelAir node so that traffic can leave the BelAir wireless network through that node's egress point. The BelAir20E selects the best node to use based on several factors including signal strength and the number of hops to the egress point.

Egress protection is revertive. If the original egress point becomes operational again, the access data is redirected back to original egress point.

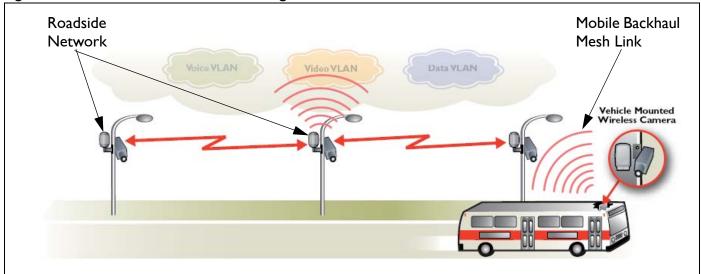
To use egress protection, make sure of the following:

- The BelAir20E and it surrounding nodes are equipped with appropriate hardware to provide the Wi-Fi backhaul link.
- The channel number, privacy settings and link identifier are the same for all surrounding nodes.
- The *backhaul protection-admin-state* option for the radios has been enabled.
- The tunnel engine for the BelAir20E is enabled, if the egress point is an L2TP tunnel end point. See "Setting Tunnel Engine Parameters" on page 167.

Changing Backhaul Link Admin State

 $/interface/wifi-<n>-<m>/set backhaul admin-state {enable|disable}$

This command lets you enable or disable backhaul functionality regardless of the topology (MP-to-MP, P-to-MP or P-to-P). The default setting is *disable*.



Mobile Backhaul Mesh

Mobile Backhaul Mesh

This feature extends the BelAir Networks fixed wireless infrastructure onto high-speed vehicles such as trains, buses, police and fire vehicles, and ambulances. Refer to Figure 6.

Figure 6: Mobile Backhaul Links Connecting Vehicle Cameras to Roadside Network

A BelAir20E with mobile backhaul mesh links can support uninterrupted high-performance broadband connectivity for critical applications, including voice and video, as the vehicle moves throughout the wireless mesh at speeds up to 150 mph (240 kph).

In such a deployment, the mobile node, mounted on a vehicle, acts as a subscriber station to a stationary base station node. All mobile subscriber stations and their stationary base stations use the same wireless channel, mobile link identifier and privacy settings.

Each mobile subscriber station can have up to three mobile links with three different stationary base station nodes. Mobile links can be either listening or forwarding. Only one of the three mobile links from the subscriber station can be forwarding at a particular moment to a particular stationary base station node. Traffic from the forwarding link is propagated to the rest of the network. The mobile subscriber station constantly determines the relative link quality of all its links based on several factors, including signal strength, aging and failure rates.

Mobile Backhaul Mesh

When the mobile subscriber station determines that a listening link has a better link quality than the current forwarding link, it changes the link state so that the listening link with the higher quality becomes forwarding.

These *look ahead* and *make before break* handover schemes allow the BelAir20E with mobile backhaul mesh links to provide uninterrupted support for a wide variety of applications, including voice and video.

Each base station node can support up to eight links. These can be mobile links or links to other stationary base stations. Mobile links can be either forwarding or listening. If a mobile subscriber station arrives within range of the base station, its forwarding link has precedence over the listening links of the other mobile subscriber stations.

Configuring Mobile Backhaul Mesh Links

The following tasks can be done:

- "Displaying Mobility Configuration and Status" on page 124
- "Configuring MIMO Operation for Mobile Applications" on page 125
- "Configuring and Enabling Mobile Backhaul Mesh Links" on page 125

Displaying Mobility Configuration and Status

/interface/wifi-<n>-<m>/show backhaul mobility-path-select-history

This command displays the history of a radio's mobile path switches for debugging purposes. The displayed information includes an event ID, local RSSI, peer RSSI, failure rate, age time, mobile credit score, peer MAC, peer IP address, and the peer system name. Each radio stores up to 500 entries. The data is not persistent.

Example

```
/# interface/wifi-1-1/show backhaul mobility-path-select-history
1 1970-01-01 10:46:30 new [-64 -58 0 0 -64 00:0d:67:09:7d:fa 10.1.1.110 BA100T_110]
2 1970-01-01 11:54:44 chg [-57 -63 0 0 -63 00:0d:67:0c:6e:f4 10.1.1.120 BA100tt_120]
3 1970-01-01 12:01:14 chg [-54 -57 0 0 -57 00:0d:67:0c:6e:f4 10.1.1.110 BA100T_110]
4 1970-01-01 12:22:30 chg [-55 -63 0 0 -63 00:0d:67:0c:6e:f4 10.1.1.120 BA100tt_120]
5 1970-01-01 12:33:13 chg [-53 -53 0 0 -53 00:0d:67:09:7d:fa 10.1.1.110 BA100T_110]
```

Additional Configuration Display Commands

Refer to the following sections and command descriptions:

- "Displaying Backhaul Link Configuration" on page 115
- "Displaying the Mesh Topology" on page 118
- show rf-survey backhaul, described in the *BelAir20E Troubleshooting Guide*

BelAir20E User Guide Mobile Backhaul Mesh

Configuring MIMO Operation for Mobile Applications

/interface/wifi-<n>-<m>/set mimo-mode $\{1x1|1x2|2x2|2x3|3x3\}$

This command configures the Multiple-Input and Multiple-Output (MIMO) antenna settings for mobility applications using 802.11n radios, such as those for the BelAir20M. In such applications, the 5.8 GHz radio must operate with a MIMO setting of 1x1 while the 2.4 GHz access radio must operate with a MIMO setting of 2x2.

Use this command to adjust the MIMO setting of each radio interface as required. The supported modes vary depending on the type of radios in your unit, as follows:

- HTM and DRUE radios support only 1x1, 2x2 and 3x3 modes
- HTME radios support only 1x1 and 2x2 modes
- DRU radios support only 1x1, 1x2, 2x2 and 2x3 modes

Example

```
/interface/wifi-1-1# set mimo-mode 1x1
/interface/wifi-1-2# set mimo-mode 2x2
```

The previous commands apply to a BelAir20M where interface wifi-I-I is for a 5.8 GHz radio while interface wifi-I-2 is for a 2.4 GHz access radio.

Configuring and Enabling Mobile Backhaul Mesh Links

```
/interface/wifi-<n>-<m>/set backhaul mobile
  ([identifier <link-id>] [role {bs|ss}]
     [privacy {{enabled key <pre_shared_key>}|disabled}]
     [admin-state {enable|disable}])
```

This command configures the mobile backhaul link identifier, the role of the node and backhaul privacy. It also lets you enable or disable mobile backhaul mesh functionality. The default setting is *disable*.

The mobile backhaul link identifier identifies all members of a particular mobile backhaul mesh. The < link_id> parameter is case sensitive and can be up to 32 alphanumeric characters. A suitable link identifier is short phrase unique to the mobile backhaul mesh.

When configuring a particular mobile backhaul mesh, you must configure all members to have:

- the same channel. Refer to "Operating Channel" on page 74 for the appropriate command
- the same mobile link identifier
- the same privacy settings

Mobile Backhaul Mesh

As well, you must meet the requirements for the P-to-MP topology listed in Table 11 on page 117.

The *privacy* setting determines whether AES privacy is used or not.

The pre-shared key must be exactly 32 bytes long (16 characters). The pre-shared key can be specified as a hexadecimal or ASCII string and must not contain the following characters:

- bar (|)
- semicolon (;)
- question mark (?)
- double quotation mark (")

Example I - Mobile Node

/interface/wifi-1-1# set backhaul mobile identifier test100m role ss /interface/wifi-1-1# set backhaul mobile admin-state enable

Example 2 - Stationary Node

/interface/wifi-1-1# set backhaul mobile identifier test100m role bs /interface/wifi-1-1# set backhaul mobile admin-state enable

Mobile Backhaul Point-to-point Links

Mobile Backhaul Point-to-point Links

This feature extends the BelAir Networks fixed wireless infrastructure onto low-speed vehicles such as ships travelling near a sea port. A BelAir node with mobile backhaul point-to-point links provides redundant high-performance broadband connectivity.

In such a deployment, the mobile node mounted on a ship acts as a subscriber station to a stationary base station node mounted on shore.

A subscriber station searches for base station links on a pre-defined set of channels. It creates up to two links, a primary link and a secondary link, when it finds a base station advertising available links with an appropriate mobile link identifier and privacy settings. Once a primary link and a secondary link are created, one is used for active communications while the other acts as a standby.

If the signal strength of the active link falls below a threshold, then the standby becomes the primary link and the subscriber station searches for a new secondary link.

If performance degrades on the active and standby links, the subscriber station searches for new base station links with better signal strength.

In addition to providing mobile links, a base station node can also provide links to other stationary base stations. Mobile link pairs can only be used by one subscriber station. The links of a base station are configured to operate on one channel only.

The user defines a channel list that determines the channels that the subscriber station uses to scan for base station nodes.

Subscriber stations support partial matches to the mobile link identifier. For example, a subscriber station scanning for a mobile identifier of *mobilityTest* accepts a base station link advertising a mobile link identifier of *mobilityTestBsLink28*.

The *set home-check* CLI command forces a subscriber station to connect to specific base station links. When home check is enabled, the subscriber station accepts only base station links that advertise a mobile link identifier that is exactly the same as the subscriber station's home-check identifier.

If the mobile backhaul units (subscriber stations and their stationary base stations) are part of a larger network of BelAir equipment, make sure the

Mobile Backhaul Point-to-point Links

mobile link identifiers and mobile channels are not used elsewhere in the network. If a neighboring stationary subscriber station uses a link identifier and channel similar to a mobile subscriber station, then it can interfere with the creation of links between the mobile backhaul units.

With mobile backhaul point-to-point links, the base station is passive. The subscriber station determines whether or not to connect or disconnect from a base station. If a connection is lost, then the subscriber station starts its scanning process.

Scanning Process

If a subscriber station scans for available links when either member of its mobile link pair is disconnected from a base station. It scans all configured channels looking for available base station links. The subscriber station selects the link with a matching mobile link identifier and the best signal strength.

If another link in the subscriber station is using a channel in the configured channel list, then this channel is skipped by the scanning process. Once connected, the subscriber station does not scan again until the connection is lost.

Sample Subscriber Station Configuration

I Configure the topology and privacy settings, and enable each Wi-Fi interface.

```
/interface/wifi-2-1# set backhaul link topology p2p privacy disabled /interface/wifi-2-1# set backhaul admin-state enabled
```

2 Disable RSTP dynamic cost for each backhaul link. The mobility service manages link cost.

/protocol/rstp# set interface wifi-2-1 dynamic-cost disable

- 3 Configure the mobile backhaul point-to-point links.
 - a Specify the mobile link identifier with the *set network-identifier* command.

/services/mobility# set network-identifier mobilityTest

b Specify the topology and role.

```
/services/mobility# set topology p2p-mobile role SS
```

c Define the channels expected from the shore links. Up to eight lists can be defined.

/services/mobility# add scan-list 2 148,61,151

Mobile Backhaul Point-to-point Links

d Set release 7 compatibility to *yes* if this node is connecting to a shore unit running Release 7.1.0 software.

```
/services/mobility# set release-7-compatibility no
```

e Optionally set the RSSI threshold.

The *minimum* parameter specifies the minimum signal strength required to connect.

The *switch* parameter defines the signal strength level at which a link switch occurs, provided the secondary link is better by at least the specified *margin* set and has an signal strength better than *secondary*. If the secondary link falls below the secondary threshold, the subscriber station begins scanning with its third or fourth radio if they exist.

```
/services/mobility# set RSSI minimum -85 margin 5 switch -70 secondary -75 \,
```

f Enable scanning by connecting the Wi-Fi interfaces to the appropriate scan-list.

```
/services/mobility# connect scan-list 1 wifi-2-1
```

- 4 Display the configuration and correct any settings as required. Use following commands as required.
 - a Display the mobility configuration.

b Display the scan lists.

```
/services/mobility# show scan-list 2
Scan list [2] channels:
   61 148 151
Scan list [2] used by:
   wifi-2-1 (5GHz 802.11a)
   wifi-3-1 (5GHz 802.11a)
```

c Display the links detected by scanning.

/services/mobility# show available-infra

Mobile Backhaul Point-to-point Links

The *show available-infra* command displays detected channel links and base station MAC addresses. Use *AVL-BS* (link not in use by another node), *ENBL-BS* (base station mode enabled) and *NET-ID-MATCH* (match with shore unit) to determine why some links may not connect.

d Perform a backhaul survey.

/interface/wifi-2-1# show rf-survey backhaul

mac addr	ch	RSSI (dbm)	_	priv	topo	linkIdx 12345678	identifier
00:0D:67:00:B2:47	 151	 -42	0	none	P-to-P	 	mobilityTest
noise floor:				-91	(dbm)		

e Display the status of the primary and secondary links.

/services/mobility# show link-state

LINK ROLE	INTERFACE	CH	RSSI	MESH ID	NODE IP	NODE NAME
Primary	wifi-3-1	148	-44	mobilityTest	10.1.1.13	ba100tBSmode
Secondary	wifi-2-1	151	-40	mobilityTest	10.1.1.209	BA200CEM209

Sample Base Station Configuration

I Configure the topology and privacy settings, and enable each Wi-Fi interface. Make sure to specify the mobile link identifier, specified with the set network-identifier command on the subscriber station.

```
/interface/wifi-3-1# set backhaul link identifier mobilityTest topology p2p privacy disabled /interface/wifi-3-1# set backhaul admin-state enabled
```

2 Disable RSTP dynamic cost for each backhaul link. The mobility service manages link cost.

/protocol/rstp# set interface wifi-3-1 dynamic-cost disable

- 3 Configure the mobile backhaul point-to-point links.
 - a Specify the topology and role.

/services/mobility# set topology p2p-mobile role bs

b Add links needed to support service

```
/services/mobility# add interface wifi-3-1
```

Note: The scan-list, release-7-compatibility and RSSI thresholds parameters and apply only to subscriber stations. The show available-infra command applies only to subscriber stations.

- 4 Display the configuration and correct any settings as required. Use following commands as required.
 - a Display the mobility configuration.

```
/services/mobility# show config
Topology : point-to-point
Role : BS
Rel 7 : False
Network Id : .....
BS OOS broadcast : Enabled
BS OOS timeout : 180 (s)
Home Check: Disable Link Id: AutoconfSSID
       : minimum margin switch secondary
(dbm): -85 5 -70 -75
```

b Display the interface list.

```
/services/mobility# show interface-list
Mobility BS Interfaces:
   wifi-2-1
    wifi-3-1
```

c Display the backhaul status.

/interface/wifi-2-1# show backhaul status

Backhaul Links:

```
State(L,R) RSSI Radio Node IP Node Name
Link Radio Mac
----- ----- -----
[S] 1 00:0d:67:09:c4:79 up fwd -59 wifi-2-1 10.1.1.208 ba200-ShoreA
```

d Perform a backhaul survey.

/interface/wifi-2-1# show rf-survey backhaul

```
mac addr
           ch RSSI age priv topo role linkIdx identifier
           (dbm) (s)
                            12345678
    00:0D:67:00:44:49 151 -27 0 none P-to-P -- ----- mobilityTest
noise floor: ..... -96 (dbm)
```


Mobile Backhaul Point-to-point Links

Mobile Backhaul Point-to-point Commands

Commands are available to do the following tasks:

- "Displaying Mobile Backhaul Point-to-point Configuration" on page 132
- "Displaying Link Status" on page 132
- "Displaying Scan Results" on page 133
- "Managing Interfaces" on page 133
- "Managing the Scan List" on page 134
- "Associating a Scan List to an Interface" on page 134
- "Configuring RSSI Threshold" on page 134
- "Primary Link Drop" on page 135
- "Mobile Link Identifier" on page 135
- "Home Check" on page 135
- "Base Station Out-of-service Check" on page 135
- "Release 7 Compatibility" on page 136
- "Single Channel Mesh" on page 136

Displaying Mobile Backhaul Point-to-point Configuration

/services/mobility/show config

This command displays the current mobile backhaul point-to-point configuration.

Example

/services/mobility# show config

Topology : point-to-point Role : SS Rel 7 : False

Network Id : mobilityTest BS OOS broadcast : Enabled BS OOS timeout : 180 (s)

Home Check: Disable Link Id: AutoconfSSID

Displaying Link Status

/services/mobility/show link-state

This command displays the status of the primary and secondary links.

Mobile Backhaul Point-to-point Links

Example

/services/mobility# show link-state

LINK ROLE	INTERFACE	CH	RSSI	MESH ID	NODE IP	NODE NAME
Primary	wifi-3-1	148	-44	mobilityTest	10.1.1.13	ba100tBSmode
Secondary	wifi-2-1	151	-40	mobilityTest	10.1.1.209	BA200CEM209

Displaying Scan Results

/services/mobility/show available-infra

This command displays detected channel links and base station MAC addresses. Use AVL-BS (link not in use by another node), ENBL-BS (base station mode enabled) and NET-ID-MATCH (match with shore unit) to determine why some links may not connect.

Example

/services/mobility# show available-infra

Managing Interfaces

```
/services/mobility/add interface <interface-name>
/services/mobility/del interface <interface-name>
/services/mobility/show interface-list
```

These commands let you manage which interfaces are in the mobile backhaul point-to-point configuration.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

Example

```
/services/mobility# show interface-list
Mobility BS Interfaces:
    wifi-2-1
    wifi-3-1
```


Mobile Backhaul Point-to-point Links

Managing the Scan List

```
/services/mobility/add scan-list <1-8> <chan_nums>
/services/mobility/add scan-list <1-8> <chan_nums>
/services/mobility/show scan-list {<1-8> |all}
```

These commands let you manage the contents of up to eight scan lists.

Example

```
/services/mobility# show scan-list 2
Scan list [2] channels:
61 148 151
Scan list [2] used by:
wifi-2-1 (5GHz 802.11a)
wifi-3-1 (5GHz 802.11a)
```

Associating a Scan List to an Interface

```
/services/mobility/connect scan-list <1-8> <interface-name> /services/mobility/disconnect scan-list <1-8> <interface-name>
```

These commands let you manage which interface uses which scan list.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

Configuring RSSI Threshold

This command lets you configure the RSSI parameters that the BelAir20E use to determine the viability of creating primary and secondary links.

The *minimum* parameter specifies the minimum signal strength required to connect.

The *switch* parameter defines the signal strength level at which a link switch occurs, provided the secondary link is better by at least the specified *margin* set and has an signal strength better than *secondary*.

If the secondary link falls below the secondary threshold, the subscriber station begins scanning with its third or fourth radio if they exist.

Example

```
/services/mobility# set RSSI minimum -85 margin 5 switch -70 secondary -75
```


Mobile Backhaul Point-to-point Links

Primary Link Drop

/services/mobility/set p2p-mobile drop-primary-at-min-rssi {true|false}

Once a link has been established based on the RSSI threshold parameters, the BelAir20E can maintain the link, even if the signal strength drops below the minimum threshold setting.

This commands let you configure this feature. If set to *false*, the BelAir20E maintain the link even when the signal strength drops below the minimum threshold setting. If set to *true*, the BelAir20E drops the link.

Mobile Link Identifier

/services/mobility/set network-identifier <net_id>

This command lets you configure a mobile link identifier, consisting of up to 20 characters.

Example

/services/mobility# set network-identifier mobilityTest

Home Check

/services/mobility/set home-check {enabled|disabled} <home_id>

This command lets you configure and activate the home check feature which forces a subscriber station to connect to specific base station links. When home check is enabled, the subscriber station accepts only base station links that advertise a mobile link identifier that is exactly the same as the subscriber station's home-check identifier.

The specified home-check identifier can of up to 20 characters.

Base Station Out-of-service Check

```
/services/mobility/set bs-oos-timeout <time-out>
/services/mobility/set bs-oos-broadcast {enabled | disabled}
```

These commands apply to base stations only. They let you configure and activate the behavior when the base station can no longer egress traffic to an outside network. The <time-out> parameter is a timer in seconds. Values range from 60 to 86400. The default value is 300 seconds.

These commands work in conjunction with the *set system-egress-point* command described in <u>"Setting the Network Egress Point"</u> on page 54:

 If the system egress point is set to direct, then the base station out-of-service timer starts when the Ethernet link becomes unavailable. If the timer expires and the Ethernet link is still unavailable, then the base station is taken out of service by prepending bsOutOfService to the mobile link identifier.

Mobile Backhaul Point-to-point Links

If the system egress point is set to *indirect* with a gateway IP address, then
the base station pings the gateway IP address and starts the out-of-service
timer if it does not receive a reply. If the timer expires and the gateway still
does not reply, then the base station is taken out of service by prepending
bsOutOfService to the mobile link identifier.

Release 7 Compatibility

/services/mobility/set release-7-compatibility {true|false}

This command lets you connect a subscriber station to a base station running Release 7.1.0 software.

Single Channel Mesh

Normally, BelAir units create a wireless mesh between themselves using multiple radio channels to avoid radio interference. However, in some mobile applications, in may be desirable to have all radios use a single channel. Such an application requires that all radios use directional antennas and are correctly positioned to avoid radio interference.

This command allows you to configure such an application, where all radios use a single channel. This command must be invoked on each node in the mesh.

The *<chan no>* parameter allows you to specify which channel to use.

The < link_id> parameter is case sensitive and can be up to 32 alphanumeric characters. BelAir Networks recommends that the link identifier describes the link; that is, the nodes it connects.

The *privacy* setting determines whether AES privacy is used or not.

The pre-shared key must be exactly 32 bytes long (16 characters). The pre-shared key can be specified as a hexadecimal or ASCII string and must not contain the following characters:

- bar(|)
- semicolon (;)
- question mark (?)
- double quotation mark (")

The *allow-multi-link* setting determines whether both a primary and secondary links are created between each node in the mesh or just a primary. Multiple links increase redundancy, but in a single channel mesh application may limit the number of inter-connected nodes. The default is *no*.

Mobile Backhaul Point-to-point Links

When a single channel mesh is created, the resulting links are simple point-to-point backhaul links, as described in "Wi-Fi Backhaul Link Configuration" on page 115. Typical mobile backhaul point-to-point notions, such as scan-lists, RSSI thresholds, and primary and secondary links, do not apply to them.

Operating in High Capacity and Interference Environments

Operating in High Capacity and Interference Environments

High Capacity and Interference (HCI) environments usually have the following characteristics:

- high number of wireless clients in a relatively small geographic area
- wireless traffic is restricted to relatively few wireless APs
- · sudden surges of demand for connectivity
- building structure or geometry may restrict connectivity

Stadiums and other sports venues are typical examples. In such locations when a sports event occurs, several thousand wireless clients can suddenly request connectivity to a network of Wi-Fi Access Points.

The BelAir20E provides several features that you can adjust to optimize performance in such an environment. These include:

- Modulation Rate Control, described on page 139
- VLAN based QOS, described on page 139
- <u>Traffic Priority Based on Modulation Rate</u>, described on <u>page 140</u>
- No SSID on Egress Down, described on page 140
- Ethernet Port Statistics, described on page 140
- Access Receive and Transmit Error Statistics with SNMP Support, described on page 141
- Noise Floor Support, described on page 141
- Access Packet RSSI Filter, described on page 141
- Effective Mesh Path Selection, described on page 141
- Blacklist SNMP Support, described on page 141
- Client Association Records, described on page 142
- CTS-to-Self Control, described on page 142
- DHCP to Attached Clients Only, described on page 142
- ARP to Attached Clients Only, described on page 142
- Upstream Broadcast Filter, described on page 142

Operating in High Capacity and Interference Environments

- Secure Port Mode, described on page 143
- Wireless Bridging, described on page 143
- Client Load Balancing, described on page 143
- Client Authentication History, described on page 144
- Automatic Mesh Connect, described on page 144
- <u>Traffic Test Tool</u>, described on <u>page 144</u>

Modulation Rate Control

This feature allows the operator to directly control the allowed modulation rates (and select the basic rates). This increases network efficiency in HCI environments through the following effects:

- Collisions cause retransmissions that usually occur at a reduced modulation rate. Ongoing collisions reduce the starting modulation rate for packets.
 Use this feature to eliminate lower modulation rates and put a lower bound on this effect.
- Eliminating lower modulation rates also eliminates distant clients (low RSSI) and clients in high noise areas (low SNR).

For details, see "AP Custom Rates" on page 81.

VLAN based QOS

This feature allows the operator to control the relative priority of traffic on a per-VLAN basis.

By mapping certain VLANs onto higher priorities in HCI environments, the traffic on those VLANs can obtain preferential access to the airwaves at the expense of other traffic which is forced to wait.

The usefulness of this feature is limited if the overlap of the BelAir APs is significant. It is most effective when overlap is small and the interference comes from third-party APs.

The relevant commands are:

- /interface/wifi-<n>-<m>/set ssid <ssid>
 service-set-identifier <ssid-name> broadcast vlan <vlan-id>,
 described in detail in "Configuring SSIDs" on page 91.
- /qos/set vlan-to-queue-mapping <vlan-id> <queue-id>, described in detail in "Prioritizing Traffic using VLAN IDs" on page 178.

Operating in High Capacity and Interference Environments

Traffic Priority Based on Modulation Rate

A Wi-Fi AP sorts traffic according to priority and transmits it by priority in order of arrival. Different QOS schedulers (EDCA, LSPQ, SPQ) result in different performance for the various priorities.

This feature applies a priority based on modulation rate on top of the QOS priority. It tries to give clients equal amounts of air-time instead of equal numbers of packets. The result in HCI environments is that more packets are sent to clients who are using higher modulation rates, increasing the effective bandwidth.

For details, see "Rate Aware Fairness" on page 78.

No SSID on Egress Down

When this feature is enabled, all SSIDs on a radio can be modified with a text string, such as *outOfService*, when a node loses its egress connection. In HCI environments, this feature prevents traffic from being uselessly directed to a node which can not successfully forward it.

This feature can be enabled or disabled on per radio basis. The text string can be configured on a per-SSID basis.

The relevant commands are:

- ' /interface/wifi-<n>-<m>/set ap-oos-broadcast
 {enabled|disabled} [option {replace|prepend}] and /interface/
 wifi-<n>-<m>/set ssid <ssid-number> ap-oos-identifier
 <oos_string> described in detail in "Out-of-service Advertising" on
 page 95.
- /system/set system-egress-point {yes {direct|indirect gateway-ip <ip_addr>}|no} described in detail in "Setting the Network Egress Point" on page 54.

Ethernet Port Statistics

Ethernet port statistics are available for the BelAir200, BelAir100, BelAir100C and BelAir100T. In HCI environments, these statistics measure the traffic passing through the node if its Ethernet port is connected to an external network.

The relevant command is /interface/eth-1-1/show statistics, described in detail in the *Troubleshooting Guide*.

The output includes:

- received octets, unicast packets, multicast packets, broadcast packets and discarded packets
- transmitted octets, unicast packets, multicast packets and broadcast packets

Operating in High Capacity and Interference Environments

Access Receive and Transmit Error Statistics with SNMP Support

BelAir radios provide extensive statistics for insight into network behavior and to guide network optimization.

The relevant commands are:

- /interface/wifi-<n>-<m>/show statistics
- /interface/wifi-<n>-<m>/show pm
- /interface/wifi-<n>-<m>/show client

These commands are described in detail in the *Troubleshooting Guide*.

Noise Floor Support

In HCl environments, accurate noise floor data is critical for channel planning and to interpret performance statistics. Noise floor reporting is available through SNMP for all radios:

- For newer radios, such as the ERMv5, instantaneous and average noise floors are reported.
- For older radios, such as the ARMv3, instantaneous and average noise floors are reported but the value is the same for both.
- SNMP reports the average noise floor value.

You can also use the command /interface/wifi-<n>-<m>/show rf-survey, described in detail in the *Troubleshooting Guide*, to show the instantaneous noise floor.

Access Packet RSSI Filter

This feature blocks clients from associating if their RSSI is below a threshold value. This prevents clients that would be forced to use a low modulation rate from associating. In an HCI environment, contention is already high so it is preferable to exclude clients that make inefficient use of air-time.

Effective Mesh Path Selection

Higher modulation rates are strongly preferred in HCI environments. BelAir Networks' mesh path selection software favors paths with good RSSI, and therefore higher modulation rates, even at the cost of a few more hops. Field testing has shown increasing the number of hops may increase airtime slightly, but using a path with poor RSSI can increase the airtime significantly as the modulation rate decreases with poor RSSI.

Blacklist SNMP Support

BelAir nodes support adding and deleting backhaul blacklist members through SNMP. This allows operators using BelView Network Management System

Operating in High Capacity and Interference Environments

(NMS) Release 6 or later to override the mesh paths selected by particular BelAir nodes to optimize performance.

Client Association Records

In HCI environments, client associations are often of short duration and the connection data is discarded rapidly to support newer clients. This causes some associations to be missed by the polling cycle of the NMS.

To increase the measurability of the network, BelAir nodes maintain a circular buffer containing information, such as client MAC and IP address, RSSI, and connection duration, about current and recently associated clients. These client records can be used to assist the NMS.

CTS-to-Self Control

Normally, an 802.11g AP uses CTS-to-self to interact with 802.11b APs. The transmitted packet is small, but in HCI environments the accumulated effect is a substantial performance penalty. This feature disables 802.11b protection for the radio, maximizing the throughput for wireless clients that operate in the 2.4 GHz range.

This feature improves performance if there are only a few 802.11b clients present and they are not generating large amounts of traffic. If not, the 802.11b clients may generate substantial numbers of collisions and actually impair traffic.

For details, see "802.11b Protection" on page 98.

DHCP to Attached Clients Only

This feature prevents the radio from forwarding DHCP responses for MAC addresses that are not used by an associated client, thus reducing the number of transmitted packets and improving bandwidth use. This feature is always enabled.

ARP to Attached Clients Only

This feature prevents the radio from forwarding ARP requests for IP addresses that are not used by an associated client, thus reducing the number of transmitted packets and improving bandwidth use.

For details, see "ARP Filtering" on page 97.

Upstream Broadcast Filter

When enabled, this feature limits the types of multicast and broadcast packets passed through the AP:

 In the upstream direction (from the client), only ARP requests, DHCP requests and DHCP discover messages are allowed.

Operating in High Capacity and Interference Environments

 In the downstream direction (to the client), only ARP response, DHCP offer, DHCP ACK, and DHCP NAK are allowed.

In HCI environments, this feature reduces the overall traffic load by reducing broadcast flooding throughout the network.

For details, see "Filtering Broadcast and Multicast Packets" on page 96.

Secure Port Mode

Secure port mode forces all client communications to be directed toward a specified MAC address or group of MAC addresses. It also prevents a client claiming to be one of these MAC addresses from associating.

In HCl environments, this feature forces all traffic to flow to or from the network gateway. This can be used to allow traffic policy enforcement. It prevents direct inter-client communication that could load down the network.

For details, see "Controlling Inter-client Communication" on page 110,

Wireless Bridging

The wireless bridging feature allows traffic to be forwarded directly from one client to another within the AP. In HCI environments, it should be disabled.

As with secure port mode, this feature controls whether all traffic flows to the network gateway and can be used to allow traffic policy enforcement. It prevents client-to-client direct communication that could load down the network.

For details, see "Controlling Inter-client Communication" on page 110,

Client Load Balancing

BelAir nodes allow you to configure the maximum number of associated clients per radio. If the number of associated clients exceeds the configured value, new clients are not allowed to connect.

In HCI environments, limiting the number of associated clients:

- reduces the number of collisions. (Each client attempts to transmit after a random back-off. With many clients the probability of collision is greatly increased.)
- limits the total traffic offered
- forces traffic to be distributed over different APs operating on different channels

For details, see "Wireless Client Load Balancing" on page 85.

Operating in High Capacity and Interference Environments

Client Authentication History

This feature lets the operator display the details of the association and authentication process of the clients connected to the AP. In HCI environments, it can be used to troubleshoot client issues and determine how much success clients are having when attempting to access and use the network.

The relevant command is /interface/wifi-<m>-<n>/show authentication history [mac <mac-address>], described in detail in the *Troubleshooting Guide*.

Automatic Mesh Connect

This feature allows BelAir APs to automatically reconnect to a network if they lose their egress connection. A cluster of meshed nodes may lose their egress connection if the ethernet connection to the exterior network fails or if a node fails. In this case, a member of the cluster looks for an alternate mesh to join and reconnect the isolated cluster.

In HCl environments, this feature can be used for rapid deployment of a network. The APs in a network can be grouped by shared backhaul link identifier into a cluster. Multiple clusters can be deployed to control traffic flows and optimize backhaul performance.

As soon as one AP in each cluster has an egress path, the whole cluster has egress. In the event that an egress fails, a cluster can self-repair by reconnecting to one of the other mesh clusters.

Traffic Test Tool

This tool provides an internal mechanism to measure the available traffic capacity of the network. The tool reports the throughput on a hop-by-hop basis from the node under test to the destination IP address (another node in the network).

In HCl environments, this tool can be used to test the network deployment during the commissioning phase. It can be used to determine the theoretical capacity of the network and identify poorly performing links.

The relevant command is:

The command is described in detail in the *Troubleshooting Guide*.

DHCP Relay Settings

DHCP Relay Settings

This chapter describes how to configure your unit's DHCP Relay agent settings.

You can configure up to five profiles for the DHCP Relay agent on your BelAir20E. Each profile specifies a subnet interface, which can be either the node's system interface or a VLAN. The DHCP server assigns an IP address to the client according to the subnet of this interface.

Each profile also contains the IP addresses for up to three DHCP servers. When a profile is activated, the DHCP agent forwards a DHCP request to all the listed servers. The DHCP client receives packets from the first server to respond to the request.

Profiles offer an easy way of configuring different DHCP servers for each subnet interface.

Your BelAir20E can also add BelAir Networks specific information to the DHCP packets sent to the wireless client.

Finally, you can create a list of valid IP address subnets to filter out unwanted directed and broadcast DHCP packets from your wireless network.

The following topics are covered in this chapter:

- "Displaying the DHCP Relay Configuration" on page 145
- "Modifying DHCP Relay Parameters" on page 146
- "Interface Administrative State" on page 147
- "Assigning SSID Traffic to Use DHCP Relay" on page 147
- "DHCP Address Filtering" on page 147

See also "Providing Vendor Specific Information" on page 93.

Displaying the DHCP Relay Configuration

The show config command displays DHCP Relay configuration:

 Use show config to display information for all DHCP Relay profiles and all configured DHCP allowed subnet entries.

BelAir20E User Guide DHCP Relay Settings

 Use show config relay all to display information for all DHCP Relay profiles only.

- Use *show config relay <relay-idx>* to display information on the specified DHCP Relay profile.
- Use show config dhcp-allowed-subnet all to display all configured DHCP allowed subnet entries.
- Use *show config dhcp-allowed-subnet <index 1-32>* to display information on the specified DHCP allowed subnet entry.

Example

```
/protocol/dhcp# show config
```

Modifying DHCP Relay Parameters

The set relay command creates a DHCP Relay profile or modifies an existing one. It configures the IP addresses of the DHCP servers to which the Relay Agent needs to forward the packets from the client. You must specify at least one DHCP server IP address and the type of interface; either system or a VLAN. The VLAN must be a valid VLAN management interface.

The *vlan_id* parameter specifies that traffic be directed to the specified Virtual LAN (VLAN). The VLAN ID is an integer from 1 to 2814.

The *del relay* command removes only one IP address from each profile. To completely clear a profile, you must use the *del relay* command up to three times.

Before clearing the profile, you must first make sure that no SSID is using that profile.

DHCP Relay Settings

Interface Administrative State

/protocol/dhcp/set relay <relay-idx> admin-state {enabled|disabled}

Assigning SSID Traffic to Use DHCP Relay This command allows you to activate individual DHCP relay profiles. When enabled, the Relay Agent forwards the packets from the client to the DHCP servers specified in the profile.

This command assigns which SSID traffic uses the node's DHCP relay functionality. Perform this step after the DHCP Relay profile is added and enabled.

Once DHCP relay functionality is enabled for the SSID, your BelAir20E automatically adds DHCP Option 82 information (that is, relay agent information) to the DHCP packets for that SSID sent to the wireless client and DHCP server. For details, see "Providing Vendor Specific Information" on page 93.

The *ssid_index* parameter is an integer from I to 8. Use the *show ssid table* command to determine *<ssid_index>*.

DHCP Address Filtering

This feature reduces unnecessary or unwanted directed and broadcast DHCP packets from your wireless network.

First, use the /protocol/dhcp/set command to generate a list of valid IP subnets and masks for this node. Your list can contain up to 32 members. To remove an entry from the list, set the IP address and the mask to 0.0.0.0.

Then, use the /interface/wifi-<n>-<m>/add command to assign a member of that list to an SSID. The ssid_index parameter must be a valid SSID index. Use the /interface/wifi-<n>-<m>/add command repeatedly to add more than one entry to an SSID. Each SSID can have up to 32 entries. Entries for different SSIDs can overlap.

DHCP Relay Settings

When a Wi-Fi client sends DHCP Request packets and the requested IP addresses are not within the allowed subnet entries for the SSID, the BelAir AP intercepts the Request and sends a DHCP NAK response.

Use the equivalent /interface/wifi-<n>-<m>/del command to remove a subnet entry from an SSID. The /interface/wifi-<n>-<m>/set command allows you to enable or disable DHCP address filtering on individual SSIDs.

Use the /interface/wifi-<n>-<m>/show ssid (ssid_index> config command to display whether DHCP address filtering is enabled for the SSID and the allowed subnets for the SSID.

Network Address Translation

Network Address Translation

Network Address Translation (NAT) allows the BelAir20E to modify network address information in packet headers to remap a given address space into another. This technique can hide several private network IP addresses behind a single IP address in another public address space.

The BelAir20E implements NAT IP masquerading, where the BelAir20E acts as a DHCP server to assign IP addresses in the private network starting from a specified base IP address. NAT applies only to traffic entering and leaving the BelAir20E through its Ethernet interface.

The BelAir20E lets you configure up to eight NAT address scopes. For each scope, you can associate different VLAN traffic, a different base IP address and different DHCP lease settings.

You can use NAT with or without Universal Access Method (UAM) to provide user authentication, client authentication and accounting information. For details on configuring and enabling UAM, see "Universal Access Method" on page 154. If you use NAT with UAM, ensure that the same VLANs are configured in both NAT scopes and UAM scopes.

The BelAir20E can provide both NAT and Layer 2 tunnels. User traffic separation is based on VLANs. If you use both NAT and Layer 2 tunnels, make sure that your VLANs are mapped to either an NAT scope or a Layer 2 tunnel, but not both. Refer to "Using Layer 2 Tunnels" on page 163 for a description of Layer 2 tunnels.

The following tasks can be done:

- "Displaying the Operational Status" on page 150
- "Displaying the Current DHCP Lease Status" on page 150
- "Displaying the DHCP Lease History" on page 150
- "Configuring Network Address Translation" on page 151
- "Preventing Node Management from within the Scope" on page 151
- "Enabling or Disabling Individual Scopes" on page 152
- "Changing NAT Admin State" on page 152
- "Managing Nodes in a NAT Cluster" on page 152

Network Address Translation

Displaying the Operational Status

/protocol/nat/show status

This command displays NAT operational status and settings.

Example

/protocol/nat# show status

NAT admin state is DISABLED, oper state is NOT RUNNING

Egress interface - eth-1-1

Dns1: undefined
Dns2: undefined

DHCP scopes:

Num	Status	VLAN	IP subnet	Lease(min)	Mgmt
=====	=======	====	=========	=========	====
1	enabled	untg	192.168.5.0	60	no
2	disabled	0	0.0.0.0	0	no
3	disabled	0	0.0.0.0	0	no
4	disabled	0	0.0.0.0	0	no
5	disabled	0	0.0.0.0	0	no
6	disabled	0	0.0.0.0	0	no
7	disabled	0	0.0.0.0	0	no
8	disabled	0	0.0.0.0	0	no

Displaying the Current DHCP Lease Status

/protocol/nat/show dhcp-leases

This command displays DHCP lease status and settings.

Example

/protocol/nat# show dhcp-leases

IP address	MAC address	State
Scope 1 192.168.5.254	00:0d:67:10:e8:1a	
Scope 2 no entries -		

Displaying the DHCP Lease History

/protocol/nat/show leases history

This command displays DHCP lease history.

Network Address Translation

Example

/protocol/nat# show leases history

IP address	MAC address	Lease & State
==========	===========	
192.168.5.254	00:0d:67:10:e8:1a	starts 2 2009/08/04 12:04:24 - State active
192.168.5.254	00:0d:67:10:e8:1a	starts 2 2009/08/04 12:34:24 - State active

Configuring Network Address Translation

This command lets you configure the NAT settings for each address scope.

The *dhcp-server* setting lets you specify which VLAN traffic to associate to the scope. The *untagged* setting specifies that the scope applies only to untagged traffic. The *vlan* <*VLAN ID*> settings specifies that the scope applies only to traffic with that VLAN ID. VLAN IDs cannot be shared across different scopes. The default setting is *untagged*. Refer to "Layer 2 Network Configuration" on page 183 for more information on VLAN configuration.

The *based-ip* setting lets you specify the base IP address for the scope. Use xx.xx.xx.0 as the format. Once specified, the BelAir20E IP address becomes xx.xx.xx.1 and it begins to allocate addressed from xx.xx.xx.2 to xx.xx.xx.254.

The *lease-time* setting lets you specify the maximum DHCP lease time in minutes for IP addresses supplied by NAT. The default is 60 minutes. Other DHCP server settings are based on those specified in "Configuring Dynamic IP Addressing" on page 45.

The optional *num-entries* setting lets you specify the maximum number of IP addresses that can be allocated to clients in this scope. Values range from I to 253. The default value is 253.

By default, scope I is preconfigured for untagged VLAN traffic with a base IP address of 192.168.5.0.

Preventing Node Management from within the Scope

```
/protocol/nat/set scope <index (1-8)> management {enabled | disabled}
```

This command lets you control whether clients within a particular scope can access the BelAir20E's management interface. The default setting is *disabled*, meaning that the nodes within that scope cannot access the management interface of the BelAir20E providing NAT.

		A .	- 0.7	A =					
- 5	اه	Δп	r20	813	00	ar i		а	Δ

Network Address Translation

Enabling or Disabling Individual Scopes

This command lets you enable or disable individual NAT scopes. The default setting is *disabled*.

Changing NAT Admin State

/protocol/nat/set admin-state {enabled | disabled}

This command lets you enable or disable NAT functionality. The default setting is *disabled*.

When you enable or disable NAT functionality, you must:

- I Issue the *config-save* command. See <u>"Saving your Changes" on page 21</u> for details.
- 2 Reboot the node. See "Activating a Software Load" on page 201 for details.

Managing Nodes in a NAT Cluster

This section describes functions that you can use to manage nodes that are part of a NAT cluster.

In a NAT cluster, one BelAir20E serves as an egress point to several other BelAir nodes. The egress BelAir20E uses NAT to provide IP addresses to the BelAir nodes that are cluster members.

In such a configuration, the cluster members are normally hidden from network management behind the egress BelAir20E. To help manage the cluster members, you can use the egress BelAir20E functions described in the following sections:

- "Mac Address to IP Address Mapping" on page 152
- "Port Forwarding" on page 152

Mac Address to IP Address Mapping

These commands let you specify which IP address to provide to specific cluster members based on their MAC address.

Port Forwarding

These commands let you create a port forwarding table for TCP or UDP traffic. If a station managing nodes in a NAT cluster needs to send TCP or UDP traffic

Network Address Translation

addressed to a particular application (for example, Telnet, web, or SNMP) on particular node within the cluster, it can specify:

- the IP address of the egress node as the destination address
- the port as defined for the application in question for the egress node as the destination port

The egress node can then use the port forwarding table to translate the destination port to the correct port and IP address for the intended target node in the cluster.

For example, if Node 2 in a cluster has an IP address 182.168.5.2, then to send Telnet (TCP port 23) traffic to Node 2, you must:

- Define the following port forwarding entry on the egress node: add port-fwd protocol tcp port XXXX dest-ip 192.168.5.2 dest-port 23
- 2 Execute the following command on your management station:

```
telnet Y.Y.Y.Y XXXX
```

where Y.Y.Y.Y is the public IP address of egress node.

The port forwarding table can contain up to 32 entries.

Universal Access Method

Universal Access Method

The Universal Access Method (UAM) is key element of BelAir's Policy Enforcement Point (PEP) module. UAM is a simple authentication method where a user needs only a Web browser. When a user requests a URL, the request is checked against a series of white lists containing hosts, MAC addresses and protocols.

The user's request is granted if any of the following conditions are met:

- The requested URL or its equivalent IP address is on the host white list.
- The MAC address of the user's client is on the MAC white list.
- The user's request uses DHCP, DNS, ARP or any protocol you put on the protocol white list with the add scope <n> protocol-white-list command.

Otherwise, the user is redirected to a Web server that displays a page requesting credentials. The supplied credentials are then sent to a RADIUS authentication server. Once authenticated, the user is redirected to the URL they originally requested. The user can terminate their authenticated session by using functions provided by the Web server (such as a logout button) or by entering the http://l.l.l.l./ URL.

Note: UAM requires the use of a DNS server to resolve supplied URLs to IP addresses.

Finally, through correct provisioning of the RADIUS server, the BelAir20E's implementation of UAM also allows you to enforce client access policies:

- It can perform client MAC address authentication when a client associates to the AP, even before the user supplies a URL.
- It can enforce policies based on the attributes listed in <u>Table 12</u>.

Table 12: Attributes for UAM Client Access Policy Enforcement

RADIUS Attribute	Value used if unspecified by RADIUS
Session idle timeout	5 minutes
Client session timeout	Unlimited
Total client traffic	Unlimited
Maximum downstream client traffic	Unlimited

Universal Access Method

Table 12: Attributes for UAM Client Access Policy Enforcement (Continued)

RADIUS Attribute	Value used if unspecified by RADIUS
Maximum upstream client traffic	Unlimited
Termination time	Unlimited

As well, UAM can also provide accounting information, again depending on correct provisioning of the RADIUS server.

The BelAir20E lets you configure up to eight UAM scopes. For each scope, you can:

- · create different UAM white lists
- associate different VLAN traffic
- gather different session accounting records
- enforce different client access policies

The following tasks can be done:

- "Displaying the Current Configuration" on page 156
- "Displaying the Operational Status" on page 156
- "Displaying the Client Session Information" on page 157
- "Specifying the Web Server" on page 158
- "Specifying Redirection Variable Pairs" on page 159
- "Specifying the RADIUS Server" on page 159
- "Managing White List Entries" on page 159
- "Associating VLAN Traffic to a Scope" on page 160
- "Performing MAC Address Authentication" on page 160
- "Collecting Accounting Information" on page 161
- "Operating in WAN Mode" on page 162
- "Changing UAM Admin State" on page 162

Universal Access Method

Displaying the Current Configuration

/services/uam/show config [scope <index (1-8)>]

This command displays the current UAM configuration. Specifying a scope displays just that scope.

Note: This command displays only the host, mac and protocol white list entries that you control through the *add* and *del* commands. (See "Managing White List Entries" on page 159.) This commands does not display the white list entries that the BelAir20E automatically tracks internally.

Example

```
/services/uam# show config scope 2
Scope 2 Configuration:
                                 Enabled
admin state: .....
mac authentication state:.....
                                 Enabled
mac authentication password:....
mac authentication success redirect: Enabled
mac authentication reject suspend:
                                 Enabled
accounting state:.....
                                 Enabled
authentication web server url:...
                                 http://
secure2.worldspot.net/wk/Uam
authentication shared secret:....
                                 Mm94XVjzug
splash web server url:.....
uam local interface:.....
                                 System
wan-mode admin state: ......
                                 Disabled
wan-mode web server key:.....
radius servers:.....
radius nasid:.....
                                 BelAirHotspot
host-white-list:
  www.paypal.com
  www.paypalobjects.com
  paypal.112.207.net
  www.belairnetworks.com
mac-white-list:
protocol-white-list:
vlan-list:
    10
added redirect variable pairs:
  ssid mySsid
  locationId
              myLocation
```

Displaying the Operational Status

/services/uam/show status [scope <index (1-8)>]

This command displays UAM operational status and settings.

Example

/services/uam# show status scope 2

Universal Access Method

```
Scope 2 Status:
admin state: ..... Enabled
mac authentication state:.... Enabled
accounting state:.... Enabled
authentication web server ip:.... secure2.worldspot.net
       resolved IP addresses:
              69.64.50.37
authentication shared secret:.... Mm94XVjzug
splash web server ip:.....
       resolved IP addresses:
radius servers:..... 2
radius nasid:..... BelAirHotspot
host-white-list:
       www.paypal.com:
              resolved IP addresses:
                     66.211.169.2
                     66.211.169.65
                     64.4.241.33
                     64.4.241.49
       www.paypalobjects.com:
              resolved IP addresses:
                     184.29.112.146
       paypal.112.207.net:
              resolved IP addresses:
                     66.235.139.118
                     66.235.138.18
                     66.235.139.121
                     66.235.138.19
       www.belairnetworks.com:
              resolved IP addresses:
                     206.191.51.223
       optimumwifi.optimum.net:
              resolved IP addresses:
                     167.206.247.50
mac-white-list:
protocol-white-list:
vlan-list:
    10 800
local info:
   radius-server-index:..... 2
   radius-local-ip:..... 10.100.1.9
   uam-local-ip:..... 10.100.1.9
   uam-logout-ip:..... 1.1.1.1
/services/uam/show client-session
```

Displaying the Client Session Information

[{ip <ip_str>|mac <mac_str>|scope <num_str>}]

This command displays UAM client session information.

Example

/services/uam# show client-session

Universal Access Method

```
Client-Session:
ip address: ...... 10.100.1.210
Mac address: ...... 00:1E:E5:DE:DD:C5
Scope: ..... 1
Vlan: ..... untag
Authenticated: ..... yes
User Name: ..... BAunlim
Redirect url: .....
User url: ...... http://fxfeeds.mozilla.com/
en-US/firefox/headlines.xml
Bandwidth MaxUp: ..... 0
Bandwidth MaxDown: .....
Max Input Octets: ..... 0
Max Output Octets: ..... 0
Max Total Octets: ..... 0
Timeout: ..... 14526
Idle Timeout: ..... 300
Accounting interim Interval: ... 600
Terminate Time: ..... 0
Start Time: ..... 1280150841
Last Active Time: ..... 1280150841
Last Accounting Update Time: ... 1280150841
Last Radius Request Time: ..... 1280150841
Input Packets: ..... 0
Output Packets: ..... 0
Input Octets: ..... 0
Output Octets: ..... 0
Input Gigawords: ..... 0
Output Gigawords: ..... 0
Internal Usage Info:
Radius Session Id: ..... 547999736
Radius Uam Port: ..... 41
Radius Act State: ..... 4
Uam Challenge Start Time: ..... 1280150841
Suspend Time: ..... 60
Suspend Start Time: ..... 0
Current Time: ..... 1280150905
/services/uam/set scope <index (1-8)> auth-url <url-string>
                             shared-secret <string>
```

Specifying the Web Server

```
[splash-url <url-string>]
[uam-interface {system | {vlan <vlan-str>}}]
```

This command lets you specify the URL of the Web server for individual UAM scopes.

The splash URL specifies a special usage web page (for example, advertisement). If it is configured, the AP redirects the user to the splash page instead of authentication page. The splash page then redirects the user to authentication server. The AP does not control the behavior of the splash page.

If the splash-url parameter is not specified, then the user is sent directly to the authentication server.

Universal Access Method

Both the *splash-url* and the *auth-url* (if specified) are automatically tracked internally as UAM host white list entries.

The *uam-interface* parameter is used for communications between the wireless client and BelAir20E. You can set the uam-interface to be the BelAir20E's system IP address, or a particular VLAN interface. The default is the system interface.

Specifying Redirection Variable Pairs

```
/services/uam/add scope <index (1-8)> redir-var
name <variable-name> value <variable-value>
/services/uam/del scope <index (1-8)> redir-var
name <variable-name>
```

This command lets you specify up to five pairs of redirection variables for individual UAM scopes. Each pair consists of a variable name and value.

Variable names and values can contain up to 49 characters.

Refer to "Specifying the Web Server" on page 158. The AP appends all of the redirection variable pairs to the *splash-url* string before sending it to the wireless client. The redirection variable pairs are appended in the order they appear in the *show config* command.

Specifying the RADIUS Server

```
/services/uam/add scope <index (1-8)> radius-server <server_idx> /services/uam/del scope <index (1-8)> radius-server <server_idx> /services/uam/set scope <index (1-8)> uam-nasid <name>
```

The *add* and *del* commands let you associate different RADIUS servers with different UAM scopes. See "Managing RADIUS Servers" on page 104 for a description on how to set up RADIUS servers. Each UAM scope can have up to four RADIUS servers.

The *set* command lets you specify the RADIUS Network Access Server (NAS) identifier. The default value for *<name>* is *BelAirNetworks*.

Managing White List Entries

```
/services/uam/add scope <index (1-8)> host-white-list <host name>/services/uam/del scope <index (1-8)> host-white-list <host name>/services/uam/add scope <index (1-8)> mac-white-list <mac addr>/services/uam/del scope <index (1-8)> mac-white-list <mac addr>/services/uam/add scope <index (1-8)> protocol-white-list {icmp}/services/uam/del scope <index (1-8)> protocol-white-list <index (1-
```

These commands let you add or remove entries from the host, MAC address and protocol white lists.

Universal Access Method

Host entries can contain URLs or IP addresses. The host white list and the MAC address white list can have up to 10 entries. The protocol white list can be empty or contain *ICMP* only.

In addition to the entries you control with these *add* and *del* commands, the AP has an internal white list that contains the DHCP, DNS and ARP protocols, and the URLs for the authentication server and the splash page (if specified).

Example

/services/uam# add scope 1 host-white-list www.mysite.com

Associating VLAN Traffic to a Scope

```
/services/uam/add scope <index (1-8)> vlan {<vlan-list>|untag} /services/uam/del scope <index (1-8)> vlan {<vlan-list>|untag}
```

These commands let you associate different VLAN traffic with different UAM scopes. If you specify *untag*, then untagged traffic is associated with the specified UAM scope.

See "Configuring IP Parameters" on page 45 for a description on how to set up VLANs for dynamic and static IP addressing.

Performing MAC Address Authentication

This command lets you control whether or not client MAC address authentication is performed when a client attempts to associate to the AP.

When this feature is enabled, the AP determines the client's MAC address when the client attempts to associate with AP. The AP then sends the MAC address to the RADIUS server for authentication. If the server authenticates the MAC address, then the user has full access to the Internet when the association completes. If the RADIUS server does not authenticate the MAC address, then the user must provide credentials through the typical UAM mechanism (Web server, RADIUS server, white lists) before they can access the Internet. The default setting is *enabled*.

The *passwd* parameter provides an alternate password to log into the RADIUS server.

Universal Access Method

The *success-redir* parameter allows you to control the behavior of the AP if the RADIUS server authenticates the user and responds with a Redirection-URL as part of the WISPr Vendor Specific Attribute:

- If success-redir is enabled and the RADIUS server provides a Redirection-URL, the client is redirected to the URL the first time it associates to the AP. Afterwards, the user has full access to the Internet.
- If *success-redir* is disabled and the RADIUS server provides a Redirection-URL, then the AP ignores the provided URL.

By default, the *success-redir* parameter is disabled.

The *reject-suspend* parameter allows you to control the behavior of the AP if the RADIUS server does not authenticate the user. The RADIUS server response message can include a Redirect-Suspend-Time parameter as part of the WISPr Vendor Specific Attribute:

- If *reject-suspend* is enabled and the RADIUS server does not authenticate the user, then the user's session is suspended for the time period specified by the Redirect-Suspend-Time parameter from the RADIUS server.
- If reject-suspend is disabled and the RADIUS server provides a Redirect-Suspend-Time parameter, then the AP ignores the provided RADIUS parameter.

By default, the *reject-suspend* parameter is enabled with a default suspend time of I minute.

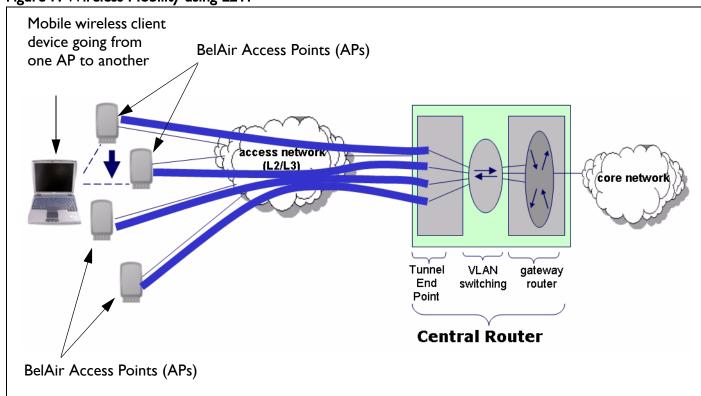
Collecting Accounting Information

```
/services/uam/set scope <index (1-8)> accounting-state {enabled|disabled}
```

This command lets you enable or disable the collection of accounting information for individual UAM scopes. The default setting is *enabled*.

The accounting request packet is sent to the RADIUS server using the *Acct-Interim-Interval* attribute obtained from the client authentication response. If the RADIUS server does not provide an accounting interval, the default value of 10 minutes is used.

BelAir20E User Guide	Universal Access Method
Operating in WAN Mode	<pre>/services/uam/set scope <index (1-8)=""> wan-mode admin-state {enabled disabled} [web-server-key <key-str>]</key-str></index></pre>
	UAM WAN mode is for special applications that use alternate communications between the BelAir20E, the Web server and the RADIUS authentication server.
	For additional details, contact your BelAir representative.
Changing UAM Admin State	/services/uam/set scope <index (1-8)=""> admin-state {enabled disabled}</index>
/ diffinit state	This command lets you enable or disable UAM functionality for individual UAM scopes. The default setting is <i>disabled</i> .


Using Layer 2 Tunnels

Layer 2 tunnels use the Layer 2 Tunneling Protocol (L2TP), version 2, to provide the following benefits:

- provide a bi-directional communication path between the BelAir20E and a central router. The path is unaffected by the size, topology and complexity of the Layer 2 and Layer 3 access network between them.
- ensure efficient handling of mobile client MAC addresses, especially for customers using DOCSIS technology in their access network

Figure 7 shows how wireless mobility is implemented with L2TP. When a wireless client transmits an 802.11 frame, the BelAir AP converts it to an Ethernet frame with VLAN information, encapsulates it within an IP packet and then sends the packet to a Tunnel End Point (TEP). The TEP is usually part of a network central router. The BelAir implementation of Layer 2 tunnels currently operates with a Cisco 7200 router or equivalent, with a RedBack SmartEdge router or equivalent., with other routers that use Generic Router Encapsulation (GRE), or with Proxy Mobile IPv4 (PMIP) implementations.

Figure 7: Wireless Mobility using L2TP

Using Layer 2 Tunnels

The TEP strips off the encapsulation data to reveal the original Ethernet frame exactly as sent by the AP. The TEP delivers the Ethernet frame to a VLAN-aware Ethernet switch. The switch applies normal Ethernet forwarding rules to send it to a gateway router with one router port per subnet. The gateway router switches the Ethernet frame to the appropriate outgoing router port.

For packets moving in the other direction to the wireless client, the gateway router applies to IP traffic an Ethernet header with the client's MAC address as the destination. The VLAN switch forwards this packet to the interface on which it last saw the client's MAC address, which is the interface connected to the tunnel. The TEP receives the frame and encapsulates it in an IP packet. When the AP receives the packet, it strips off the encapsulation data, converts the resulting Ethernet frame to an 802.11 frame, and then transmits it to the wireless client.

When a mobile wireless client moves to a new AP, its traffic travels through a different Layer 2 tunnel. The traffic is encapsulated and sent to TEP as before. The VLAN-aware Ethernet switch then updates its MAC address table as required with the information for the wireless client's new AP. Any subsequent frames sent to the wireless client are then forwarded to the new AP.

Tunneling is performed by a software module called a *tunnel engine*. BelAir platforms can have only one tunnel engine. Each tunnel engine can create up to five tunnels to one or more TEPs. The end points of a Layer 2 tunnel are identified by their IP addresses. The IP address of the BelAir tunnel end point can be the IP address of the unit's management interface, or any IP address associated with a VLAN. The BelAir IP addresses can be set manually or through the Dynamic Host Configuration Protocol (DHCP).

Each tunnel can carry traffic belonging to any group of configured VLANs.

By assigning a group name to tunnels, you can also use BelView NMS to do dynamic load balancing of APs between different LNSs.

Configuring the BelAir Node for Layer 2 Tunneling

The following tasks can be done:

- "Displaying Tunnel Configuration and Status" on page 165
- "Starting and Stopping Layer 2 Tunneling" on page 166
- "Configuring Layer 2 Tunnels" on page 166
- "Setting Tunnel Engine Parameters" on page 167

Using Layer 2 Tunnels

- "Configuring Tunnel Advanced Parameters" on page 168
- "Enabling Backhaul Protection for Tunnels" on page 169
- "Bandwidth Limits" on page 169
- "Configuring Tunnels for the RedBack SmartEdge Router" on page 170
- "Configuring Tunnels for a Router using GRE" on page 172
- "Configuring Tunnels for PMIP Implementations" on page 173
- "Mapping User Traffic" on page 174
- "Configuring Authentication" on page 174
- "Configuring a Tunnel Group Name" on page 175
- "Relaying Traffic QOS Settings" on page 175
- "Setting the Tunnel Down Alarm Threshold" on page 175

Layer 2 tunnel CLI commands are available in /protocol/te-syst mode.

Displaying Tunnel Configuration and Status

```
/protocol/te-<eng>/show config
/protocol/te-<eng>/show status
```

These commands display the current tunnel configuration and status.

Example I

/protocol/te-syst# show config

Tunnel server is running, mode egress, IP address 192.168.219.25 (system), Protection-backhaul: Disabled

N	Type	Remote IP	Name/Label	QoS map	State
==	=========	=======================================	==========	= ======	====
1	L2TP	167.206.58.160	tsacm0	c none	UP
	Authenticat	ion disabled: Sec	ret N/C, PPP name	N/C, PPP	pass N/C
	L2TP hello:	interval 60 sec,	retrans count 5,	retrans i	nterval 8 sec
	PPP echo: i	nterval 10 sec, re	etrans count 10;	DSCP value	0x0
	VLAN map:	800			
2					N/C
3					N/C
4					N/C
5					N/C

Example 2

/protocol/te-syst# show status

N Active	Uptime	Upstream Packets	Downstream Packets	Upstream Bytes	Downstream Bytes	Fragmented	Reassembled
== ======	========	=======	=======	=======	=======	=======	=======
1 Primary	0d 01:02:24	0	1023	0	229497	0	0
	Brdcst	0	388				
	Mltcst	0	12				
	Up_Exc/Dn_Inv	0	10980				
2							
3							
4							
5							

The output of the *show status* command shows:

- which LNS is active at the moment primary or backup
- tunnel uptime
- number of transmitted and received packets and bytes:
 - —first line shows total number of packets,
 - -second line shows the number of MAC broadcasts
 - —third line shows number of MAC multicasts
- number of packets fragmented/reassembled (due to MTU size)

Starting and Stopping Layer 2 Tunneling

/protocol/te-<eng>/set engine admin-state {enabled|disabled}

This command starts and stops tunneling operation. Use *enabled* to begin tunneling operation. Use *disabled* to stop all tunnel forwarding.

Configuring Layer 2 Tunnels

The set tunnel command creates a new tunnel to be terminated at the specified peer IP address, which is usually the network central router. You can create up to five tunnels to the same peer or to different peers. Each tunnel carries just one L2TP session.

The <index> parameter is used for easy reference when using other commands. It can be displayed with the /protocol/te-<eng>/show config command.

The <stn_name> parameter can be any series of 18 alphanumeric ASCII characters. L2TP protocol provides the <stn_name> parameter to the other end point so it can identify different tunnels coming from the same IP address or create logical group of nodes with the same name and different IP addresses.

You can optionally specify the IP address and name of a backup server. If a tunnel cannot be created to the main router or if a tunnel fails, the backup parameters become active.

The *switch* parameter controls whether the use of a backup router is revertive or not. Once the BelAir unit starts to use a tunnel to a backup router:

- If switch is set to non-revertive, then the BelAir unit uses the tunnel to the backup router until it fails. Only then does the BelAir unit switches back to the tunnel using the main router. This is the default setting.
- If switch is set to revertive, then the BelAir unit uses the tunnel to the backup router only while the main tunnel is unavailable. The BelAir unit switches back to the tunnel using the main router as soon as it becomes available again.

The *delete tunnel* command removes all tunnels or the specified tunnel. After using this command, user data mapped to this tunnel is dropped instead of forwarded.

Setting Tunnel Engine Parameters

The set mode command is used when the unit is connected to other units through backhaul links. In this case, you may want the unit to act as an egress point and put access traffic from itself and the other nodes into the tunnel. Use local mode when the BelAir unit puts only its own access traffic into the tunnel. Use egress mode when the BelAir unit puts its own access traffic and that of many other units into the tunnel.

If the VLAN interface is not specified, the unit's management IP address is used to identify the local tunnel end point. IP addresses may be manually configured or obtained by DHCP.

If a VLAN interface is specified, it must be previously configured. Refer to "Layer 2 Network Configuration" on page 183.

Using Layer 2 Tunnels

Configuring Tunnel Advanced Parameters

The set tunnel advanced command lets you specify for particular tunnel timers and other parameters associated with the L2TP protocol.

The <index> parameter is used for easy reference when using other commands. It can be displayed with the /protocol/te-<eng>/show config command.

The following parameters can be set with this command:

- L2TP Hello transmission interval. Values range from 10 to 300 seconds. The default setting is 60 seconds.
- L2TP Hello retransmission count. Values range from 1 to 10. The default setting is 5.
- L2TP Hello retransmission maximum interval. Values range from 1 second to 32 seconds. The default setting is 8 seconds.
- PPP echo transmission interval. Values range from 0 seconds to 300 seconds. 0 seconds means PPP echo is disabled. The default setting is 10 seconds.
- PPP echo retransmission count. Values range from 1 to 50. The default setting is 10.
- DSCP value for control (L2TP/PPP) packets. The default setting is 0.

The AP uses the L2TP Hello parameters to determine if the tunnel is available. If the AP does not receive a Hello packet during the *L2TP Hello transmission interval*, it begins to send its own Hello packets at exponential intervals starting at I second (that is, at I, 2, 4, 8, ... seconds) until the *L2TP Hello retransmission count* and *L2TP Hello retransmission maximum interval* are reached. If not of the retransmitted Hello packets are answered, then the tunnel is considered unavailable. For additional details, refer to the L2TP specification.

The PPP echo parameters are also used to determine tunnel availability. PPP echo packets are sent periodically with the interval specified by the *PPP echo transmission interval*. The tunnel is considered unavailable if the AP does not receive consecutive responses for the number of packets specified by the *PPP echo retransmission count*.

Using Layer 2 Tunnels

If you specify a DSCP value, then it appears in the DSCP/TOS bits of any L2TP or PPP control packets.

Enabling Backhaul Protection for Tunnels

Use this command to inform the tunnel engine that the node uses egress protection as described in "Egress Protection" on page 122.

The *egress* parameter applies to BelAir100SN only. It species whether egress is through the cable modem (cm-9-1) or the Ethernet interface (eth-1-1).

The default setting is *disabled*. Before using this command, make sure all requirements described in <u>"Egress Protection" on page 122</u> are met.

When you enable or disable backhaul protection for tunnels, you must:

- I Issue the *config-save* command. See <u>"Saving your Changes" on page 21</u> for details.
- 2 Reboot the node. See "Activating a Software Load" on page 201 for details.

Bandwidth Limits

The set tunnel bandwidth-limit command lets you specify for a particular tunnel the maximum upstream and downstream transmission rates.

The <index> parameter is used for easy reference when using other commands. It can be displayed with the /protocol/te-<eng>/show config command.

The *show limit* command displays the upstream and downstream settings for the current tunnel.

Example

Configuring Tunnels for the RedBack SmartEdge Router

These commands are used to create a tunnel to the central router using Ethernet-over-MPLS-over-GRE encapsulation instead of L2TP.

Use the *set tunnel-l2vpn* command to create L2VPN tunnels to the specific destination. L2VPN tunnels may co-exist with regular L2TP tunnels and GRE tunnels on the same BelAir unit.

The oam parameter defines if the tunnel uses a failure detection mechanism based on 802. Iag CCM packets. If oam is disabled, the BelAir unit considers the tunnel to always be up. If oam is enabled, the BelAir unit relies on receiving 802. Iag CCM packets to detect tunnel state. These packets should be generated by outside equipment in the head end and should be forwarded to all BelAir units. Set oam to enabled if you are using backup.

The *auto* parameter tells the BelAir unit that it should obtain L2VPN parameters (IP address and label) from the NetOp NSM server. This is a preferred setting for large deployments.

The *ip* and *backup-ip* parameters specify IP addresses of the head end tunnel endpoint. It is usually the IP address of a SmartEdge device terminating L2VPN tunnels. Use these parameters to manually configure a test environment or small deployments.

The *label* and *backup-label* parameters specify the MPLS labels of the head end tunnel endpoint virtual circuit. Use these parameters to manually configure a test environment or small deployments.

The *switch* parameter controls whether the use of a backup router is revertive or not. Once the BelAir unit starts to use a tunnel to a backup router:

• If switch is set to non-revertive, then the BelAir unit uses the tunnel to the backup router until it fails. Only then does the BelAir unit switches back to the tunnel using the main router. This is the default setting.

• If switch is set to revertive, then the BelAir unit uses the tunnel to the backup router only while the main tunnel is unavailable. The BelAir unit switches back to the tunnel using the main router as soon as it becomes available again.

Use the set l2vpn autoconfig command to define parameters to communicate to the NetOp NSM configuration server:

- To specify the NetOp NSM server, supply either the *ip* parameter with an IP address or the *hostname* parameter with a valid DNS host name.
- The *username* parameter and the *password* parameter are used together to authenticate the BelAir node with NetOp NSM server.
- The optional wait-time parameter lets you specify in minutes how long to
 wait for a response from NetOp NSM configuration server before declaring
 a failure condition. The default setting is 15 minutes, with a valid range of 1
 to 60 minutes.
- The optional retry-min and retry-max parameters let you specify in seconds a minimum and maximum value for the retry timer. The value of the retry timer is chosen randomly within the boundaries defined by the retry-min and retry-max parameters. The timer is triggered by any failure while trying to communicate with the NetOp NSM configuration server (for example, the server not responding in time or the server not recognizing the username parameter and the password parameters). When timer expires, the BelAir unit attempts to establish communications with the NetOp NSM configuration server again. The default settings are 60 seconds for retry-min and 180 seconds for retry-max, with a valid range of 10 to 1800 seconds.

To disable 12vpn autoconfig, enter an IP address of 0.0.0.0.

Use the *l2vpn autoconfig renew* command to trigger getting a new set of configuration parameters from the NetOp NSM configuration server.

Use the set l2vpn advanced inactivity-timer command to specify how long to wait until declaring the L2VPN tunnel down. The <seconds> parameter ranges from 10 to 1000 seconds. The default value is 60 seconds.

Configuring Tunnels for a Router using GRE

These commands are used to create tunnel to the central router using IP-over-GRE encapsulation instead of L2TP.

Use the *set tunnel-gre ip* command to create GRE tunnels to the specific destination. GRE tunnels may co-exist with regular L2TP tunnels and L2VPN tunnels on the same BelAir unit. The *ip* parameter specifies the IP address of the head end tunnel endpoint. It is usually the IP address of the router terminating GRE tunnels.

This type of configuration uses proxy ARP because it cannot act as a router to terminate IP traffic. The *proxy-arp* parameter defines the scope of the proxy ARP functionality:

- Use all if you want to answer ARP requests for any destination IP address.
- Use dhcp if you want to answer ARP requests for the default gateway IP address only. In this case, the gateway IP address is learned from the DHCP relay communication to the client.
- Use list to apply proxy ARP only to traffic destined to a particular set of IP address. Use the set tunnel-gre arp-list command to specify the set of IP addresses.

The default value of the proxy-arp parameter is all.

Use the *set gre autoconfig* command to define parameters to communicate to the third-party heartbeat server using a proprietary protocol. The *ip* parameter defines the IP address of heartbeat server.

In this configuration, the BelAir20E sends a pseudo heartbeat packet at the interval specified by the *interval* parameter. The *<seconds>* parameter should be at least 60 seconds. The default value is 60 seconds. The heartbeat server uses the pseudo heartbeat packet to determine whether the tunnel's operational state is up or down. The heartbeat server also uses the pseudo heartbeat packet to determine the BelAir20E's tunnel configuration and correct it if required.

The optional *port* parameter specifies the TCP port to communicate with the heartbeat server. The default value is 4040.

Configuring Tunnels for PMIP Implementations

These commands are used to create a Proxy Mobile IPv4 (PMIP) tunnel. A PMIP tunnel allows a mobile client to change its point-of-attachment to the Internet without changing its IP address. In this implementation, the network tracks the movements of the mobile client and initiates the required mobility signalling on its behalf. In PMIP mode, the BelAir AP acts as MIP Foreign Agent.

Use the *set tunnel-pmip ha-ip* command to create a tunnel to a PMIP home agent. PMIP tunnels may co-exist with regular L2TP tunnels and L2VPN tunnels on the same BelAir unit.

The ha-ip parameter specifies the IP address of PMIP Home Agent (HA).

The *secret* parameter specifies the authentication password for access to the PMIP HA.

The *spi* parameter specifies the index identifying a security context between the AP and home agent. It is an integer value that should be greater than 255. The *spi* parameter and the *secret* parameter are used together to authenticate the AP with the HA.

The optional *lease-time* parameter specifies the maximum lease-time in seconds for the client session. If the client does not send packets for more than the specified lease-time, its session is dropped. The default value is 300 seconds.

When client traffic is forwarded through the PMIP tunnel, the AP acts as a DHCP server and provides all corresponding parameters (such as client's IP address, subnet mask, gateway, and DNS addresses). The AP proxies all these parameters from the HA. If the HA is unable to provide some of these parameters (it must provide at least the client's IP address), the following logic is used by the AP:

- The subnet mask is determined as corresponding to the IP class by IP address. For example, for IP address 67.100.125.10 subnet mask is 255.0.0.0.
- The gateway is taken as first address within a specified subnet. For the
 previous example, the gateway address is 67.0.0.1. This gateway address is
 provided by the AP itself and may not correspond to any real IP address in
 the network.

 The DNS IP address(es) are determined by the set tunnel-pmip advanced dns command.

Use the *set tunnel-pmip advanced dns I* command to define the DNS server IP addresses to be provided to the client by the AP through DHCP in case the AP can not obtain corresponding settings from the HA. The optional *dns2* parameter specifies the backup DNS server in case the primary one is unreachable.

Mapping User Traffic

The *map vlan* command instructs the tunnel engine to forward traffic to the specified tunnel. You can specify either traffic associated with a specific VLAN or traffic that is not tagged for any VLAN. All packets that meet this criteria received by any of the node's radios are forwarded through the tunnel. If the tunnel is not configured or not active, all corresponding packets are dropped.

If you specify untagged traffic, then the tunnel interface itself must be associated with a VLAN. Refer to "Setting Tunnel Engine Parameters" on page 167.

The optional *domain* parameter is for PMIP tunnels. Some PMIP implementations require an additional identification string to communicate with the PMIP Home Agent (HA). The *domain* parameter allows you to specify the required string.

The *unmap vlan* command removes all tunnel mapping entries or a specified tunnel mapping entry. After this command, the specified packets are then forwarded as if the tunnel does not exist.

Configuring Authentication

The *set secret* command configures the parameters for L2TP authentication for a specified tunnel. The *secret* parameter sets the shared secret for tunnel authentication. The *ppp-name* and *ppp-password* parameters set the data for session authentication. The settings for each of these three parameters must match the equivalent settings on the main router.

The backup-secret, backup-ppp-name and backup-ppp-password parameters are equivalent settings for a backup router.

Using Layer 2 Tunnels

Once the authentication parameters are configured, you use the *set authentication* command to enable authentication for a specified tunnel.

Configuring a Tunnel Group Name

The <group_name> parameter indicates that an LNS belongs to a particular group.

The BelView NMS tunnel manager looks at the tunnel usage of all LNSs within the same group and spread the tunnel traffic among the LNSs within the same group. BelView also configures tunnels for newly introduced nodes to the least used LNS within the same group.

For details, refer to the BelView NMS User Guide.

Relaying Traffic QOS Settings

Because the BelAir AP converts the client data packet into an Ethernet frame and then encapsulates it within an IP packet, any QOS information that was part of the original client data packet is not visible to upstream equipment.

This command allows you to put the QOS information into the encapsulating IP packet header so that it becomes visible to the upstream equipment:

- The *dscp* setting means that Differentiated Services Code Point (DSCP) information from the client data packet is included in the IP packet header.
- The *up-bits* settings means that the IP packet header contains QOS settings based on User Priority bits (0 to 7) from the client data packet.
- The none setting means that QOS information from the client data packet is not sent to upstream equipment.

The default setting is none.

Setting the Tunnel Down Alarm Threshold

Typically, a *Tunnel Down* alarm is generated when a tunnel fails to respond. However, if there are intermittent issues with the tunnel, it may take time to identify and correct the root cause. During this period, multiple *Tunnel Down* alarms would be generated.

Enabling the alarm threshold reduces the number of *Tunnel Down* alarms generated per calendar day. If the threshold is reached, the system generates

instead a single *Excess Tunnel Down Events* alarm and stops generating additional *Tunnel Down* alarms. The *Tunnel Down* events are still tracked through the tunnel's performance monitoring statistics, allowing you to analyze the behavior.

The <num_of_alarms> parameter ranges from 2 to 50. By default, the alarm threshold is enabled with a setting of 5, meaning that the Excess Tunnel Down Events alarm is generated once 5 Tunnel Down events occur in a day.

Alarms generated during a maintenance window do not count against the alarm threshold. For details see, "Defining a Maintenance Window" on page 55.

Configuring the Network Central Router for Layer 2 Tunneling The specific configuration tasks and commands for the network central router vary, depending on the type of router that is installed.

Refer to the *Tunnel Mobility Technical Bulletin*, available at www.support.belairnetworks.com for guidance on configuring the router portion of the tunnels.

Quality of Service Settings

Quality of Service Settings

The BelAir20E includes Quality of Service (QoS) settings for the following functional areas:

- traffic switching. See <u>"System QoS" on page 177.</u>
- client to access point radio communications. See <u>"Radio QoS" on page 180.</u>

System QoS

BelAir nodes work in conjunction with one another to allow you to separate and prioritize traffic. Each BelAir20E node can inspect incoming traffic and prioritize traffic into four priority queues.

Prioritization

Each BelAir node supports four traffic priority queues, numbered 0 to 3. Queue 3 has the highest priority while queue 0 has the lowest priority. <u>Table 13</u> describes each queue.

Table 13: Traffic Priority Queues

Queue Number	Description
0	Background traffic
I	Best effort traffic Use this queue for traffic that does not require QoS features,
2	such as most data traffic
2	Video traffic, T1 circuit emulation Use this queue for high priority traffic such as T1 circuit emulation, video or "gold service" customer traffic
3	Voice over IP (VoIP) traffic Use this queue for SVP or other VoIP applications

All traffic that is not associated to a VLAN has priority I. This means that until you create VLANs, all traffic has priority I.

Once VLANs have been created, you configure the node traffic to have different priorities based on User Priority bits (0 to 7) or VLAN IDs.

Quality of Service Settings

The prioritization commands (*map* and *no map*) described in this chapter apply strictly to the BelAir node that you are currently logged on to. You must repeat them on each related BelAir node. For example, when specifying that particular VLAN traffic has a particular priority, you must execute the associated commands on each possible BelAir node in the path of that VLAN.

Prioritizing Traffic Based on User Priority Bits

/qos/set up-to-queue-mapping <pri>riority> <queue_id>

This command instructs the BelAir20E to process packets with the specified User Priority value to the specified priority queue. The *priority* parameter ranges from 0 to 7. The *queue_id* parameter ranges from 0 to 3, as described in Table 13 on page 177.

Note: Settings made with the *set vlan-to-queue-mapping* command have precedence over settings made with this command.

<u>Table 14</u> shows how User Priority values are processed to priority queues by default.

Table 14: User Priority Value to Priority Queue Processing

User Priority Value	Priority Queue to which it is processed
0	I
I	0
2	0
3	I
4	2
5	2
6	3
7	3

To unmap a previously set priority, use the set up-to-queue-mapping command to map that priority back to the default priority queue as shown in <u>Table 14</u>.

Prioritizing Traffic using VLAN IDs

```
/qos/set vlan-to-queue-mapping <vlan_id> {none|<queue_id>} /qos/show vlan {all|id <2-2814>}
```

The set command instructs the BelAir20E to process packets from the specified VLAN to the specified priority queue. The vlan_id parameter ranges from I to

Quality of Service Settings

2814. The queue id parameter ranges from 0 to 3, as described in Table 13 on page 177. The none parameter removes the mapping of a VLAN ID to priority queue.

Note: Settings made with this command have precedence over settings made with the set up-to-queue-mapping command.

The show command displays a summary of the QoS settings that are based on VLAN IDs.

Example

```
/gos# show vlan id 100
Qos Vlan Id Configuration
Vlan Id : 100
______
Vlan Qos Status : Enabled
Queue Map : 3
/gos/set defaults
```

Resetting the QoS Configuration

This command returns the system QoS configuration to factory default settings.

Note: This command does not affect radio QoS configuration.

Displaying a Summary of System QoS Settings

```
/gos/show config
```

/qos# show config

This command displays a summary of all current QOS settings, including how User Priority bits are currently mapped to the priority queues.

Example

```
Qos Global Configuration
Oos Status
                                 : Enabled
 Qos Global UP to Queue Mapping
UP Value : 0 -- Queue : UP Value : 1 -- Queue :
UP Value : 2 -- Queue : UP Value : 3 -- Queue : UP Value : 4 -- Queue :
UP Value : 5 -- Queue :
UP Value : 6 -- Queue : UP Value : 7 -- Queue :
```


Quality of Service Settings

```
No Vlan based Qos Configured!
```

Displaying the Prioritization Settings

/gos/show user-priority-map

The *show user-priority-map* command displays how User Priority bits are currently mapped to the priority queues.

Example

/qos# show user-priority-map

```
Qos Global UP to Queue Mapping

UP Value : 0 -- Queue : 1

UP Value : 1 -- Queue : 0

UP Value : 2 -- Queue : 0

UP Value : 3 -- Queue : 1

UP Value : 4 -- Queue : 2

UP Value : 5 -- Queue : 2

UP Value : 6 -- Queue : 3

UP Value : 7 -- Queue : 3
```

Radio QoS

BelAir radios offer Wireless Multi-Media (WMM) support for multiple priority packets and transmit opportunities. This allows over-the-air QoS for WMM client devices with faster burst transfer. (Use the */mode* command to see the version number of your radio modules.)

Some WMM features, such as selecting the priority scheme and the mapping scheme, are also available for BelAir backhaul radios to provide end-to-end QoS functionality.

Displaying a Summary of Radio QoS Settings

Use the /interface/wifi-<n>-<m>/show config qos command to display the current radio QoS settings. See "Displaying Wi-Fi Radio Configuration" on page 73 for details.

Example - Typical BelAir20E

Quality of Service Settings

QOS:

wmm:Enableduapsd:Enabledmapping:UP/DSCPvoice acm:Disabledvideo acm:Disabled

Enabling or Disabling Wireless Multi-media

/interface/wifi-<n>-<m>/set qos wmm {enable|disable}

Wireless Multi-media is normally enabled. It allows the access point to communicate with a WMM enabled wireless client using WMM features.

When disabled, the access point ignores requests for WMM communications from wireless clients and instead uses traditional non-WMM features to communicate with them. To disable WMM, you must first disable Unscheduled Automatic Power-save Delivery (UAPSD). See "Unscheduled Automatic Power-save Delivery" on page 182.

QoS Mapping Scheme

/interface/wifi-<n>-<m>/set qos mapping {up|dscp|both}

The *set* command lets you decide how traffic is processed to the four BelAir priority queues depending on the values of the User Priority (UP) field or the Differentiated Services Code Point (DSCP) subfield in the client traffic fields.

Selecting *up* means that traffic is sent to the four BelAir priority queues based on the UP field value. Selecting *dscp* means that traffic is sent to the four BelAir priority queues based on the DSCP subfield value. Selecting *both* means that traffic is sent to the four BelAir priority queues based on the highest priority value of either the UP field or the DSCP subfield. By default, QoS mapping is set to *both*. Table 15 shows the mapping of the UP value and the DSCP value to the priority queue.

Table 15: UP and DSCP Value to Priority Queue Processing

UP Value	DSCP Value	Target Priority Queue
0	0 (0x0)	1
I	32 (0x20)	0
2	64 (0x40)	0
3	96 (0x60)	1
4	128 (0×80)	2
5	160 (0xA0)	2

Quality of Service Settings

Table 15: UP and DSCP Value to Priority Queue Processing

UP Value	DSCP Value	Target Priority Queue
6	192 (0xC0)	3
7	224 (0×E0)	3

Unscheduled Automatic Power-save Delivery

/interface/wifi-<n>-<m>/set qos uapsd {enable|disable}

Unscheduled Automatic Power-save Delivery (UAPSD) extends the battery life of wireless clients and reduces radio transmission traffic. To enable UAPSD, you must first enable Wireless Multi-media (WMM) for the radio. Refer to "Enabling or Disabling Wireless Multi-media" on page 181.

This command lets you enable or disable UAPSD. By default, UAPSD is enabled.

Layer 2 Network Configuration

Layer 2 Network Configuration

The BelAir20E acts as a transparent bridge and layer 2 switch without the need to configure any software features. However, to control and manage the traffic inherent in a bridge (for example, broadcast and flooding) and to handle loop situations where multiple paths exist between nodes, you can invoke layer 2 features such as:

- Virtual LANs (VLANs), that divide traffic among several sets of users and restrict broadcast to the respective VLANs. See "Configuring IP Parameters" on page 45.
- Spanning Tree Protocol (STP), where the optimum path is selected and ports of alternate paths are shutdown

If there are no loops in the network, the BelAir20E can operate in bridge mode or with VLANs. If a loop exists, STP must be invoked to manage the different paths.

This chapter contains the following sections:

- "Spanning Tree Protocol Overview" on page 183
 - "Configuring Spanning Tree Priority" on page 184
 - "Configuring Other Spanning Tree Parameters" on page 185
 - "RSTP Commands" on page 186

See also "Managing Egress Node Traffic" on page 64.

Spanning Tree Protocol Overview

It is important to configure the Spanning Tree Protocol (STP) when multiple paths between nodes are created. As networks become more complex, multiple paths between nodes, either intentional or unintentional, become more likely.

Although loops benefit the network by providing path redundancy, loops must be dynamically eliminated to prevent proliferation of broadcast traffic and confusion in the MAC learning tables of the bridge. This is accomplished by a spanning tree protocol, which generates a loop-free subset of the network's topology by placing those bridge or switch ports that, if active, would create loops into a standby (blocking) condition. Blocked bridge or switch ports can be activated in the event of primary link failure, providing a new path through the network.

Layer 2 Network Configuration

Loops can also occur accidentally or maliciously. For example, a technician may connect their laptop to the Ethernet port of a BelAir20E and also have a wireless link to a BelAir20E in the same network. If the laptop is configured to act as a bridge then it creates a loop in the network, and broadcast traffic quickly proliferates until the slowest link in the loop is saturated. This broadcast storm renders part—or all—of the network unusable.

Note: To prevent issues as described previously, clients that associate with the BelAir20E are not allowed to operate as a bridge. The BelAir20E will automatically disassociate without warning from any client that is detected as behaving as a bridge; that is, sending spanning-tree BPDUs. However, clients are allowed to operate as router to allow features such as sharing a wireless Internet connection. For this type of operation, BelAir Networks recommends that the computer with the wireless connection to the BelAir20E have its operating system configured to act as a router. For example, Microsoft Windows XP offers the Internet Sharing function.

The original spanning tree protocol is STP. When STP detects a topology change in the network, STP blocks all user traffic, creates a new loop-free configuration, and then re-enables user traffic. STP reconfigurations create outages that are typically 30 to 60 seconds in length.

A newer protocol, Rapid STP (RSTP), greatly reduces the length of outages caused by topology reconfigurations. RSTP is backwards compatible with STP so it can be used in networks where some equipment only supports STP.

BelAir20E units are shipped from the factory with RSTP enabled and default settings that are a suitable starting point for most deployments. The default node priority is 36864 (or 0x9000). The default port settings vary depending on the hardware in use, the topology and whether dynamic path cost is used or not.

You should adjust the STP node priority and path cost settings for each node to match the topology of your network. Refer to your network plan for details.

Configuring Spanning Tree Priority

If all BelAir20E units are enabled with default settings, the switch with the lowest MAC address in the network becomes the root switch. However, due to traffic patterns, number of forwarding ports, or line types, the BelAir20E with the lowest MAC address might not be the ideal root switch. By increasing the priority (lowering the numerical priority number) of the ideal switch so that it becomes the root switch, an STP recalculation will be done to form a new

Layer 2 Network Configuration

topology. BelAir recommends that the root node is the Ethernet switch that is used to connect to the LIM(s).

Refer to your network plan for details.

Use the command described in "RSTP Priority" on page 192 and "RSTP Version" on page 192 to specify the STP priority and the version of STP used by the BelAir20E unit.

Configuring Other Spanning Tree Parameters

Table 16 describes spanning tree parameters that you can configure in addition to the STP node priority and path cost.

Table 16: Configurable Spanning Tree Timers and Associated Parameters

Parameter	Default Value	Description	Possible Range
Hello Timer	2 s	Determines how often the bridge broadcasts hello messages to other bridges	I s to 10 s Must be less than or equal to: (1/2Max_Age - 1)
Forward Delay Timer	15 s	Determines how long each of the listening and learning states last before the interface begins forwarding	4 s to 30 s Must not be less than: (1/2Max_Age + 1)
Maximum Age Timer	20 s	Determines the amount of time the bridge stores protocol information received on an interface	6 s to 40 s Must not be less than: 2(Hello_timer + I) Must not exceed: 2(Forward_Delay - I)
Transmit Hold Count	6	Transmit hold count (packet queue length)	I to 10
Path Cost Type	32 bit	Represents the media speed (or bit rate)	16 bit or 32 bit

Layer 2 Network Configuration

Table 16: Configurable Spanning Tree Timers and Associated Parameters

Parameter	Default Value	Description	Possible Range
Link Detection Count	3	Represents the number Hello timer periods to wait before declaring the link is down	3 to the ratio of the Maximum Age timer to the Hello timer

Note: BelAir Networks recommends that you do not change the RSTP parameter values in <u>Table 16</u> from their default values. Experience has shown that these default values work well in a variety of networks.

To change the spanning tree transmit hold count and the path cost, refer to "Transmit Hold Count" on page 192.

To change the values of the spanning-tree timers, refer to "Max Age, Hello Time and Forward Delay" on page 193.

Note: The STP or RSTP parameter values that are actually used are inherited from the root bridge. When you configure STP or RSTP parameters on a BelAir20E, you are setting the values that are used if that BelAir20E is the root bridge.

RSTP Commands

This section describes commands that you can execute while in *rstp* mode.

Some RSTP commands apply to specific physical interfaces or to specific radio links. The *Name* column of the */protocol/rstp/show config port all* command displays available interfaces and radio links. For example, if the *Name* column displays *wifi-3-1-1*, then *wifi-3-1* identifies the interface and the *-1* suffix identifies radio link 1 of that interface.

The BelAir20E layer 2 switch forwards layer 2 frames to the output of one or more physical interfaces or radio links based on the information contained in the frame header (tags).

Displaying the RSTP Configuration Settings

/protocol/rstp/show config [port {all|active|<interface-name>}]

This command displays the currently configured RSTP settings. To see the currently active RSTP parameters, as inherited from the root bridge, use the /protocol/rstp/show config port active command.

Layer 2 Network Configuration

Specifying the port keyword displays RSTP configuration settings for each physical interface and radio link. Use the *<interface-name>* parameter to specify a particular interface and radio link, as shown under the Name column of the /protocol/rstp/show config port all command.

Example I

/protocol/rstp# show config

RSTP Configurations

Rstp Status : Enabled
Stp priority : 36864
Stp Version : Rstp Mode
Bridge Max Age : 20 seconds
Bridge Hello Time : 2 seconds
Bridge Forward Delay Time : 15 seconds
Ty Hold Count : 3 : Enabled Rstp Status

Tx Hold Count : 3
Link Detection Count : 3
Bridge Address : 00:0d:67:00:69:d4
Bridge Aging Time : 300

Example 2

/protocol/rstp# show config port all

RSTP Port Configurations

Port	Name	Prio	Pathcost	Migration	Edge	P2P	Protocol	-	c-Cost
	Interface-link				Conf/Oper	Conf/Oper	Version	Status	Default
_									
1	wifi-1-1-1	128	830768	False	False/False	True/True	RSTP	Enabled	830769
2	wifi-1-1-2	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
3	wifi-1-1-3	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
4	wifi-1-1-4	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
5	wifi-1-1-5	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
6	wifi-1-1-6	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
7	wifi-1-1-7	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
8	wifi-1-1-8	128	2000000	False	False/False	True/False	RSTP	Enabled	830769
9	wifi-2-1-1	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
10	wifi-2-1-2	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
11	wifi-2-1-3	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
12	wifi-2-1-4	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
13	wifi-2-1-5	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
14	wifi-2-1-6	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
15	wifi-2-1-7	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
16	wifi-2-1-8	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
17	wifi-3-1-1	128	3187500	False	False/False	True/True	RSTP	Enabled	3000000
18	wifi-3-1-2	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
19	wifi-3-1-3	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
20	wifi-3-1-4	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
21	wifi-3-1-4		2000000						3000000
21	WIII-3-I-5	128	∠000000	False	False/False	True/False	RSTP	Enabled	3000000

BelA	ir20E User Gu	iide					Layer 2	Network Co	onfiguration
22	wifi-3-1-6	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000
23 24	wifi-3-1-7 wifi-3-1-8	128 128	2000000 2000000	False False	False/False False/False	True/False True/False	RSTP RSTP	Enabled Enabled	3000000 3000000
25	wifi-4-1-1	128	2000000	False	False/False	True/True	RSTP	Enabled	2000000
26	wifi-4-1-2	128	2000000	False	False/False	True/False	RSTP	Enabled	2000000
27	wifi-4-1-3	128	2000000	False	False/False	True/False	RSTP	Enabled	2000000
28 29	wifi-4-1-4 wifi-4-1-5	128 128	2000000 2000000	False False	False/False False/False	True/False True/False	RSTP RSTP	Enabled Enabled	2000000 2000000
30	wifi-4-1-6	128	2000000	False	False/False	True/False	RSTP	Enabled	2000000
31	wifi-4-1-7	128	2000000	False	False/False	True/False	RSTP	Enabled	2000000
32 33	wifi-4-1-8 eth-5-1	128 128	2000000 200000	False False	False/False False/False	True/False True/True	RSTP RSTP	Enabled Disabled	200000 200000

Example 3

/protocol/rstp# show config port wifi-2-1-1

RSTP Port Configurations

Port	Name Interface-link		Pathcost	Migration	Edge Conf/Oper	P2P Conf/Oper	Protocol Version	Dynami Status	c-Cost Default
9	wifi-2-1-1	128	2000000	False	False/False	True/False	RSTP	Enabled	3000000

Example 4

/protocol/rstp# show config port active

RSTP Port Configurations

Port	Name	Prio	Pathcost	Migration	Edge	P2P	Protocol	Dynamio	
	Interface-link				Conf/Oper	Conf/Oper	Version	Status	Default
1	wifi-1-1-1	128	830768	False	False/False	True/True	RSTP	Enabled	830769
17	wifi-3-1-1	128	3187500	False	False/False	True/True	RSTP	Enabled	3000000
25	wifi-4-1-1	128	2000000	False	False/False	True/True	RSTP	Enabled	2000000
33	eth-5-1	128	200000	False	False/False	True/True	RSTP	Disabled	200000

Displaying the RSTP Topology Information

/protocol/rstp/show topology [port {all|active|<interface-name>}]

This command displays the currently active RSTP parameters as inherited from the root bridge, including the MAC address of the designated root bridge in a network, the cost of the path to the root, the port used to message to the root bridge, as well as the current values of the spanning tree timers.

To see the currently configured RSTP parameters, use the /protocol/rstp/show config command.

Layer 2 Network Configuration

In the resulting output when the port keyword is omitted, Root Cost reflects the node's cost to root that it would advertise in its BPDUs sent out to designated or alternate ports.

Specifying the *port* keyword displays per port RSTP topology information for each physical interface and radio link. Use the <interface-name> parameter to specify a particular interface and radio link, as shown under the Name column of the /protocol/rstp/show config port all command.

In the resulting output when the port keyword is used, Designated Cost is the minimum port cost seen in BPDUs on that link (either from the node itself or from another node on that same link).

Example I

/protocol/rstp# show topology

RSTP Topology Information

Designated Root : 00:00:00:12:00:32:9d:80

Stp Root Cost : 4000000

Stp Root Port : 33

Stp Max Age : 31 seconds

Stp Hello Time : 1 seconds

Stp Forward Delay Time : 21 seconds

Example 2

/protocol/rstp# show topology port all

RSTP Port Topology Information

Port	Name Interface-link	Designated-root	Designated Cost	Designated-bridge	Designated Port
1	wifi-1-1-1	60:00:00:23:34:b0:3e:80	200000	90:00:00:0d:67:00:69:5e	80:01
2	wifi-1-1-2	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
3	wifi-1-1-3	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
4	wifi-1-1-4	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
5	wifi-1-1-5	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
6	wifi-1-1-6	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
7	wifi-1-1-7	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
8	wifi-1-1-8	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
9	wifi-2-1-1	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
10	wifi-2-1-2	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
11	wifi-2-1-3	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
12	wifi-2-1-4	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00

Layer 2 Network Configuration

13	wifi-2-1-5	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
14	wifi-2-1-6	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
15	wifi-2-1-7	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
16	wifi-2-1-8	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
17	wifi-3-1-1	60:00:00:23:34:b0:3e:80	200000	90:00:00:0d:67:00:69:5e	80:11
18	wifi-3-1-2	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
19	wifi-3-1-3	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
20	wifi-3-1-4	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
21	wifi-3-1-5	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
22	wifi-3-1-6	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
23	wifi-3-1-7	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
24	wifi-3-1-8	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
25	wifi-4-1-1	60:00:00:23:34:b0:3e:80	200000	90:00:00:0d:67:00:69:5e	80:19
26	wifi-4-1-2	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
27	wifi-4-1-3	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
28	wifi-4-1-4	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
29	wifi-4-1-5	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
30	wifi-4-1-6	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
31	wifi-4-1-7	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00
32	wifi-4-1-8	00:00:00:00:00:00:00	0	00:00:00:00:00:00:00:00	00:00
33	eth-5-1	60:00:00:23:34:b0:3e:80	0	60:00:00:23:34:b0:3e:80	80:0f

Example 3

/protocol/rstp# show topology port wifi-2-1-1

RSTP Port Topology Information

Port	Name Interface-link	Designated-root	Designated Cost	Designated-bridge	Designated Port
9	wifi-2-1-1	00:00:00:00:00:00:00:00	0	00:00:00:00:00:00:00	00:00

Example 4

/protocol/rstp# show topology port active

RSTP Port Topology Information

Port	Name Interface-link	Designated-root	Designated Cost	Designated-bridge	Designated Port
1	wifi-1-1-1	60:00:00:23:34:b0:3e:80	200000	90:00:00:0d:67:00:69:5e	80:01
17	wifi-3-1-1	60:00:00:23:34:b0:3e:80	200000	90:00:00:0d:67:00:69:5e	80:11
25	wifi-4-1-1	60:00:00:23:34:b0:3e:80	200000	90:00:00:0d:67:00:69:5e	80:19
33	eth-5-1	60:00:00:23:34:b0:3e:80	0	60:00:00:23:34:b0:3e:80	80:0f

Layer 2 Network Configuration

Displaying RSTP Port Roles and States

/protocol/rstp/show port roles [all]

This command displays the roles and states of the RSTP ports.

Specifying the *all* option displays all possible links for a specific interface. If the *all* option is omitted, then the command outputs data only for links with a status of *UP*.

Example I

/protocol/rstp# show port roles

RSTP Port Roles and States

Port#	Name	Remote-id	Port-Role	Port-State	Port-Status
9	wifi-2-1-1	10.5.1.22	Designated	Forwarding	Enabled
11	wifi-2-1-3	10.5.1.10	Designated	Forwarding	Enabled
17	wifi-3-1-1	10.5.1.13	Designated	Forwarding	Enabled
18	wifi-3-1-2	10.5.1.14	Designated	Forwarding	Enabled
25	wifi-4-1-1	10.5.1.25	Designated	Forwarding	Enabled
33	eth-1-1		Root	Forwarding	Enabled
34	eth-1-2		Designated	Forwarding	Enabled

Example 2

/protocol/rstp# show port roles all

RSTP Port Roles and States

Port#	Name	Remote-id	Port-Role	Port-State	Port-Status	Link-status
1	wifi-1-1-1		Disabled	Discarding	Enabled	Down
2	wifi-1-1-2		Disabled	Discarding	Enabled	Down
3	wifi-1-1-3		Disabled	Discarding	Enabled	Down
4	wifi-1-1-4		Disabled	Discarding	Enabled	Down
5	wifi-1-1-5		Disabled	Discarding	Enabled	Down
6	wifi-1-1-6		Disabled	Discarding	Enabled	Down
7	wifi-1-1-7		Disabled	Discarding	Disabled	Down
8	wifi-1-1-8		Disabled	Discarding	Disabled	Down
9	wifi-2-1-1	10.5.1.22	Designated	Forwarding	Enabled	UP
10	wifi-2-1-2		Disabled	Discarding	Enabled	Down
11	wifi-2-1-3	10.5.1.10	Designated	Forwarding	Enabled	UP
12	wifi-2-1-4		Disabled	Discarding	Enabled	Down
13	wifi-2-1-5		Disabled	Discarding	Enabled	Down
14	wifi-2-1-6		Disabled	Discarding	Enabled	Down
15	wifi-2-1-7		Disabled	Discarding	Enabled	Down
16	wifi-2-1-8		Disabled	Discarding	Enabled	Down
17	wifi-3-1-1	10.5.1.13	Designated	Forwarding	Enabled	UP

BelAir	20E User Guide				Layer 2 Netwo	ork Configuration		
18	wifi-3-1-2	10.5.1.14	Designated	Forwarding	Enabled	UP -		
19	wifi-3-1-3		Disabled	Discarding	Enabled	Down		
20	wifi-3-1-4		Disabled	Discarding	Enabled	Down		
21	wifi-3-1-5		Disabled	Discarding	Enabled	Down		
22	wifi-3-1-6		Disabled	Discarding	Enabled	Down		
23	wifi-3-1-7		Disabled	Discarding	Enabled	Down		
24	wifi-3-1-8		Disabled	Discarding	Enabled	Down		
25	wifi-4-1-1	10.5.1.25	Designated	Forwarding	Enabled	UP		
26	wifi-4-1-2		Disabled	Discarding	Enabled	Down		
27	wifi-4-1-3		Disabled	Discarding	Enabled	Down		
28	wifi-4-1-4		Disabled	Discarding	Enabled	Down		
29	wifi-4-1-5		Disabled	Discarding	Enabled	Down		
30	wifi-4-1-6		Disabled	Discarding	Enabled	Down		
31	wifi-4-1-7		Disabled	Discarding	Enabled	Down		
32	wifi-4-1-8		Disabled	Discarding	Enabled	Down		
33	eth-1-1		Root	Forwarding	Enabled	UP		
34	eth-1-2		Designated	Forwarding	Enabled	UP		
Configuring the Bridge Aging Time RSTP Priority		This command forwarding information of the command	/protocol/rstp/set bridge aging-time <10 - 630> This command specifies the aging time, in seconds, for the dynamically learned forwarding information. /protocol/rstp/set priority <decimal (0="" (0x0000="" -="" 0xf000)="" 61440)="" hexadecimal="" or=""> This command specifies the STP priority.</decimal>					
			The default node priority is 36864 (or 0×9000). The priority values must be set in steps of 4096 (or 0×1000).					
RSTP Version			<pre>/protocol/rstp/set version {stpCompatible rstp}</pre> This command specifies the type of STP used by the BelAir20E.					
		This command	specifies the typ	c or or i asca	by the Ben in 20	L.		
		_	<i>ble</i> mode forces			Js while setting it nd TCN BPDUs.		
Transmit Hold Count		/protocol/rst	<pre>/protocol/rstp/set [tx-holdcount (1 - 10)]</pre>					
		<i>count</i> value ind	This command configures the values of <i>transmit hold count</i> . The <i>transmit hold count</i> value indicates the number of BPDUs that need to be transmitted in any Hello Time interval. The default value is 6.					

Layer 2 Network Configuration

Note: BelAir Networks recommends that you do not change the RSTP parameter values from their default values. Experience has shown that the default values work well in a variety of networks.

Example

/protocol/rstp# set tx-holdcount 5
/protocol/rstp/set ([max-age <6 - 40>] [hello-time <1 - 10>]
 [forward-delay <4 - 30>])

Max Age, Hello Time and Forward Delay

The *max-age* field represents the time in seconds that all bridges use for MaxAge when this bridge is acting as the root. The default value is 20. The

MaxAge when this bridge is acting as the root. The default value is 20. The value must not exceed: 2(ForwardDelay - I).

The *hello-time* field represents the time in seconds that all bridges use for HelloTime when this bridge is acting as the root. The default value is 2.

The forward-delay field represents the time in seconds that all bridges use for ForwardDelay when this bridge is acting as the root. The default value is 15. The value must not be less than: I + I/2 MaxAge.

Note: BelAir Networks recommends that you do not change the RSTP parameter values from their default values. Experience has shown that the default values work well in a variety of networks.

Example

/protocol/rstp# set max-age 20 hello-time 2 forward-delay 15

RSTP Link Priority

This command configures the link priority. This command is available only if dynamic path costs are disabled. Refer to "Dynamic Path Cost" on page 194.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

The link priority value forms the first component or the portion of the Port ID that can be written. The values for the link priority must only be in steps of 16 (only the first 4 bits can be set for the link priority).

Example

/protocol/rstp# set interface wifi-2-1 priority 64

Layer 2 Network Configuration

RSTP Static Path Cost

This command sets the static path cost in the *pathcost* field. This command is available only if dynamic path costs are disabled. Refer to "Dynamic Path Cost" on page 194.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

The static path cost determines the preferred data paths between bridges throughout the network and the root bridge. The default path cost settings vary, depending on the hardware in use, the topology and whether dynamic path cost is used or not.

Example

/protocol/rstp# set interface wifi-2-1 pathcost 65535

Dynamic Path Cost

This command lets you manage how path costs are determined for each radio link on your BelAir20E.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

Dynamic path costs are a useful way to adjust the topology of a network to isolate a link as a result of unplanned or seasonal effects. For example, there may be an unplanned source of radio interference with a particular link. Or, vegetation may affect a link during summer.

When dynamic cost is disabled, each link is assigned a fixed cost. The default value depends on the hardware and topology in use.

When dynamic cost is enabled, the BelAir20E adjusts the link's cost based on several link quality factors. For example, a link with a low RSSI, such as -80, implies poor link quality causing it to have an increased cost. Similarly, a link with a high RSSI, such as -40, implies good link quality causing it's cost to be reduced.

Enabling dynamic path costs disables the command to configure a static path cost. Refer to "RSTP Static Path Cost" on page 194.

To prevent unnecessary topology changes based on transient behaviour, a new link cost may not automatically cause a topology change. If the new link cost is

Layer 2 Network Configuration

very different from the current link cost, then the topology is changed. However, if the new link cost is only slightly different from the current link cost, then the current topology is maintained. As further protection against transient behaviour, the RSTP verifies that the new link cost is maintained for 30 minutes before it implements any potential topology changes.

In all cases when a link is enabled or disabled, RSTP takes into account the new link costs as it creates a new topology.

By default, dynamic cost is enabled for most combinations of platforms and topologies. Use the /protocol/rstp/show config port command to determine if it is enabled or disabled in your case.

Note: Dynamic path cost should be disabled for mobile backhaul mesh applications because in such application path costs are determined by the mobility application.

RSTP Protocol Migration on an Interface

While operating in RSTP mode, setting of this value to *true* forces the interface to transmit RSTP BPDUs.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

RSTP Edge Port Status

This command indicates whether the interface is an edge port or not. An edge port cannot communicate to another RSTP enabled device. This setting is typically *false*, but can be *true* for situations such as being connected to a laptop, or to a simple switch. RSTP uses edge port status to optimize performance during topology changes. If the edge port status is true, RSTP does not block it during a topology change.

This command sets the administrative value of the edge port status. The operational value of the edge port status is initially its administrative value; however, it can be updated later by the BelAir20E bridge software.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

The default settings vary, depending on the hardware in use, the topology and whether dynamic path cost is used or not.

Layer 2 Network Configuration

RSTP Point-To-Point Status of an Interface

This command indicates whether the interface can do RSTP point-to-point communications or not. RSTP point-to-point communications is special case where the interface can communicate with only one other RSTP enabled device, such as when only two BelAir nodes are connected through a simple switch. RSTP uses RSTP point-to-point status to optimize performance during topology changes.

This command sets the administrative value of the RSTP point-to-point status. The operational value of the RSTP point-to-point status is initially its administrative value; however, it can be updated later by the BelAir20E bridge software.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

Setting a value of *forcetrue* forces it to function as a point-to-point link. Setting a value of *forcefalse* forces it not to function as a point-to-point link.

The default settings vary, depending on the hardware in use, the topology and whether dynamic path cost is used or not.

Interface RSTP Configuration

This command allows or prevents RSTP from affecting the specified interface.

The *<interface-name>* parameter specifies a particular interface, such as *wifi-2-1*.

By default, RSTP affects all enabled interfaces. Setting admin-state to *disable* prevents RSTP from affecting this interface. Setting admin-state to *enable* allows RSTP to affect this interface.

Changing RSTP Admin State

/protocol/rstp/set admin-state {enabled|disabled}

This command lets you enable or disable RSTP functionality. The default setting is *enabled*.

Performing a Software Upgrade

Performing a Software Upgrade

This section instructs you how to upgrade a BelAir20E unit by downloading a new software load from a remote server. The procedures in this section assume the following:

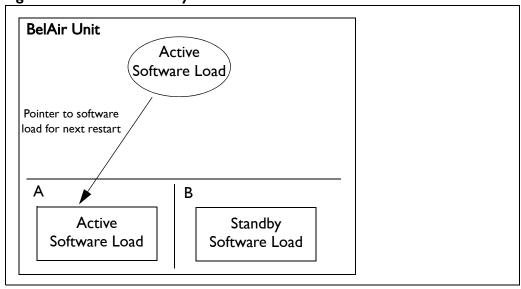
- You have connected to the BelAir20E.
- You have started a Command Line Interface (CLI) session and you have logged in as *root*. When you need to login again, such as after a reboot, use the *root* user account so you have access to all the required commands.
- You are familiar with the operation of the CLI.
- You are familiar with the operation of the *config-save* command. Refer to <u>"Saving your Changes" on page 21</u> for details.

CAUTION!

Make sure to read and understand the entire upgrade procedure described in this section before attempting to upgrade a unit. An improper upgrade could result in a unit becoming inoperable and isolated from the network.

CAUTION!

A unit's configuration database in one release can be structurally different than in other releases. For example, the configuration database in Release 12.0 is structurally different than in previous releases. Because of this, downgrading a software load from Release 12.0 to the previous release requires much effort. BelAir Networks strongly recommends that you fully verify the configuration and operation of an upgraded unit before you commit the new load to replace the old load and configuration. The upgrade process in this document contains guidelines to help you verify a unit.


For instructions on how to downgrade a unit, contact BelAir Networks.

Upgrade Process Overview

An operator logged in as *root* can upgrade a BelAir20E unit by downloading a new software load from a remote server. You can use either TFTP or FTP to communicate with the remote server. You must ensure that the server is running at an accessible IP address. For redundancy purposes, BelAir20E units store two copies of the software load in two application banks: banks A and B. The active software load is the software load that is currently running. The standby software load is the software load in the alternate application bank. Either bank A or bank B may be active at a given time. See Figure 8 on page 198.

Performing a Software Upgrade

Figure 8: Active and Standby Software Loads

Under normal operating conditions, the contents of the two software load banks are identical. During a software upgrade, the new software load is copied into the standby bank at the time of the upgrade.

A software upgrade consists of the following steps:

- I Ensure the current configuration is saved. Refer to <u>"Saving your Changes"</u> on page 21.
- 2 Determine what software load is active (A or B). The new software load will overwrite the standby bank.
- 3 Download the new software load. The new software load is downloaded to the standby software load bank. If A is active, then the new software load is downloaded to bank B. If B is active, then the new software load is downloaded to bank A.
- 4 Verify the new software downloaded successfully.
- 5 Activate the new software load from the standby software load bank (containing the new load) by rebooting the node. The new load is promoted to active and the formerly active software load bank becomes standby.
- 6 Verify the configuration and operation of the unit operating with the new software load
- 7 Commit the load (copy the newly activated load to the standby software load bank).

Performing a Software Upgrade

Note: Any configuration changes that you make before you commit the new software load are lost if you back out of the upgrade.

You can also use BelView NMS to manage how nodes are upgraded. For details, refer to the *BelView NMS User Guide* and "Auto-upgrade" on page 204.

CAUTION!

Do not change or save the node configuration while upgrading the system.

CAUTION!

It is always possible to downgrade a committed software load to an older release. However, while the existing configuration data is saved (upgraded) during a software upgrade, the existing configuration data could be lost (erased) during a software downgrade. BelAir Networks recommends that you save and remotely store the current existing configuration database in case you choose to downgrade a software load. For instructions on how to downgrade a unit, contact BelAir Networks.

Displaying the Active and Next Software Loads

Display the active software load and the load that is activated at the next reboot with the following command:

/system/show loads

Downloading a New Software Load This command downloads a new software image from a remote server. It copies the new software load into the standby software load bank and sets the new load as the next active load. See Figure 9 on page 200.

You can use either TFTP or FTP to communicate with the remote server. By default, the *upgrade load* command uses TFTP. If you specify FTP, you can also specify the user name and password. The default FTP user name is *anonymous* and the default FTP password is root@<nodeip>, where <nodeip> is the IP address of node making the request. If you do not use the default FTP username, the FTP server must be configured to accept your username and password.

CAUTION!

Once it begins, the upgrade process cannot be interrupted or terminated by the user with the current CLI session. See "Canceling a Software Upgrade" on page 200.

Performing a Software Upgrade

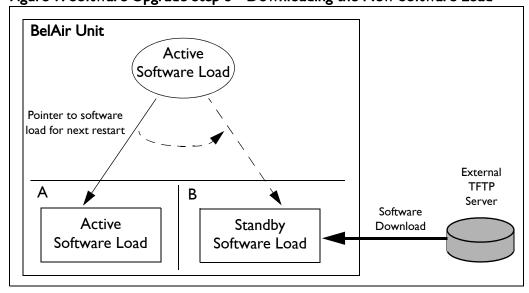
Canceling a Software Upgrade

/system/cancel upgrade

This command stops the transfer of the new software load into the standby software load bank. If you reboot the node, the software in the active software load bank is used. See Figure 9.

To cancel the upgrade process:

- I Start another CLI session to the BelAir20E being upgraded and log in as in as *root*.
- 2 Issue the following command:


/system/cancel upgrade

3 When requested, confirm your intent.
If you confirm that you want to cancel the software upgrade, a message appears in the other CLI session informing it's user that the upgrade has been cancelled.

CAUTION!

Because the software upgrade process was interrupted, the software in the standby software load bank may no longer be suitable to reboot the system. Do not set it to be the next active load unless you first commit the current active software load, or complete a new software upgrade.

Figure 9: Software Upgrade Step 3 - Downloading the New Software Load

Performing a Software Upgrade

Verifying a Successful **Download**

Verify that the new software downloaded successfully with the following command:

/system/show loads verify

The verify option calculates and verifies the checksum. A bad checksum indicates an issue with the load. If there are any issues, perform the download again.

Example

/system# show loads verify

Application BankA

Sw Version: BA100 9.0.0.S.2009.01.05.16.35 (r20884)
State: Running (next reboot)
CommitState: committed

Md5Sum: OK

Application BankB

Sw Version: BA100 8.0.8.D.2008.09.18.18.18 (r19148) State: Shadow

CommitState: committed

Md5Sum:

Bootloader Info

PPC405EP Common Bootloader Version 4.06 11/06/2008

Activating a Software Load

To activate a software load, enter the following:

/system/reboot

The *reboot* command is only available if you are logged in as *root*.

This command forces the unit to execute with the new load and completes the activation process.

When upgrading several nodes in a network, BelAir recommends that you reboot the most remote node first and progress towards the near-end, node-by-node. For star topologies, reboot the subscriber station nodes before rebooting the associated base station node.

Note: Rebooting a unit as part of a software upgrade can take significantly longer, up to 20 minutes, depending on the unit's configuration.

Performing a Software Upgrade

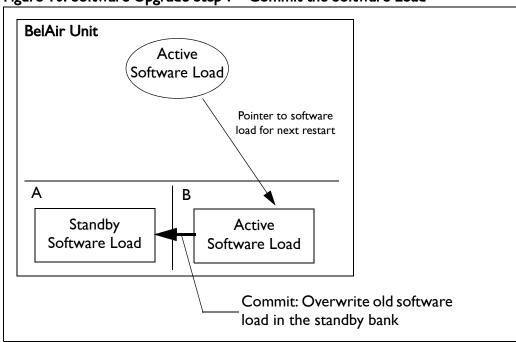
Verifying the New Software Load

BelAir Networks recommends that you fully verify the configuration and operation of an upgraded unit before you commit the new load. Use the following steps as guidelines.

- I Fully verify the unit's configuration and operation.
- 2 If required, adjust any settings and save the new configuration.
- 3 Reboot the unit and verify that all changes take effect.

If you observe any issues, follow the steps in "Backing Out from a Software Upgrade" on page 203.

Committing a New Software Load

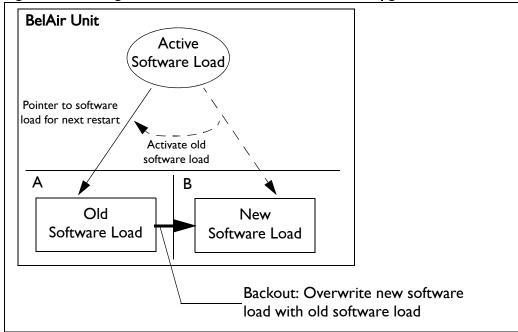

/system/commit load

Once you have activated the unit with new software load, you can commit it with this command. See Figure 10.

CAUTION!

This command copies the contents of the active software bank to the standby bank. For example, if the active software bank is A, its contents overwrite those of bank B. Backing out is no longer possible after the new software load has been committed. After the new software load has been committed, you can no longer back out of the upgrade; but you can downgrade the unit. For instructions on how to downgrade a unit, contact BelAir Networks.

Figure 10: Software Upgrade Step 7 - Commit the Software Load


Performing a Software Upgrade

The *commit* command copies the system software and the configuration database to the adjacent bank at the time of execution. However, changes to the active load's configuration after the *commit* command is executed are not automatically stored in the standby bank. To keep both banks synchronized, you must use the *commit* command after every configuration change of the active load.

Backing Out from a Software Upgrade

It is possible to back out from a software upgrade in case its effects are undesired, but only if the new software load has not been committed. See Figure 11 on page 203.

Figure 11: Backing Out from an Uncommitted Software Upgrade

When you back out of a software upgrade, the old load overwrites the new software load.

To back out from an upgrade, do the following steps:

I Determine which bank has the old software load with the following command:

/system/show loads

2 Set the old software load to be the next active load with the following command:

/system/set next-load {A|B}

Performing a Software Upgrade

If you have just upgraded the software, you must set the unit to reboot with the currently standby load. For example, if the old software load is in bank A, as shown in Figure II, and the new software load is in bank B, then you must activate bank A with the following command:

```
/system/set next-load A
```

Alternatively, steps \underline{I} and $\underline{2}$ can be combined with the following command:

```
/system/set next-load {current|inactive}
```

If you specify *inactive*, at the next reboot the system uses the bank containing a load other than the one that is running. Specify *current* to switch back to the bank containing the active load.

3 Reboot the system, with the reboot command.

Note: Rebooting a unit as part of a software upgrade can take significantly longer, up to 20 minutes, depending on the unit's configuration.

4 Run the *commit* command.

Running the *commit* command is not necessary if the system is already executing the old software load (because you have decided, for example, to back-out of the upgrade before activating the new load). In this case, the content of the old software load (which is active) overwrites the contents of the new undesired software load.

Displaying the Status of the Software Upgrade

/system/show upgrade status

This command displays the status of the software upgrade process.

Clearing the Upgrade Failure Alarm

/system/clear alarm upgrade-failure

This command allows you to clear the alarm generated when a software upgrade fails.

Auto-upgrade

```
/system/show auto-upgrade
/system/set auto-upgrade {enabled|disabled}
```

This command allows you to control whether a node can be upgraded automatically through BelView NMS. The default setting is *enabled*, meaning that BelView NMS can automatically upgrade the node,

For details, refer to the BelView NMS User Guide.

For More Information

For More Information

BelAir Networks documentation is modular and organized to be of best use to you during the logical process of setting up a network of BelAir devices.

Use the documents as outlined in the following sections.

Installation Guide

Use this document when you are:

- determining infrastructure requirements
- pre-configuring the BelAir units
- · installing BelAir units
- · problem-solving on the site
- mounting BelAir units
- · commissioning the BelAir units

User Guide

Use this document when you are:

- · becoming accustomed to the CLI interface
- becoming accustomed to the SNMP interface
- · accessing the Web interface
- configuring the unit:
 - —IP parameters
 - -data and time
 - -Ethernet interfaces
- · configuring the radios:
 - -antenna and link features
 - -access channel numbers
 - —transmission power levels
 - -radio transmission rates
 - -wireless security
- configuring Quality of Service (QoS)

BelAir20E User Guide For More Information

- · upgrading the unit
- saving and restoring the configuration

Troubleshooting Guide

Use this document when you are:

- · troubleshooting and in need of technical support
- looking up system configuration details:
 - -Alarms and events
 - —System logs
 - —Statistics

Technical Support

Technical Support

This section provides direction should you have questions about your BelAir20E unit.

Support Resources

In general, BelAir Networks recommends that you do the following steps to seek the information you want:

- I Refer to the *Troubleshooting Guide* of the BelAir unit to see if it describes your situation. If it does, do the provided corrective actions.
- 2 If the troubleshooting guide does not cover your situation, contact your BelAir Networks product representative
- 3 If you still need assistance, use the BelAir Networks online support center at http://support.belairnetworks.com
- 4 Finally, if your issue is not resolved, contact BelAir Networks:
 - -613-254-7070, option 2
 - I-877-BelAir I (235-247 I), option 2
 - -techsupport@belairnetworks.com

Warranty and Limitations

To review BelAir's product warranty, refer to the document called *BelAir Products Warranty and Limitations* available on the BelAir Networks Website, or contact your BelAir Representative.

Definitions and Acronyms

Definitions and Acronyms

ACL Access Control List

AES Advanced Encryption System

AP Access Point. A wireless LAN data transceiver that uses radio waves to provide

connectivity services to a network

Beacon A protocol packet that signals the availability and presence of a wireless device

BID Bridge identifier used in spanning-tree calculations

BPDU Bridge protocol data unit. When the spanning tree protocol is enabled, bridges

send and receive spanning-tree frames, called BPDUs, at regular intervals and

use the frames to maintain a loop-free network.

BSS Basic Service Set: A set of 802.11-compliant stations that operate as a fully

connected wireless network

Client A device that uses the services of a wireless access point to connect to a

network

CLI Command Line Interface

DHCP Dynamic Host Configuration Protocol

IP Internet Protocol

IP address The Internet Protocol (IP) address of a station. Expressed in dotted notation,

for instance, 10.21.1.14

IP subnet mask The number used to identify the IP sub-network.

LAN Local Area Network

LPM Line and Power Module

MAC Media Access Control

MAC Address Media Access Control address. A unique 48-bit number used in Ethernet data

packets to identify an Ethernet device.

MAU Medium Attachment Unit

MIB SNMP Management Information Base

MPDU MAC Protocol Data Unit
NAS Network Access Server

OAM Operations, Administration and Maintenance

BelAir20E User Guide	Definitions and Acronyms
OUI	Organizationally Unique Identifier (first 3 bytes of a MAC address)
PVID	Port VLAN identifier
PDU	Protocol Data Unit
QoS	Quality of Service
RADIUS	Remote Authentication Dial-In User Service. An Internet protocol (RFC 2138) for carrying dial-in users' authentication information and configuration information between a shared, centralized authentication server (the RADIUS server) and a network access server (the RADIUS client) that needs to authenticate the users of its network access ports
RTS	Request to Send
SNMP	Simple Network Management Protocol
SNTP	Simple Network Time Protocol
SSH	Secure Shell
SSID	Service Set Identifier (also referred to as Network Name or Id). A unique identifier used to identify a radio network and which stations must use to be able to communicate with each other or to an access point
SSL	Secure Socket Layer
TCP	Transmission Control Protocol
TKIP	Temporal Key Integrity Protocol, an optional IEEE 802.11 function that offers frame transmission privacy. Like WEP, it is based on RC4 encryption. It generates new encryption keys for every 10 kilobytes of data transmitted.
TU	Wireless Time Unit, as defined in IEEE 802.11, a measure of time equal to 1024 microseconds
UDP	User Datagram Protocol
VLAN	Virtual Local Area Network
WEP	Wired Equivalent Privacy, an optional IEEE 802.11 function that offers frame transmission privacy. The Wired Equivalent Privacy generates secret shared encryption keys that both source and destination stations can use to alter frame bits to avoid disclosure to eavesdroppers.
WPA	Wi-Fi Protected Access

Conformity and Regulatory Statements

Conformity and Regulatory Statements

This section provides declarations of conformity and regulatory information for the BelAir20E.

This section contains the following sections:

- "Regulatory Information and Disclaimers" on page 210
- "Manufacturer's US Federal Communication Commission Conformity Statement" on page 211
- "Manufacturer's Industry Canada Conformity Statement" on page 212
- "Manufacturer's European Community Conformity Statement" on page 213
- "Declaration of Conformity for RF Exposure" on page 216
- "Product Disposal" on page 216

Regulatory Information and Disclaimers

Installation and use of this device must be in strict accordance with the instructions included in the user documentation provided with the product. Any changes or modifications to this product not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

The manufacturer is not responsible for any interference to radio or television equipment caused by unauthorized modification of this device, or attachment of any antennas or equipment other than those specified by the manufacturer. The manufacturer or its authorized resellers or distributors will assume no liability for any damage arising from failure to comply with these guidelines, or failure to comply with local, regional or national safety, electrical or building codes, or government regulations.

This product is manufactured in Canada with originating and non-originating product.

Ce produit est fabriqué au Canada avec des matières originaires et non originaires du produit.

Conformity and Regulatory Statements

Manufacturer's US Federal Communication Commission Conformity Statement

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions (I) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for assistance.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Operations in the 5.15-5.25GHz band are restricted to indoor usage only.

Conformity and Regulatory Statements

Manufacturer's Industry Canada Conformity Statement

This device complies with RSS-210 of the Industry Canada Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT NOTE:

Radiation Exposure Statement:

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 25 cm between the radiator and a human body.

Caution:

The device for the band 5150-5250 MHz is only for indoor usage to reduce potential for harmful interference to co-channel mobile satellite systems.

High power radars are allocated as primary users (meaning they have priority) of 5250-5350 MHz and 5650-5850 MHz and these radars could cause interference and/or damage to LE-LAN devices.

Ce dispositif est conforme à la norme CNR-210 d'Industrie Canada applicable aux appareils radio exempts de licence. Son fonctionnement est sujet aux deux conditions suivantes: (1) le dispositif ne doit pas produire de brouillage préjudiciable, et (2) ce dispositif doit accepter tout brouillage reçu, y compris un brouillage susceptible de provoquer un fonctionnement indésirable.

NOTE IMPORTANTE:

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 25 cm de distance entre la source de rayonnement et d'un corps humain.

Avertissement:

Le dispositif fonctionnant dans la bande 5150-5250 MHz est réservé uniquement pour une utilisation à l'intérieur afin de réduire les risques de brouillage préjudiciable aux systèmes de satellites mobiles utilisant les mêmes canaux.

Les utilisateurs de radars de haute puissance sont désignés utilisateurs principaux (c.-à-d., qu'ils ont la priorité) pour les bandes 5250-5350 MHz et

Conformity and Regulatory Statements

5650-5850 MHz et que ces radars pourraient causer du brouillage et/ou des dommages aux dispositifs LAN-EL.

Manufacturer's European Community Conformity Statement

Table 17: European Community Conformity Statement

Language	Statement
English	This equipment is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.
Deutsch	Dieses Gerät entspricht den grundlegenden Anforderungen und den weiteren entsprecheneden Vorgaben der Richtlinie 1999/5/EU.
Dansk	Dette udstyr er i overensstemmelse med de væsentlige krav og andre relevante bestemmelser i Directiv 1999/5/EF.
Español	Este equipo cumple con los requisitos esenciales asi como con otras disposiciones de la Directiva 1999/5/EC.
Έλληνας	Αυτός ο εξοπλισμός συμμορφώνεται με τις ουσιώδεις απαιτήσεις και τις λοιπές διατάξεις της Οδηγίας Ι 999/5/ΕΚ.
Français	Cet appareil est conforme aux exigences essentielles et aux autres dispositions pertinentes de la Directive 1999/5/EC.
Íslenska	Þessi búnaður samrýmist lögboðnum kröfum og öðrum ákvæðum tilskipunar 1999/5/ESB.
Italiano	Questo apparato conforme ai requisiti essenziali ed agli altri principi sanciti dalla Direttiva 1999/5/EC.
Nederlands	Deze apparatuur voldoet aan de belangrijkste eisen en andere voorzieningen van richtlijn 1999/5/EC.
Norsk	Dette utstyret er i samsvar med de grunnleggende krav og andre relevante bestemmelser i EU-directiv 1999/5/EC.
Português	Este equipamento satisfaz os requisitos essenciais e outras provisões da Directiva 1999/5/EC.

Conformity and Regulatory Statements

Table 17: European Community Conformity Statement (Continued)

Language	Statement
Suomalainen	Tämä laite täyttää direktiivin 1999/5/EY oleelliset vaatimukset ja on siinä asetettujen muidenkin ehtojen mukainen.
Svenska	Denna utrustning är i överensstämmelse med de väsentliga kraven och andra relevanta bestämmelser i Direktiv 1999/5/EC.

The Declaration of Conformity related to this product can be found at the following URL: www.belairnetworks.com/support/index.cfm.

The BelAir20E complies with the following EU Radio standards:

- EN 300 328 V1.4.1 (2003-04) and EN300 328-2 V1.2.1 (2001-12) Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using spread spectrum modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive.
- EN 300 440-2 VI.I.I (2001-09) Electromagnetic compatibility and Radio spectrum Matters (ERM); Short range devices; Radio equipment to be used in the I GHz to 40 GHz frequency range; Part 2: Harmonized EN under article 3.2 of the R&TTE Directive.
- EN 300 440-2 VI.I.2 (2004-07) Electromagnetic Compatibility and Radio spectrum Matters (ERM); Short range devices; Radio equipment to be used in the IGHz to 40 GHz frequency range; Part 2: Harmonized EN under article 3.2 of the R&TTE Directive.
- EN 301 893 V1.4.1 (2007-07) Broadband Radio Access Networks (BRAN);
 5 GHz high performance RLAN; Harmonized EN covering essential requirements of article 3.2 of the R&TTE Directive
- EN 300 328 V1.6.1 (2004-11) Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using spread spectrum modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive.

Conformity and Regulatory Statements

- UK Interface Requirement 2005 UK Radio Interface Requirement for Wideband Transmission Systems operating in the 2.4 GHz ISM Band and Using Wide Band Modulation Techniques (November 2006).
- UK Interface Requirement 2006 Wireless Access Systems (WAS) including RLANs operating in the 5150-5725 MHz band (Version 3.0)
 98/34/EC Notification number: 2006/421/UK
 Published 14 November 2006
- UK Interface Requirement 2007 Fixed Broadband Services operating in the 5725 -5850 MHz band (Version 3.0)
 98/34/EC Notification Number: 2006/422/UK
 Published 30 May 2007

The BelAir20E complies with the following EU EMC standards:

• EN 301 489-17 V1.2.1 (2002-08) ElectroMagnetic Compatibility and Radio Spectrum Matters (ERM); ElectroMagnetic Compatibility (EMC) Standard for Radio Equipment and Services; Part 17: Specific Conditions for 2.4 GHz Wideband Transmission Systems and 5 GHz High Performance RLAN Equipment

The BelAir20E complies with the following EU Safety standards:

- EN 60825-2:2000 Safety of Optical Fibre Communication Systems
- EN 60950:2000 Safety of Information Technology Equipment
- IEC 60950:2005 Second Edition and/or EN 60950-1:2006

The following CE mark is affixed to the BelAir20E:

Note: This equipment is intended to be used in all EU and EFTA countries.

Outdoor use may be restricted to certain frequencies and/or may require a license for operation – for example in France the frequencies 2454-2483.5 MHz are restricted to 10 mW effective isotropic radiated power (EIRP) in outdoor environments, so channels 8-13 require reduced power. For more details, contact BelAir Networks.

Conformity and Regulatory Statements

Declaration of Conformity for RF Exposure

This Wireless LAN radio device has been evaluated under FCC Bulletin OET 65C, Health Canada Safety Code 6 and EN 62311:2008, and found to be compliant to the requirements set forth in CFR 47 Sections 2.1091, 2.1093, and 15.247 (b) (4) addressing RF exposure from radio frequency devices. This Wireless LAN radio device also conforms to EU Health and Safety Directive 2004/40/EC as per EN 50385.

This device complies with FCC RF radiation exposure limits for an uncontrolled environment. The radiated output power of this Wireless LAN device is below the FCC radio frequency exposure limits. However, this device should still be installed and used in such a manner that the potential for human contact during normal operation is minimized.

Warning: In order to comply with RF exposure limits established in the ANSI C95. I standard, this equipment should be installed and operated at a minimum distance of 9.8 inches (25 cm) between the radiator and a human body.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

The availability of some specific channels and/or operational frequency bands are country dependent and are firmware programmed at the factory to match the intended destination. The firmware setting is not accessible by the end user.

Product Disposal

BelAir Networks adheres to directive 2002/96/EC of the European Parliament and the council of 27 January 2003 on Waste Electrical and Electronic Equipment (WEEE).

To dispose of equipment, including batteries, contact BelAir Networks customer service to get a Return Material Authorization (RMA) number and shipping instructions. BelAir Networks customer service can be reached at:

- 613-254-7070, menu item 3
- I-877-BelAir I (235-2471), menu item 3
- customerservice@belairnetworks.com

Mise au rebut du produit

BelAir Networks se conforme à la directive 2002/96/EC du Parlement européen et du Conseil de l'Europe du 27 janvier 2003 relative à la destruction des déchets d'équipements électriques et électroniques (DEEE).

Si vous souhaitez vous débarrasser de l'équipement, y compris des piles, veuillez communiquer avec le service à la clientèle de BelAir Networks, afin d'obtenir un numéro d'autorisation de retour du matériel et des instructions

Conformity and Regulatory Statements

sur les modalités d'expédition. Veuillez trouver ci-dessous les coordonnées du service à la clientèle de BelAir Networks :

- 613-254-7070, option 3
- I 877 BelAir I (235-2471), option 3
- customerservice@belairnetworks.com

Produktentsorgung

BelAir Networks erfüllt die Anforderungen der Richtlinie 2002/96/EG des Europäischen Parlaments und des Rates vom 27. Januar über Elektro- und Elektronik-Altgeräte (Waste Electrical and Electronic Equipment = WEEE).

Für die Entsorgung von Geräten, einschließlich Batterien, wenden Sie sich bitte an den Kundendienst von BelAir Networks, um eine RMA-Nummer (Rücksendenummer) und die Versandanweisungen zu erhalten. Den Kundendienst von BelAir Networks erreichen Sie unter:

- +001 613 254 7070, Menüpunkt 3
- +001 877 235 2471, Menüpunkt 3
- customerservice@belairnetworks.com

Verwijdering van het product

BelAir Networks volgt Richtlijn 2002/96/EG van het Europese Parlement en de Raad van 27 januari 2003 betreffende afgedankte elektrische en elektronische apparatuur (AEEA).

Voor het verwijderen van apparatuur, met inbegrip van batterijen, neemt u contact op met BelAir Networks klantenservice voor een retournummer (RMA) en verzendinstructies. BelAir Networks klantenservice kunt u bereiken via:

- +1 613-254-7070, menupunt 3
- +1-877-BelAir1 (235-2471), menupunt 3
- customerservice@belairnetworks.com

Tuotteen hävittäminen

BelAir Networks noudattaa sähkö- ja elektroniikkalaiteromusta 27 päivänä tammikuuta 2003 annettua Euroopan parlamentin ja neuvoston direktiiviä 2002/96/EY.

Conformity and Regulatory Statements

Palauttaaksesi välineet, mukaan luettuina akut, ota yhteys BelAir Networks – asiakaspalveluun, niin saat RMA (Return Material Authorization) –numeron ja lähetysohjeet. BelAir Networks –asiakaspalveluun saa yhteyden seuraavasti:

- 613-254-7070, valikon vaihtoehto 3
- I-877-BelAir1 (235-2471), valikon vaihtoehto 3
- customerservice@belairnetworks.com

Smaltimento del prodotto

BelAir Networks aderisce alla direttiva 2002/96/CE del parlamento Europeo e del Consiglio d'Europa del 27 gennaio 2003, sullo smaltimento degli apparecchi elettrici ed elettronici (WEEE).

Per lo smaltimento di tali apparecchi, comprese le batterie, contattare l'assistenza clienti di BelAir Networks per ottenere un numero di autorizzazione alla restituzione del materiale da smaltire (Return Material Authorization - RMA) e le istruzioni per la spedizione. Il supporto clienti di BelAir Networks può essere contattato ai numeri/all'indirizzo e-mail:

- 613-254-7070, selezione menu 3
- I-877-BelAir1 (235-2471), selezione menu 3
- customerservice@belairnetworks.com

Produktbortskaffelse

BelAir Networks overholder direktivet 2002/96/EC fra Europa-Parlamentet og -Rådet dateret den 27. januar 2003 om Waste Electrical and Electronic Equipment (WEEE) (Affald af elektrisk og elektronisk udstyr).

For at bortskaffe udstyr, samt batterier, kontakt kundeservicen hos BelAir Networks for at få et Return Material Authorization (RMA)-nummer (returneringstilladelsesnummer) og forsendelsesinstruktioner. BelAir Networks kundeservice kan kontaktes på:

- 613-254-7070, menunummer 3
- I-877-BelAir1 (235-2471), menunummer 3
- customerservice@belairnetworks.com

Eliminação do produto

A BelAir Networks cumpre a Directiva 2002/96/CE do Parlamento Europeu e do Conselho, de 27 de Janeiro de 2003, relativa aos Resíduos de Equipamentos Eléctricos e Electrónicos (REEE).

Para proceder à eliminação do equipamento, incluindo as baterias, é favor contactar a assistência ao cliente da BelAir Networks para obter um número

Conformity and Regulatory Statements

de Autorização de Devolução do Material (RMA – Return Material Authorization) e as instruções relativas ao envio. A assistência ao cliente da BelAir Networks pode ser contactada através de:

- 613-254-7070, item de menu 3
- I-877-BelAir I (235-2471), item de menu 3
- customerservice@belairnetworks.com

Eliminación del producto

BelAir Networks cumple con la directiva 2002/96/EC del Parlamento Europeo y del Consejo de 27 de enero de 2003 sobre los residuos de aparatos eléctricos y electrónicos (RAEE).

Para la eliminación de equipo, incluyendo las pilas, contacte con el servicio de atención al cliente de BelAir Networks y obtenga el número de una Autorización de Devolución de Material (RMA) y las instrucciones para la expedición. Utilice la siguiente información para comunicarse con el servicio de atención al cliente de BelAir Networks:

- 613-254-7070, número 3 del menú
- I-877-BelAir I (235-247 I), número 3 del menú
- customerservice@belairnetworks.com

제품 폐기

벨에어 네트워크는 유럽 의회의 2002/96/EC 규정과 전기 및 전자 장비폐기(WEEE)에 관한 2003년 1월 27일 자문 위원회의 규정을 준수합니다.

배터리를 포함한 장비를 폐기하려면, 벨에어 네트워크에 연락해 반송 물질 승인(RMA) 번호와 배송 방법을 문의하십시오. 벨에어 네트워크의 고객 서비스 연락처는 다음과 같습니다:

- 613-254-7070, 3번 메뉴
- I-877-BelAirT (235-247T), 3번 메뉴
- customerservice@belairnetworks.com

Conformity and Regulatory Statements

التخلص من الجهاز

تلتزم بيل إير (BelAir) بالتوصية 2002/96/EC المتعلقة بالنفايات الكهربائية و الالكترونية (WEEE) و الصادرة عن البرلمان و المجلس الأروبيين في تاريخ 27 يناير 2003. المرلمان و المجلس الأروبيين في تاريخ 27 يناير 2003. إذا أردت التخلّص من الجهاز بما في ذلك البطارية اتصل بمصلحة خدمة الزبائن لشبكة بيل إير (BelAir Networks)

إذا أردت التخلّص من الجهاز بما في ذَلك البطارية اتصل بمصلحة خدمة الزبائن لشبكة بيل إير (BelAir Networks) للحصول على رقم تصريح لإعادة الجهاز (Return Material Authorization – RMA) و للتعرّف على إرشادات الشحن. يمكنك الاتصال بمصلحة خدمة الزبائن لشبكة بيل إير (BelAir Networks) عن طريق الهاتف أو البريد الالكتروني:

- 7070-13-16، ثمّ اختر المادّة 3
- (1-877-BelAirI (235-2471) اختر المادّة 3
- customerservice@belairnetworks.com •

Node Configuration Sheets

Appendix A: Node Configuration Sheets

You can use this sample worksheet to document the basic configuration of a BelAir20E unit. Store your worksheets in a secure location because they contain sensitive information (super-user password and privacy keys).

Unit part r	number (located on the sti	cker on to the unit):		
Unit serial	number (located on the st	icker on to the unit):		
Super-user	password:		-	
System	Name:	Location:	Contact:	
	Base MAC Address: _			
IP	Address:	Subnet:	Gateway:	
Cable Mod	lem MAC Address (BA00S	N and BA100SNE only):	
Layer 2 Co	onfiguration: STP Priority:			
Client to \	/LAN mapping: Y or N			

Node Configuration Sheets

Wi-FI Access Point (AP) Settings (if configured)
Interface: wifi
Channel:

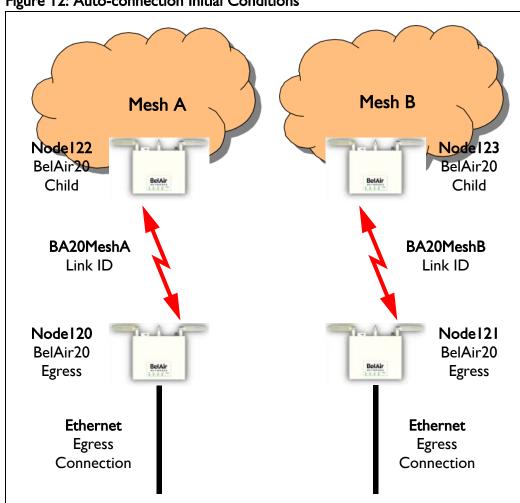
Table 18: AP Privacy Setting Table (Optional)

SSID (I to 8)	ACL	Encryption and Authentication
	Y or N	wep40 RADIUS or 5-byte pre-shared key:
		wep104 RADIUS or I3-byte pre-shared key:
		wpa encryption (TKIP or AES): RADIUS or 8 to 63-byte pre-shared key:
		wpa2 encryption (PSMv2 only: TKIP or AES. Others: AES only): RADIUS or 8 to 63-byte pre-shared key:
		dot1x (RADIUS (EAP) authentication) 1 2 3 4
	Y or N	wep40 RADIUS or 5-byte pre-shared key:
		wep104 RADIUS or I3-byte pre-shared key:
		wpa encryption (TKIP or AES): RADIUS or 8 to 63-byte pre-shared key:
		wpa2 encryption (PSMv2 only: TKIP or AES. Others: AES only): RADIUS or 8 to 63-byte pre-shared key:
		dot1x (RADIUS (EAP) authentication) 1 2 3 4

Node Configuration Sheets

Wi-Fi Backhaul Setting (if configured)			
Interface: wifi			
Channel:			
Link ID:			
AES Privacy (Y or N): K	ey (16 characters):		
Topology (P-to-P, MP-to-MP mesh, P-	-to-MP star):		
P-to-MP star role (base-station or subscriber-station):			
P-to-MP star link index:			

Mesh Auto-connection Example


Appendix B: Mesh Auto-connection Example

This example uses two meshes of BelAir20 nodes to show how mesh auto-connection operates.

Setup and Initial **Conditions**

See Figure 12.

Figure 12: Auto-connection Initial Conditions

To setup auto-connection:

- The first six bytes of the respective link IDs must match. This is true in our example (B20MeshA and B20MeshB).
- The auto-connection admin state in the child nodes must be enabled.

Mesh Auto-connection Example

 The egress node of each mesh must have its system egress point set to either yes direct or yes indirect. See "Setting the Network Egress Point" on page 54 for details.

The following series of CLI commands show this for both meshes.

Node 122 (Child Node of Mesh A)

Display the backhaul configuration.

```
/interface/wifi-1-1# show config backhaul
Slot: 1, Card Type: htm, revision: 1, Port: 1, Radio: HTMv1 5GHz 802.11n
admin state: ..... Enabled
channel: ..... 161
 mode: ..... ht20
 mimo: ..... 3x3
 tx power: ...... 18.0 (dBm per-chain), 23.0 (dBm total)
antenna gain: ..... 5.0 (dBi)
link distance: ...... 1 (km)
tx aggregation:.... Enabled
base radio MAC : ...... 00:0d:67:10:e8:92
Backhaul:
 Common:
   privacy: ..... Disabled
   mesh-min-rssi......-100 (dbm)
 Stationary Backhaul:
   link admin state: ..... Enabled
   link id: ..... B20MeshA
   topology: ..... mesh
 Mobile Backhaul:
   mobile admin state: ..... Disabled
   mobile link id: .....
   mobile link role: ..... ss
 Protection Backhaul:
   protection admin state: .. Disabled
Blacklist:
 No blacklist entries
Link Failure Detection: ..... Disabled
Backhaul T1 Bandwidth limit:.. Disabled
```

Display the mesh topology.

Mesh Auto-connection Example

Enable auto-connection and verify it.

Node 120 (Egress Node of Mesh A)

Display the mesh topology.

Identify Node 120 as an egress node.

```
/system# set system-egress-point yes direct
/system# show system-egress-point
egress point:..... direct
```

/services/auto-conn# set admin enable

Enable auto-connection and verify it.

Node 123 (Child Node of Mesh B)

Display the backhaul configuration.

Mesh Auto-connection Example

```
Common:
   privacy: ..... Disabled
   mesh-min-rssi..... -100 (dbm)
 Stationary Backhaul:
   link admin state: ..... Enabled
   link id: ..... B20MeshB
   topology: ..... mesh
 Mobile Backhaul:
   mobile admin state: ..... Disabled
   mobile link id: .....
   mobile link role: ..... ss
 Protection Backhaul:
   protection admin state: .. Disabled
Blacklist:
 No blacklist entries
Link Failure Detection: ..... Disabled
Backhaul T1 Bandwidth limit:.. Disabled
```

/services/auto-conn# set admin enabled

Display the mesh topology.

Enable auto-connection and verify it.

Node 121 (Egress Node of Mesh B)

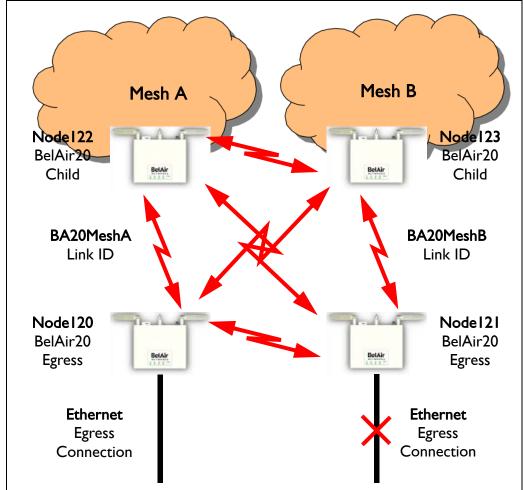
Display the mesh topology.

Mesh Auto-connection Example

Identify Node 121 as an egress node.

```
/system# set system-egress-point yes direct
/system# show system-egress-point
egress point:..... direct
```

Enable auto-connection and verify it.


Fault Conditions

At this point, the Ethernet connection used by the Mesh B egress node (Node121) becomes unavailable. The "Mesh B" nodes (Node121 and Node123) connect to the Mesh A nodes and all traffic flows through the Mesh A egress node (Node 120). Node121 and Node123 become members of Mesh A. See Figure 13 on page 229.

Mesh Auto-connection Example

Figure 13: Auto-connection and Fault Conditions

Node 120 (Egress Node of Mesh A)

Display the mesh topology.

/interface/wifi-1-1# show backhaul status

WiFi backhaul states:: stationary=[Enabled] mobile=[Disabled] protection=[Disabled] Backhaul Links:

Link	Radio Mac	State(L,R)	RSSI	Radio	Node IP	Node Name
[S] 1	00:0d:67:10:e8:92	fwd up	-46	wifi-1-1	180.7.4.122	
[S] 2	00:0d:67:0c:22:29	fwd fwd	-36	wifi-1-1	180.7.4.121	
[S] 3	00:0d:67:10:f8:d7	fwd up	-64	wifi-1-1	180.7.4.123	

Mesh Auto-connection Example

Display the auto-connect topology. It shows that the Mesh A egress node still operates normally.

Node 122 (Child Node of Mesh A)

Display the mesh topology.

/interface/wifi-1-1# show backhaul status
WiFi backhaul states:: stationary=[Enabled] mobile=[Disabled] protection=[Disabled]
Backhaul Links:
Link Radio Mac State(L,R) RSSI Radio Node IP Node Name

Link	Radio Mac	State(L,R)	RSSI	Radio	Node IP	Node Name
[S] 1	00:0d:67:0c:22:4b	up fwd	-51	wifi-1-1	180.7.4.120	
[S] 2	00:0d:67:0c:22:29	fwd fwd	-41	wifi-1-1	180.7.4.121	
[S] 3	00:0d:67:10:f8:d7	fwd up	-58	wifi-1-1	180.7.4.123	

Display the auto-connect topology.

Node 123 (Child Node of Mesh B)

Display the backhaul configuration.

```
/interface/wifi-1-1# show config backhaul
Slot: 1, Card Type: htm, revision: 1, Port: 1, Radio: HTMv1 5GHz 802.11n
admin state: ..... Enabled
channel: ..... 153
 mimo: ..... 1x1
 antenna gain: ...... 5.0 (dBi)
link distance: ..... 1 (km)
tx aggregation:.... Enabled
base radio MAC : ...... 00:0d:67:10:f8:d7
Backhaul:
 Common:
  privacy: ..... Disabled
  mesh-min-rssi......-100 (dbm)
 Stationary Backhaul:
  link admin state: ..... Enabled
  link id: ..... B20MeshB
   topology: ..... mesh
 Mobile Backhaul:
```


Mesh Auto-connection Example

```
mobile admin state: ..... Disabled
mobile link id: .......
mobile link role: ..... ss
Protection Backhaul:
   protection admin state: .. Disabled
Blacklist:
   No blacklist entries
Link Failure Detection: ..... Disabled
Backhaul T1 Bandwidth limit: .. Disabled
```

Display the mesh topology.

Display the auto-connect topology.

/services/auto-	-conn# sho	w status				
Oper State	Ether Lin	k State	Egress	Reachable	Use Alternate	Mesh
		_				
up	down		yes		yes	

[S] 3 00:0d:67:0c:22:4b up fwd -67 wifi-1-1 180.7.4.120

Node 121 (Egress Node of Mesh B)

Display the auto-connect topology. It shows that it is using the alternate mesh as an egress point.

Recovery Conditions

At this point, the Ethernet connection used by the Mesh B egress node (Node121) is re-established. Because it is an egress node, Node121 automatically reverts back to its own mesh and begins to use the Ethernet connection to egress its traffic. However, its child nodes (for example, Node123) continue to use the Mesh A egress node until an explicit revert command is issued on each child you want to return to using Node121 as an egress.

Mesh Auto-connection Example

Node 121 (Egress Node of Mesh B)

Display the auto-connect topology after the Ethernet connection is re-established.

Display the node's links to neighboring mesh, even after the Ethernet connection is re-established.

```
/services/auto-conn# show alternate-mesh
Alternate Mesh:
   Radio Interface --- wifi-1-1
   Mesh ID --- B20MeshA
   Channel --- 161
   Status --- Up
```

Node 122 (Child Node of Mesh A)

Display the mesh topology after the Ethernet connection is re-established on Node I 21 but before the auto-connection revert command is given.

See Figure 14 on page 233.

Mesh Auto-connection Example

Figure 14: Auto-connection after Recovery before Revert Mesh B Mesh A Node 122 Node 123 BelAir20 BelAir20 Child Child BA20MeshA BA20MeshB Link ID Link ID Node I 20 Node 121 BelAir20 BelAir20 **Egress Egress Ethernet Ethernet Egress Egress** Connection Connection

Display the mesh topology after the Ethernet connection is re-established on Node 121 and after the auto-connection revert command is given.

```
/interface/wifi-1-1# show backhaul status
WiFi backhaul states:: stationary=[Enabled] mobile=[Disabled] protection=[Disabled]
Backhaul Links:
Link Radio Mac
                        State(L,R) RSSI Radio
                                                Node IP
                                                              Node Name
[S] 1 00:0d:67:0c:22:4b fwd fwd -49 wifi-1-1 180.7.4.120
```

After the revert command is given, the mesh topology returns to that shown in Figure 12 on page 224.

Scripting Guidelines

Appendix C: Scripting Guidelines

This appendix provides guidance so you can create, manage and run scripts for BelAirOS™ platforms.

General Scripting Guidelines

This chapter introduces you to the concepts of creating and managing scripts for platforms that use the BelAirOS. The following sections are provided:

- "Overview" on page 234
- "Creating a BelAirOS Script" on page 234
- "Manually Transferring Files to and from a BelAir Node" on page 235
- "Managing and Manually Running Script Files" on page 236

Overview

In general, a script is a series of programming language statements to allow control of one or more software applications or devices. Scripts are distinct from the core code of an application, as they are created by the end-user. Scripts are often interpreted, whereas the applications they control are traditionally compiled to native machine code.

For BelAirOS platforms you can create scripts consisting of valid and supported BelAir CLI commands to:

- make repetitive tasks quicker and easier to do
- automate the configuration of a node when it starts up

Your script file must contain special declarations for the following cases:

- If you want to specify and control physical interfaces, such as wifi-1-1, use the declarations described in "Specifying Physical Interfaces" on page 237.
- Depending on the CLI commands in your script, you may need to reboot the BelAirOS platform. If this case, use the declarations described in "Including a Reboot Command in a Script" on page 242.

Creating a BelAirOS Script

Use the following general guidelines to create a script file:

- Make sure the script contains only valid and supported BelAir CLI commands. If you are using an older script, make sure the CLI commands that it contains are still valid and supported.
- Some BelAir functions, such as Network Address Translation (NAT), require that you reboot the node after you configure them. If your script is for BelAirOS auto-configuration at startup and if it must include the *reboot*

Scripting Guidelines

command, then your script must include special declarations. For details, see "Including a Reboot Command in a Script" on page 242.

Caution!

Using the *reboot* command in an auto-configuration script without the correct declarations may cause the node to enter a continuous *reboot* loop.

Test the final script to ensure all commands are valid, syntactically correct
and appropriate for the installed hardware. To help debugging, redirect the
output of the script to a file. Use the optional <output_file> parameter of
the run script command.

When you are satisfied with your script:

- I Put the final version of it on a TFTP, FTP or FTPS server to transfer the script file to the BelAir unit.
- 2 Use the commands described in "Manually Transferring Files to and from a BelAir Node" on page 235 to transfer the script to the BelAir platforms you want to control.
- 3 Use the commands described in "Managing and Manually Running Script Files" on page 236 as required.

The process of downloading and running a script file on startup can be automated. For details, see the "Auto-configuration" chapter of the BelAir platform User Guide.

Manually Transferring Files to and from a BelAir Node

Use the following CLI commands to manually transfer files, such as script files, to and from a BelAir node:

For the *tftpget* and *getfile* commands, if you do not specify a local file name, then the transferred file maintains the same name as on the remote file system.

For the *tftpput* command, if you do not specify a remote file name, then the transferred file maintains the same name as on the local file system.

For the getfile command:

- The default protocol is TFTP.
- For FTP, the default user name is *anonymous* and the default password is root@ followed by the node IP address. For example, if the node has

148.16.4.123 as an IP address, then the default password is root@148.16.4.123.

• For FTPS, the default user name is the unit's MAC address stripped of colons. The default password is unit's MAC address stripped of colons, followed by @, followed by the node IP address. For example, if the node has 11:22:33:44:55:66 as a MAC address and 148.16.4.123 as an IP address, then the default user name is 112233445566 and the default password is 112233445566@148.16.4.123.

CAUTION!

Do not use these commands to perform a software upgrade on a BelAir node. Use the upgrade load command instead. Refer to "Performing a Software Upgrade" on page 197 for full details on performing software upgrades.

Managing and Manually Running Script Files

Use the following commands as required:

```
/system/copy script <script file> <copied file name>
/system/delete script <script file>
/system/rename script <script file> <new name>
/system/show script <script file>
list scripts
run script <scriptname> [<output_file>]
```

The *copy, delete, rename* and *show script* commands are available in *system* mode and allow you to manage and customize script files as you require.

The *list* and *run script* commands are available from any mode. The *list scripts* command displays the scripts that are available to you. The *run script* command allows you to execute a previously created script file.

Tip

If you have a simple script that does not specify physical interfaces and does not contain a *reboot* command, you can also run it by copying it and pasting it into a CLI session window. If you use this method:

- I Paste only 20 to 25 commands at a time. Otherwise, you may overfill the command buffer used for the CLI session. If you overfill the command buffer, you need to determine exactly which commands were executed and which were not before proceeding.
- 2 After pasting a block of commands, verify that your script behaved as expected; that is, that the pasted commands produced the expected configuration.

Scripting Guidelines

3 After verifying the script behavior, manually enter the *config-save* and *reboot* commands as required.

Specifying Physical Interfaces

If you want your script file to specify and control physical interfaces, such as wifi-1-1, then your script must contain the declarations described in the following sections:

- "Physical Interface Declaration Summary" on page 237
- "Physical Interface Declaration Specifications" on page 238

As well, this chapter contains examples of the setup, contents and results of a typical script.

Physical Interface Declaration Summary <u>Table 19</u> summarizes the declarations required in your script file to specify a physical interface.

Table 19: BelAir Script Declaration Summary

Script Declaration	Description
<pre>int[-<asbly>]-<iftype>[-<desc>]-<instance></instance></desc></iftype></asbly></pre>	Used to define a physical interface to which the following CLI commands apply to.
	For a definition of <i><asbly></asbly></i> , <i><iftype></iftype></i> , <i><desc></desc></i> , and <i><instance></instance></i> , see "Physical Interface Declaration Specifications" on page 238.
	Precedes a CLI command that is not directed to the specified physical interface. The CLI command must start with a slash (/) followed by the mode(s) containing that command.
	For details, see "Physical Interface Declaration Specifications" on page 238.
int-stop	Terminates a command sequence associated with a previous declaration

Physical Interface Declaration Specifications Script files can use the following method to ensure commands are applied to the correct physical interface:

I Begin the command sequence by specifying the physical interface with the following declaration:

```
int[-<asbly>]-<iftype>[-<desc>]-<instance>
```

<asbly> specifies the platform's assembly code. This part of the declaration is optional. If provided, it must match at least part of the text in the Assembly code field output by the /system/show phyinv command. <asbly> must start with BelAir or BA. See also "Common BelAirOS Platform Assembly Codes" on page 244.

<iftype> specifies the type of physical interface. This part of the declaration is mandatory. It must be one of wifi, wimax, pwe, eth or opt.

<desc> specifies a description of the interface to uniquely identify it. This part of the declaration is optional. If provided, it must be at least three characters long and match at least part of the text in the *Description* field in the Physical Interface Table output by the /system/show phyinv command. See also "Common Radio Card Descriptions" on page 246.

<instance> specifies which instance of the interface to apply the commands to. It must be a digit between I and I27.

Use a dash (-) to separate each part in the declaration.

The system uses the information in your declaration to determine which physical interface the following commands apply to.

- 2 List the CLI commands. These may be commands directed to the physical interface specified by step <u>I</u> or they may be other commands. Any commands not directed to the specified physical interface must start with a slash (/) followed by the mode(s) containing that command. In all cases, make sure you follow the guidelines in <u>"Creating a BelAirOS Script" on page 234</u>.
- 3 Terminate the command sequence with the following declaration: int-stop

If the BelAirOS cannot identify a physical interface based on the information in the *int* declaration, then it skips the list of commands and continues executing the script after the *int-stop* declaration.

The following example shows the setup, script and output of a typical application of this functionality for a BelAir 100T.

Scripting Guidelines

Physical Interface Script Example - Setup

The following output of the *show phyinv* command shows the configuration of the BelAir I 00T where the script will run:

/system# show phyinv

System Name: BelAir100T

Type Class Serial number Assembly code BA order code BelAir100 triRadios BELAB0407 BELAIR100T 20-BC08 1TNYYXJ0KXX31-H

Physical Inventory Table

 Slot
 Card type
 Version
 Serial number
 Assembly code

 1
 LPM
 2.2.8
 K002092633
 B2CH082AA-B B08

 2
 BRM
 3.2.1
 K001362023
 B2CC033AA-B B01

 3
 BRM
 3.2.1
 A000003408
 B2CC033AA-B B01

Physical Interface Table

Name Type Slot Card type Description wifi-1-1 Wifi 802.11 1 LPM LPMv2 4.9GHz 802.11a

eth-1-1 Ethernet 1 LPM 1x100baseTx [Electrical: Single]

 wifi-2-1
 Wifi 802.11
 2
 BRM
 BRMv3 5GHz 802.11a

 wifi-3-1
 Wifi 802.11
 3
 BRM
 BRMv3 5GHz 802.11a

Physical Interface Script Example - Script

The following is a listing of the script contents:

int-wifi-2.4GHz-1 set channel 11

set admin-state enabled

show config
int-stop

int-wifi-4.9GHz-1 set channel 10

set admin-state disabled

show config
int-stop

int-wifi-5GHz-1
set channel 155

set backhaul admin-state disabled

show config
int-stop

int-wifi-5GHz-2 set channel 148

set backhaul admin-state disabled

show config int-stop

int-BELAIR100T_20-wifi-5GHz-1

show config
int-stop

int-BELAIR20-11-wifi-5GHz-1


```
show config
int-stop

int-BELAIR100-wifi-1
show config
int-stop
```

Physical Interface Script Example - Output

The following shows the output generated by the script:

```
Unknown interface ---> int-wifi-2.4GHz-1, skipping
Interface stop
/#
Interface int-wifi-4.9GHz-1 ---> /interface/wifi-1-1/ start
/# /interface/wifi-1-1/set channel 10
/# /interface/wifi-1-1/set admin-state disabled
/# /interface/wifi-1-1/show config
Slot: 1, Card Type: lpm, revision: 2, Port: 1, Radio: LPMv2 4.9GHz 802.11a
admin state: ..... Disabled
frequency band: ...... 4900MHz SchemeA
channel: ..... 10
 tx power: ..... 20.0 (dBm)
 bandwidth: ..... 10.0 (MHz)
antenna gain: ..... 9.5 (dBi)
link distance: ..... 1 (km)
base radio MAC : ...... 00:0d:67:00:48:52
Interface stop
/#
Interface int-wifi-5GHz-1 ---> /interface/wifi-2-1/ start
/# /interface/wifi-2-1/set channel 155
/# /interface/wifi-2-1/set backhaul admin-state disabled
/# /interface/wifi-2-1/show config
Slot: 2, Card Type: brm, revision: 3, Port: 1, Radio: BRMv3 5GHz 802.11a
admin state: ..... Enabled
channel: ..... 155
 tx power: ..... 20.0 (dBm)
 tx-power-optimize: ..... Disabled
antenna gain: ...... 10.5 (dBi)
link distance: ..... 1 (km)
base radio MAC : ...... 00:0d:67:00:44:49
Interface stop
/#
Interface int-wifi-5GHz-2 ---> /interface/wifi-3-1/ start
/# /interface/wifi-3-1/set channel 148
/# /interface/wifi-3-1/set backhaul admin-state disabled
```



```
/# /interface/wifi-3-1/show config
Slot: 3, Card Type: brm, revision: 3, Port: 1, Radio: BRMv3 5GHz 802.11a
admin state: ..... Enabled
channel: ..... 148
 tx power: ..... 20.0 (dBm)
 tx-power-optimize: ..... Disabled
antenna gain: ...... 10.5 (dBi)
link distance: ..... 1 (km)
base radio MAC : ...... 00:0d:67:00:c4:6b
Interface stop
/#
Interface int-BELAIR100T 20-wifi-5GHz-1 ---> /interface/wifi-2-1/ start
/# /interface/wifi-2-1/show config
Slot: 2, Card Type: brm, revision: 3, Port: 1, Radio: BRMv3 5GHz 802.11a
admin state: ..... Enabled
channel: ..... 155
 tx power: ..... 20.0 (dBm)
 tx-power-optimize: ..... Disabled
antenna gain: ..... 10.5 (dBi)
Interface stop
/#
assembly code tag does not match
Unknown interface ---> int-BELAIR20-11-wifi-5GHz-1, skipping
Interface stop
/#
Interface int-BELAIR100-wifi-1 ---> /interface/wifi-1-1/ start
/# /interface/wifi-1-1/show config
Slot: 1, Card Type: lpm, revision: 2, Port: 1, Radio: LPMv2 4.9GHz 802.11a
admin state: ..... Disabled
frequency band: ..... 4900MHz SchemeA
channel: ..... 10
 tx power: ..... 20.0 (dBm)
bandwidth: ... 10.0 (MHz)
antenna gain: ... 9.5 (dBi)
link distance: ... 1 (km)
base radio MAC : ...... 00:0d:5e:36:88:ff
Interface stop
/#
```


Including a Reboot Command in a Script

Some BelAir node functions, such as Network Address Translation (NAT), require that you reboot the node after you configure them. If your script must include a *reboot* command, then your script must contain the declarations described in the following sections:

- "Reboot Declaration Summary" on page 242
- "Reboot Declaration Specification" on page 242

As well, this chapter contains a typical script as an example.

Reboot Declaration Summary

<u>Table 19</u> summarizes the declarations required in your script if it needs to include a *reboot* command.

Table 20: Script Declaration Summary for Reboot Command

Script Declaration	Description	
check-db-change-start	Verifies and records whether the following commands change the node's settings.	
	For details, see "Reboot Declaration Specification" on page 242	
check-db-change-stop	Stops verifying whether commands change the node's settings.	
	For details, see "Reboot Declaration Specification" on page 242	
int-db-change-start	Used in conjunction with the previous <i>check-db-change</i> declarations.	
	The <i>int-db-change-start</i> declaration instructs the node to execute the commands that follow if the node's settings have changed.	
	For details, see "Reboot Declaration Specification" on page 242	
int-stop	Terminates a command sequence associated with a previous declaration	

Reboot Declaration Specification

If your script must include the *reboot* command, then your script must include the declarations described in this section.

Caution!

Using the *reboot* command in an auto-configuration script without the correct declarations may cause the node to enter a continuous *reboot* loop.

The declarations for using the *reboot* command in a script are an extension of those for specifying a physical interface in a script. See <u>"Specifying Physical Interfaces"</u> on page 237.

Scripting Guidelines

The declarations are:

- check-db-change-start. This declaration verifies and records whether the
 following commands change the node's settings. It ignores commands that
 change a setting to be the current setting. For example, if a physical
 interface's administrative state is enabled, the set admin-state enabled
 command for that physical interface is ignored.
- *check-db-change-stop*. This declaration stops verifying whether commands change the node's setting.
- *int-db-change-start*. This declaration is used with the previous *check-db-change* declarations. The *int-db-change-start* declaration instructs the node to execute the commands that follow if the node's settings have changed.

Typically, your script uses the declarations in the following sequence:

- I Use valid CLI commands and physical interface declarations as required.
- 2 Use the *config-save* command to save the changes to this point to the node's database.
- 3 Include the *check-db-change-start* declaration. (Begin recording whether the following commands change the nodes settings.)
- 4 Use the CLI commands for the functionality that requires a reboot, for example /protocol/nat/set commands.
- 5 Include the *check-db-change-stop* declaration. (Stop recording whether the following commands change the node's settings.)
- 6 Use more valid CLI commands and physical interface declarations as required.
- 7 At the end of the script, include the *int-db-change-start* declaration.
- 8 Use the *config-save* command to save any remaining changes to the node's database.
- 9 Include the /system/reboot CLI command.
- 10 Include y. (Confirm the reboot.)
- I I Include the *int-stop* declaration, as a terminator for the *int-db-change-start* declaration.

The first time the auto-configuration script is run (during initial startup), the *check-db-change-start* and *check-db-change-stop* declarations record the fact that the NAT commands have changed NAT settings. The condition for the *int-db-change-start* declaration is therefore true. The *config-save* and *reboot*

commands at the end of the script are executed. The second time the auto-configuration script is run (during the second startup), the NAT commands do not change the NAT settings. Hence the condition for the *int-db-change-start* declaration is false, and the *config-save* and *reboot* commands at the end of the script are not executed.

Reboot Script Example

The following is a listing of a typical script:

```
int-wifi-2.4GHz-1
set channel 11
set admin-state enabled
show config
int-stop
int-wifi-5GHz-1
set channel 155
set backhaul admin-state disabled
show config
config-save
int-BELAIR-20
check-db-change-start
/protocol/nat/set scope 1 dhcp-server vlan 401 based-ip 45.89.233.0 lease-time 30
/protocol/nat/set scope 1 status enabled
/protocol/nat/set admin-state enabled
check-db-change-stop
int-stop
int-db-change-start
config-save
/system/reboot
int-stop
```

Common BelAirOS Platform Assembly Codes

This section lists the most common BelAirOS platform assembly codes that can be used when specifying a physical interface in a script. Additional assembly codes are possible. For details, contact your BelAir Networks representative.

Table 21: Common BelAirOS Platform Assembly Codes

Platform	Assembly Code
BelAir200-12	BELAIR200_I2
BelAir200-13	BELAIR200_I3
BelAir200-04	BELAIR200_04
BelAir200-13R	BELAIR200_I3R

Scripting Guidelines

Table 21: Common BelAirOS Platform Assembly Codes (Continued)

Platform	Assembly Code
BelAir100-10	BELAIR100_10
BelAir100-11	BELAIR100_11
BelAir100M-10	BELAIR100M_10
BelAir100M-11	BELAIR100M_II
BelAir100T-12	BELAIR100T_12
BelAir100T-21	BELAIR100T_21
BelAir100T-12R	BELAIR100T_12R
BelAir100T-21R	BELAIR100T_21R
BelAir100S-10	BELAIR100S_10
BelAir100S-11	BELAIR I 00S_I I
BelAir100N-10	BA100N-10
BelAir100N-11	BA100N-11
BelAir100N-10R	BA100N-10R
BelAir100N-11R	BAI00N-IIR
BelAir100SN-10	BA100SN-10
BelAir100SN-11	BA100SN-11
BelAir100SN-10R	BA100SN-10R
BelAir100SN-11R	BA100SN-11R

Scripting Guidelines

Table 21: Common BelAirOS Platform Assembly Codes (Continued)

Platform	Assembly Code
BelAir20-11	BELAIR20-I I

Common Radio Card Descriptions

This section lists the most common card descriptions for radios so you can specify a physical interface in a script. Additional card descriptions are possible. For details contact your BelAir Networks representative.

Table 22: Common BelAirOS Radio Card Descriptions

Card	Description	Notes
ARMv3	ARMv3 2.4GHz 802.11b/g	
BRMv3	BRMv3 5GHz 802.11a	
BRMv4	BRMv4 5GHz 802.11a	
ERMvI	ERMvI 5GHz Multiband 802.11a	
ERMv2	ERMv2 5GHz 802.11a	
ERMv5	ERMv5 5GHz 802.11n	
PSMvI	PSMv1 4.9GHz 802.11a	
PSMv2	LPMv2 4.9GHz 802.11a	
WRMvI	WRMv1 2.3GHz 5MHz 802.16d	
WRMv2	WRMv2 2.5GHz 5MHz 802.16d	
WRMv3	WRMv3 2.5GHz 10MHz 802.16d	
MRMvI	MRMvI 4.4GHz 802.IIn	
HTMvI	HTMvI 5GHz 802.IIn	5-GHz radio
	HTMvI 2.4GHz 802.IIn	2.4-GHz radio
HTMEvI	HTMEvI 5GHz 802.IIn	5-GHz radio
	HTMEvI 2.4GHz 802.IIn	2.4-GHz radio

Scripting Guidelines

Table 22: Common BelAirOS Radio Card Descriptions (Continued)

Card	Description	Notes
DRUvI	DRUvI 5GHz 802.IIn	5-GHz radio
	DRUvI 2.4GHz 802.IIn	2.4-GHz radio
DRUv2	DRUv2 5GHz 802.11n	5-GHz radio
	DRUv2 2.4GHz 802.11n	2.4-GHz radio
DRUv3	DRUv3 2.4GHz 802.11n	2.4-GHz radio
DRUv4	DRUv4 5GHz 802.11n	5-GHz radio
	DRUv4 2.4GHz 802.11n	2.4-GHz radio
DRUv5	DRUv5 5GHz 802.11n	5-GHz radio
	DRUv5 2.4GHz 802.11n	2.4-GHz radio
DRUEvI	DRUEvI 5GHz 802.IIn	5-GHz radio
	DRUEvI 2.4GHz 802.IIn	2.4-GHz radio

Sample Universal Auto-configuration Script

The following script can be used to auto-configure at startup multiple types of BelAir platforms, such as the BelAir20, where each type of platform can have different types of radios such as 5-GHz 802.11a radios, 2.4-GHz 802.11g radios and 2.4-GHz 802.11n radios.

```
/protocol/ip/set dhcp-accept dns-domain enable
/protocol/ip/set dhcp-accept dns-server enable
/protocol/ip/set dhcp-accept tftp-download enable
/protocol/ip/set dhcp-accept time-server dis
/protocol/ip/set dhcp-accept time-offset dis
/protocol/ip/set ip-addr-notification enabled
/protocol/te-syst/add tunnel 1 ip xxx.xxx.xxx name name1
/protocol/te-syst/set engine admin-state enabled
/protocol/snmp/set community 1 community-name commul ipaddr xxx.xxx.xxx privilege
readonly
/protocol/snmp/set community 2 community-name commu2 ipaddr 0.0.0.0 privilege readwrite
/protocol/snmp/set community 3 community-name commu3 ipaddr xxx.xxx.xxx privilege
readwrite
/protocol/snmp/set trap 1 mgr-addr xxx.xxx.xxx community commul version v2
/protocol/snmp/set trap 2 mgr-addr xxx.xxx.xxx.xxx community commu2 version v2
/protocol/snmp/set trap 3 mgr-addr xxx.xxx.xxx.xxx community commu2 version v2
/protocol/snmp/set trap 4 mgr-addr xxx.xxx.xxx community commu3 version v2
/protocol/sntp/set ip-address primary xxx.xxx.xxx
/protocol/sntp/set ip-address secondary xxx.xxx.xxx
```



```
/protocol/sntp/set timeoffset -5
/protocol/sntp/set status enabled
#int-cm-1
#/card/cm-9/set attenuation downstream mode auto
#/card/cm-9/set attenuation upstream mode auto
#int-stop
int-wifi-5Ghz-1
set gos wmm enabled
set gos mapping both
set rts-cts 2347
set backhaul admin-state disabled
set admin-state enabled
int-stop
int-wifi-5Ghz 802.11n-1
set tx-power 17
set antenna-gain 8
set mimo-mode 2x2
set channel 149
set arp-filter enable
set max-num-clients 50
set dhcp unicast enable
set ap-oos enable
set deauth dos defense disabled
set ssid 2 service-set-identifier dummy broadcast vlan none
set ssid 1 service-set-identifier superwifi broadcast vlan 801
set ssid 1 wireless-bridge disabled
set ssid 1 privacy none
set ssid 1 group-address-filter ipv4
set ssid 1 secure-port disabled
set ssid 1 admin-state enabled
set ssid 2 service-set-identifier optimumwifi broadcast vlan 800
set ssid 2 wireless-bridge disabled
set ssid 2 privacy none
set ssid 2 group-address-filter ipv4
set ssid 2 secure-port disabled
set ssid 2 admin-state enabled
set ssid 3 service-set-identifier maxwifi broadcast vlan 832
set ssid 3 wireless-bridge disabled
set ssid 3 privacy none
set ssid 3 group-address-filter ipv4
set ssid 3 secure-port disabled
set ssid 3 admin-state enabled
int-stop
int-BELAIR20-11-wifi-5Ghz-1
set tx-power 18
set antenna gain 5
set mimo-mode 3x3
set channel 149
int-stop
int-wifi-5Ghz 802.11a-1
set ap admin-state disabled
```



```
set admin-state enabled
int-stop
int-wifi-2.4Ghz-1
set qos wmm enabled
set gos mapping both
set rts-cts 2347
set ssid 2 service-set-identifier dummy broadcast vlan none
set ssid 1 service-set-identifier superwifi broadcast vlan 201
set ssid 1 wireless-bridge disabled
set ssid 1 privacy none
set ssid 1 group-address-filter ipv4
set ssid 1 secure-port disabled
set ssid 1 admin-state enabled
set ssid 2 service-set-identifier ultrawifi broadcast vlan 200
set ssid 2 wireless-bridge disabled
set ssid 2 privacy none
set ssid 2 group-address-filter ipv4
set ssid 2 secure-port disabled
set ssid 2 admin-state enabled
set ssid 3 service-set-identifier maxwifi broadcast vlan 245
set ssid 3 wireless-bridge disabled
set ssid 3 privacy none
set ssid 3 group-address-filter ipv4
set ssid 3 secure-port disabled
set ssid 3 admin-state enabled
set backhaul admin-state disabled
set admin-state enabled
int-stop
int-wifi-2.4Ghz 802.11n-1
set channel auto
set tx-power 23
set antenna-gain 8
set mimo-mode 2x2
set arp-filter enable
set max-num-clients 50
set dhcp unicast enable
set ap-oos enable
set deauth dos defense disabled
int-stop
int-BELAIR20-11-wifi-2.4Ghz-1
set tx-power 20
set antenna gain 5
set mimo-mode 3x3
int-stop
int-wifi-2.4Ghz 802.11b/q-1
set qos schedule edca
set tx-power 27
set antenna-gain 8
set profile mixed_b_g
int-stop
```

/system/add egress vlan untagged

/interface/eth-1-1/add vlan untagged

/protocol/te-syst/map vlan 200 to 1 /protocol/te-syst/map vlan 201 to 1 /protocol/te-syst/map vlan 245 to 1

/protocol/te-syst/limit tunnel 1 bandwidth transmit 1500000 receive 1500000 /protocol/te-syst/set tunnel 1 bandwidth-limit upstream 1500000 downstream 1500000

config-save

BelAir20E Factory Defaults

Appendix D: BelAir20E Factory Defaults

You can reset the configuration of a BelAir20E to the factory default settings by using a CLI command or by pressing the unit's reset button.

Typically, you would reset to factory defaults only when all other methods of changing the unit's configuration have failed. The reset button is used when there is no way of communicating to the unit.

Resetting to Factory Defaults with a CLI Command If you are logged in as *root* and have access to *system* commands, you can reset the unit to the factory defaults.

CAUTION!

By performing the following procedure, all local configuration data will be replaced by default factory settings. You will not be able to recover any local configuration data.

CAUTION!

You may not able to reestablish connectivity to a remotely located unit after you execute this procedure.

Use the following command sequence:

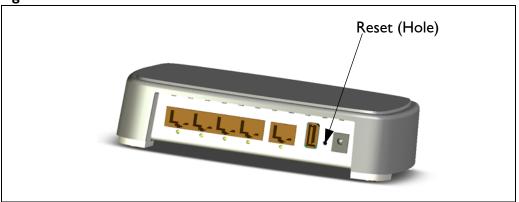
cd /system
syscmd restoreDefaultConfig
reboot

Note: The parameters of the *syscmd* command are case sensitive.

Resetting to Factory Defaults with the Reset Button To perform this procedure, you need physical access to the unit.

CAUTION!

By performing the following procedure, all local configuration data will be replaced by default factory settings. You will not be able to recover any local configuration data.



BelAir20E Factory Defaults

To reset the BelAir20E configuration to factory defaults, do the following steps:

- I Access the BelAir20E rear panel. You may need to detach it from its mounting bracket.
- With a pen tip or paperclip, gently press the unit's reset button for more than 5 seconds. Refer to Figure 15.

Figure 15: BelAir20E Rear Panel with Reset Button

3 If necessary, re-attach the BelAir20E to its mounting bracket.

Detailed Table of Contents

About	This Document	3
	Typographical Conventions	
•	Overview	
	Hardware Description	.4
BelAir	20E Configuration Interfaces	6
	Command Line Interface	.6
	SNMP Interface	.6
,	Integrating the BelAir20E with a Pre-deployed NMS Web Interface	
	Accessing the Web Interface	
	Accessing the System Page with Secure HTTP or with HTTP	
	Stopping a Session	
	Additional Troubleshooting Tools	
Comm	nand Line Interface Basics	
	Connecting to the BelAir20E	
	Starting a CLI Session	
	Command Modes	
	Abbreviating Commands	
	Command History	
	Special CLI Keys	
	Help Command	
	Saving your Changes	
	Saving the Configuration Database	
	Restoring the Configuration Database	
	Common CLI Commands	
	Terminating your CLI Session	23
	Changing Your Password	23

	Locking the Console Display	.23
	Displaying the Current Software Version	.23
	Displaying the Current Date and Time	.24
	Displaying Current User	.24
	Switching User Accounts	
	Replacing a Token by a String	
	Pinging a Host or Switch	
	Starting a Telnet Session	.25
	Radio Configuration Summary	
BelAir20E A	Access Methods	27
SNMP	Configuration Guidelines	27
51 11 11	SNMPv1/v2 Servers	
	SNMPv3 Servers	
	SNMP Naming Restrictions	
SNMP	Command Reference	
	SNMP Agent	
	SNMP Configuration	
	Communities	
	Traps	
	Users	
	Notifications	
	Authentication Traps	
	Engine Identifier	
Telnet		
HTTP		.32
	e HTTP	
SSH .		22
	SSH Access	.32
SSL		.32
	Displaying Server Certificate	.32
	Configuring the Server Certificate	.33
	Creating RSA Key Pair	
	Creating Certificate Request	
	Configuring the Server Certificate	

Saving an SSL Configuration	
User and Session Administration	35
User Privilege Levels	31
User Accounts	
Configuring Authentication for User Accounts	
Authentication Mode	
RADIUS Servers	
CLI and Web Sessions	
Session Management	
Configuring the Session Timeout Interval	
CLI Prompt Customization	
•	
IP Settings	44
Displaying IP Parameters	44
Configuring IP Parameters	
Configuring Dynamic IP Addressing	
Renewing the IP Address	
Auto-IP	
Setting a Static IP Address and Subnet Mask	
Static IP Routes	
Configuring the Domain Name System Lookup Service.	
Configuring IP Address Notification	
System Settings	49
Country of Operation	49
System Identification Parameters	50
Custom Fields	50
Configuring the System Date and Time	5
Manual Date and Time Configuration	5
Managing an SNTP Server	
GPS Coordinates	
LED Control	
Find Me Function	
LED Enable or Disable	

BelAir20E User Guide	Detailed Table of Contents
----------------------	----------------------------

	Casting the Materials Faure Dains	- 4
	Setting the Network Egress Point	
	Limiting Broadcast Packets	
	Displaying Unit Inventory Information	
	Defining a Maintenance Window	
	Displaying System Up Time	
	Displaying the Running Configuration	
	Restarting the Node	
	Creating and Using Script Files	
	Enabling or Disabling Session Logging	.56
BelAir	r20E Auto-configuration	58
	DHCP Options	.58
	Pre-requisites	
	Configuring and Using DHCP Options	
	Accepting Specific DHCP Parameters	
	DNS	
	Configuration Download Profile	
	Pre-requisites	
	Using a Configuration Download Profile	
Etheri	net or LAN Interface Settings	64
Luicii	_	
	Managing the Ethernet or LAN Interface Settings	
	Managing Egress Node Traffic	
	VLAN Conversion	
	VLAN Filtering	.65
Card	Settings	67
	Determining which Cards are in a Node	.67
	Displaying Card Information	
	Displaying the Card Physical Data	
	Displaying the Card Physical Interfaces	
	Displaying the Card CPU and Memory Usage	
	Card Administrative State	
	Restarting a Card	70

Wi-Fi Radio Configuration Overview	71
Available Wi-Fi Radios	71
Configuration Process	
Configuring Wi-Fi Radio Parameters	72
Displaying Wi-Fi Radio Configuration	73
Displaying Configuration Options	74
Operating Channel	74
Antenna Gain	76
Transmit Power Level	76
Link Distance	77
Dynamic Frequency Selection	77
Collision Aware Rate Adaptation	78
Rate Aware Fairness	78
802.11n Aggregation	78
Minimum Receive Threshold	78
Changing Wi-Fi Interface Admin State	79
Configuring Wi-Fi Access Point Parameters	80
Displaying AP Configuration	81
AP Custom Rates	
Displaying Associated Wireless Clients	83
Displaying Wireless Client Details	
Disconnecting a Wireless Client	
Wireless Client Load Balancing	85
Configuring RTS-CTS Handshaking	86
Specifying the Beacon Period	86
Displaying Client Association Records	87
Changing AP Admin State	88
AP Service Set Identifiers	88
Displaying the SSID Table	89
Displaying SSID Details	90
Default Management SSID	90
<u> </u>	

BelAir20E User Guide	Detailed Table of Contents
----------------------	----------------------------

	Upstream User Priority Marking	92
	Setting Traffic Limits	93
	Providing Vendor Specific Information	93
	Changing SSID Admin State	94
	Out-of-service Advertising	95
	Filtering Broadcast and Multicast Packets	96
	Broadcast to Unicast Packet Conversion	96
	Limiting Upload and Download Rates	97
	ARP Filtering	97
	ARP to Unicast Conversion	98
	802.11b Protection	98
Wi-F	Fi AP Security	. 100
	Security Options for Wireless Clients	
	RADIUS Servers for Wireless Clients	
	Managing RADIUS Servers	
	Changing RADIUS Server Admin State	
	Assigning SSIDs to RADIUS Servers	
	RADIUS Pre-authentication	
	RADIUS Assigned VLAN	106
	RADIUS Accounting	
	Client Authentication and De-authentication Trap	
	AP Privacy	
	Wireless Client Blacklist	109
	Wireless Client Access Control List	109
	Controlling Inter-client Communication	110
	Determining the MAC Address of the Internet gateway	111
	Disabling or Enabling AP Wireless Bridging	
	Disabling Inter-AP Wireless Client Communication	
	Secure MAC White List	
	AP Secure Port Mode	112
	Auto-secure Gateway	113
	Protecting against Denial of Service Attacks	113
	Deauthentication DoS	4

Be	IAir2	OF Us	er Guid	de

Wi-Fi Backhaul Link Configuration	115
Displaying Backhaul Link Configuration	115
Configuring Backhaul Link Identifier, Topology and Privacy	116
Managing MP-to-MP Meshes	118
Displaying the Mesh Topology	118
Setting a Link RSSI Threshold	119
Managing the Mesh Blacklist	120
Mesh Auto-connections	120
Managing Mesh Auto-connections	121
Egress Protection	122
Changing Backhaul Link Admin State	122
Mobile Backhaul Mesh	123
Configuring Mobile Backhaul Mesh Links	124
Displaying Mobility Configuration and Status	
Configuring MIMO Operation for Mobile Applications	
Configuring and Enabling Mobile Backhaul Mesh Links	
Mobile Backhaul Point-to-point Links	127
Scanning Process	128
Sample Subscriber Station Configuration	
Sample Base Station Configuration	
Mobile Backhaul Point-to-point Commands	
Displaying Mobile Backhaul Point-to-point Configuration	
Displaying Link Status	
Displaying Scan Results	133
Managing Interfaces	133
Managing the Scan List	
Associating a Scan List to an Interface	134
Configuring RSSI Threshold	134
Primary Link Drop	
Mobile Link Identifier	135
Home Check	135
Base Station Out-of-service Check	135

elAir20E User Guide	Detailed Table of Con	tents
	Release 7 Compatibility	136
	Single Channel Mesh	.136
	Operating in High Capacity and Interference Environments	138
	Modulation Rate Control	139
	VLAN based QOS	139
	Traffic Priority Based on Modulation Rate	
	No SSID on Egress Down	
	Ethernet Port Statistics	
	Access Receive and Transmit Error Statistics with SNMP Support	
	Noise Floor Support	
	Access Packet RSSI Filter	
	Effective Mesh Path Selection	
	Blacklist SNMP Support	
	Client Association Records	
	CTS-to-Self Control	
	DHCP to Attached Clients Only	
	ARP to Attached Clients Only	
	Upstream Broadcast Filter	
	Secure Port Mode	
	Wireless Bridging	
	Client Load Balancing	
	Client Authentication History	
	Automatic Mesh Connect	
	Traffic Test Tool	
1	DHCP Relay Settings	145
•		
	Displaying the DHCP Relay Configuration	
	Modifying DHCP Relay Parameters	
	Interface Administrative State	
	Assigning SSID Traffic to Use DHCP Relay	
	DHCP Address Filtering	147
1	Network Address Translation	149
	Displaying the Operational Status	.150

BelAir20E User Guide Detailed Table of Contents

	Displaying the Current DHCP Lease Status	150
	Displaying the DHCP Lease History	150
	Configuring Network Address Translation	
	Preventing Node Management from within the Scope	
	Enabling or Disabling Individual Scopes	
	Changing NAT Admin State	
	Managing Nodes in a NAT Cluster	
	Mac Address to IP Address Mapping	
	Port Forwarding	
Unive	rsal Access Method	154
	Displaying the Current Configuration	156
	Displaying the Operational Status	
	Displaying the Client Session Information	
	Specifying the Web Server	
	Specifying Redirection Variable Pairs	
	Specifying the RADIUS Server	
	Managing White List Entries	
	Associating VLAN Traffic to a Scope	
	Performing MAC Address Authentication	160
	Collecting Accounting Information	161
	Operating in WAN Mode	162
	Changing UAM Admin State	162
Using	Layer 2 Tunnels	163
	Configuring the BelAir Node for Layer 2 Tunneling	164
	Displaying Tunnel Configuration and Status	
	Starting and Stopping Layer 2 Tunneling	
	Configuring Layer 2 Tunnels	
	Setting Tunnel Engine Parameters	
	Configuring Tunnel Advanced Parameters	
	Enabling Backhaul Protection for Tunnels	
	Bandwidth Limits	
	Configuring Tunnels for the RedBack SmartEdge Router .	
	Configuring Tunnels for a Router using GRE	172

	A .	. ^	A F					
	I/A\	ir2	015	60		1177	7	0
1				 ~1-	-		ч.	-

	Configuring Tunnels for PMIP Implementations	
	Mapping User Traffic	.174
	Configuring Authentication	.174
	Configuring a Tunnel Group Name	.175
	Relaying Traffic QOS Settings	
	Setting the Tunnel Down Alarm Threshold	
	Configuring the Network Central Router for Layer 2 Tunneling	
Quali	ty of Service Settings	177
	System QoS	
	, -	
	Prioritization	
	Prioritizing Traffic Based on User Priority Bits	
	Prioritizing Traffic using VLAN IDs	
	Resetting the QoS Configuration	.179
	Displaying a Summary of System QoS Settings	.179
	Displaying the Prioritization Settings	.180
	Radio QoS	.180
	Displaying a Summary of Radio QoS Settings	.180
	Enabling or Disabling Wireless Multi-media	.181
	QoS Mapping Scheme	.181
	Unscheduled Automatic Power-save Delivery	
Layer	2 Network Configuration	183
	Spanning Tree Protocol Overview	183
	Configuring Spanning Tree Priority	
	Configuring Other Spanning Tree Parameters	
	RSTP Commands	
	Displaying the RSTP Configuration Settings	
	Displaying the RSTP Topology Information	
	Displaying RSTP Port Roles and States	
	Configuring the Bridge Aging Time	
	RSTP Priority	
	RSTP Version	
	Transmit Hold Count	.192
	Max Age, Hello Time and Forward Delay	.193

BelAir20E User Guide	Detailed Table of Content	ts
	RSTP Link Priority)3
	RSTP Static Path Cost	
	Dynamic Path Cost)4
	RSTP Protocol Migration on an Interface)5
	RSTP Edge Port Status	
	RSTP Point-To-Point Status of an Interface	96
	Interface RSTP Configuration	96
	Changing RSTP Admin State	96
	Performing a Software Upgrade	7
	Upgrade Process Overview	7
	Downloading a New Software Load	9
	Canceling a Software Upgrade20	0
	Verifying a Successful Download20	۱(
	Activating a Software Load	۱(
	Committing a New Software Load)2
	Backing Out from a Software Upgrade20)3
	Displaying the Status of the Software Upgrade20)4
	Clearing the Upgrade Failure Alarm)4
	Auto-upgrade20)4
	For More Information	5
	Installation Guide20)5
	User Guide)5
	Troubleshooting Guide)6
	Technical Support	7
	Support Resources20)7
	Warranty and Limitations	
	Definitions and Acronyms	8
	Conformity and Regulatory Statements 21	0
	Regulatory Information and Disclaimers21	0

Manufacturer's US Federal Communication Commission Conformity

elAir20E User Guide	Detailed Table of Co	ontents
	Statement FCC Interference Statement Manufacturer's Industry Canada Conformity Statement Manufacturer's European Community Conformity Statement Declaration of Conformity for RF Exposure Product Disposal	211
	Appendix A: Node Configuration Sheets	221
	Appendix B: Mesh Auto-connection Example	224
	Setup and Initial Conditions	228
	Appendix C: Scripting Guidelines	234
	General Scripting Guidelines Overview Creating a BelAirOS Script Manually Transferring Files to and from a BelAir Node Managing and Manually Running Script Files Specifying Physical Interfaces Physical Interface Declaration Summary Physical Interface Declaration Specifications Physical Interface Script Example - Setup Physical Interface Script Example - Script Physical Interface Script Example - Output Including a Reboot Command in a Script	234 235 236 237 237 239 239 240
	Reboot Declaration Summary Reboot Declaration Specification Reboot Script Example Common BelAirOS Platform Assembly Codes Common Radio Card Descriptions Sample Universal Auto-configuration Script Appendix D: BelAir20E Factory Defaults	244

BelAir20E User Guide	Detailed Table of Contents
	Resetting to Factory Defaults with a CLI Command
	Detailed Table of Contents
	List of Figures
	Figure 1: BelAir20E Hardware Module Block Diagram
	List of Tables
	Table 1: Product Name Synonyms.3Table 2: Standard SNMP MIBs.7Table 3: BelAir Enterprise MIBs.8Table 4: Command Line Interface Modes.16Table 5: Super-user commands.35Table 6: Physical Interface Parameter Settings.67Table 7: BelAir Wi-Fi Radio Summary.71Table 8: Auth Field Value Descriptions.83Table 9: DHCP Field Value Descriptions.83Table 10: RADIUS Attributes.102Table II: Wi-Fi Backhaul Configuration Requirements.117Table I2: Attributes for UAM Client Access Policy Enforcement.154Table I3: Traffic Priority Queues.177

P		00	_			\sim		
Нα	lAir	27/11/1		100	ar i		Tra l	_
-1-1	r = v = v	744				-	1141	-

Table 14: User Priority Value to Priority Queue Processing	.178
Table 15: UP and DSCP Value to Priority Queue Processing	.181
Table 16: Configurable Spanning Tree Timers and Associated Parameters	.185
Table 17: European Community Conformity Statement	.213
Table 18: AP Privacy Setting Table (Optional)	.222
Table 19: BelAir Script Declaration Summary	.237
Table 20: Script Declaration Summary for Reboot Command	.242
Table 21: Common BelAirOS Platform Assembly Codes	.244
Table 22: Common BelAirOS Radio Card Descriptions	.246
·	

BelAir Networks Inc. 603 March Road Kanata, Ontario Canada K2K 2M5

I-877-BelAirI (235-247I) 613-254-7070 General Information info@belairnetworks.com

Sales sales@belairnetworks.com

Technical Support techsupport@belairnetworks.com

Visit us on the web at:

www.belairnetworks.com