Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Sporton-CN (Auden) Certificate No: DAE4-1210_May14 # CALIBRATION CERTIFICATE Object. DAE4 - SD 000 D04 BM - SN: 1210 Calibration procedure(s) QA CAL-06.v26 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 19, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calloration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|---------------------|----------------------------|------------------------| | Keithley Multimater Type 2001 | SN: 0810278 | 01-Oct-13 (No:13976) | Oct-14 | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE L/WS 053 AA 1001 | 07-Jan-14 (in house check) | In house check: Jan-15 | | Calibrator Hox V2.1 | SE UMS 005 AA 1002 | 07-Jan-14 (in house check) | In house check: Jan-15 | Calibrated by: Function Signature Dominique Steffen Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: May 20, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Callbration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossarv DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV , full range = -100...+300 mV Low Range: 1LSB = 61nV ... full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | γ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.126 ± 0.02% (k=2) | 404.956 ± 0.02% (k=2) | 405.065 ± 0.02% (k=2) | | Low Range | 4.00002 ± 1.50% (k=2) | 3.98327 ± 1.50% (k=2) | 4.00021 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 123.5 ° ± 1 ° | |---|---------------| |---|---------------| ### Appendix 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199993.16 | -3.08 | -0.00 | | Channel X + Input | 20001.58 | 0.86 | 0.00 | | Channel X - Input | -19997.88 | 2.96 | -0.01 | | Channel Y + Input | 199997,46 | 1.25 | 0.00 | | Channel Y + Input | 20001.02 | 0.31 | 0.00 | | Channel Y - Input | -20000.67 | 0.41 | -0.00 | | Channel Z + Input | 199997.96 | 1.16 | 0.00 | | Channel Z + Input | 20000.22 | -0.47 | -0.00 | | Channel Z - Input | -20000.31 | 0.71 | -0.00 | | Low Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.44 | 0.40 | 0.02 | | Channel X + Input | 201.65 | 0.25 | 0.12 | | Channel X - Input | -198.86 | -0.60 | 0.30 | | Channel Y + Input | 2001.05 | 0.10 | 0.01 | | Channel Y + Input | 200.89 | -0.51 | -0,25 | | Channel Y - Input | -198.70 | -0.35 | 0.18 | | Channel Z + Input | 2001.15 | 0.23 | 0.01 | | Channel Z + Input | 200.32 | -1.08 | -0.54 | | Channel Z - Input | -199.61 | -1.14 | 0.57 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -5.19 | -7.07 | | | - 200 | 7,82 | 6.50 | | Channel Y | 200 | -3.56 | -3.90 | | | - 200 | 4.19 | 4.35 | | Channel Z | 200 | 12.21 | 11.95 | | | - 200 | 14.51 | -14.28 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec, Measuring time: 3 sec. | | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - 21 | 1.78 | -3,94 | | Channel Y | 200 | 8.13 | 1.4 | 2.67 | | Channel Z | 200 | 9.14 | 6.43 | | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec. | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15954 | 15797 | | Channel Y | 15962 | 16451 | | Channel Z | 15874 | 16936 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Tima: 3 sec: Measuring time: 3 sec: Input 10M Ω | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.85 | -1.82 | -0.15 | 0.34 | | Channel Y | -0.27 | -1.81 | 0.54 | 0.39 | | Channel Z | -0.30 | -1:29 | 0.94 | 0.43 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels. <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | -200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client: Auden Certificate No: Z14-97064 # **CALIBRATION CERTIFICATE** Object DAE4 - SN: 905 Calibration Procedure(s) TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: July 14, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)[∞] and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------------------------|---------|--|-----------------------| | Documenting
Process Calibrator 753 | 1971018 | 01-July-14 (CTTL, No:J14X02147) | July-15 | | - | | | | Name **Function** Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory This calibration certificate shall not be reproduced except in full without
written approval of the laboratoty. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z14-97064 Page 2 of 3 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB=6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB=61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.736 ± 0.15% (k=2) | 405.279 ± 0.15% (k=2) | 404.866 ± 0.15% (k=2) | | Low Range | 3.98084 ± 0.7% (k=2) | 4.0026 ± 0.7% (k=2) | 3.99725 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system 270° ± 1 ° | Connector Angle to be used in DASY system | 270° ± 1 ° | |--|---|------------| |--|---|------------| Certificate No: Z14-97064 Page 3 of 3 Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ## IMPORTANT NOTICE ## **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering TN_BR040315AD DAE4.doc 11.12.2009 ## **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ## Client Sporton CN (Auden) Certificate No: DAE4-1358_Apr15 **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 1358 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: April 28, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:15573) Oct-15 Secondary Standards Check Date (in house) Scheduled Check **Auto DAE Calibration Unit** SE UWS 053 AA 1001 06-Jan-15 (in house check) In house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house check) in house check: Jan-16 **Function** Calibrated by: R.Mayoraz Approved by: Fin Bomholt **Deputy Technical Manager** Issued: April 28, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1358_Apr15 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during-measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1358_Apr15 Page 2 of 5 The state of the second st # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.483 ± 0.02% (k=2) | 403.518 ± 0.02% (k=2) | 403.518 ± 0.02% (k=2) | | Low Range | 3.96161 ± 1.50% (k=2) | | <u>``_</u> | ## **Connector Angle** | Connector Angle to be used in DASY system | 136.0 ° ± 1 ° | |---|---------------| | | 130.0 I | # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | | |------------------|----------------------|-----------------|-----------|--| | Channel X + Inp | ı t 199994.26 | 0.19 | 0.00 | | | Channel X + Inpu | t 20001.61 | 1.85 | 0.01 | | | Channel X - Inpu | -19999.78 | 2.01 | -0.01 | | | Channel Y + Inpu | t 199995.03 | 0.73 | 0.00 | | | Channel Y + Inpu | t 19996.49 | -3.43 | -0.02 | | | Channel Y - Inpu | -20003.21 | -1.32 |
0.01 | | | Channel Z + Inpu | t 199996.71 | 2.48 | 0.00 | | | Channel Z + Inpu | t 20001.26 | 1.31 | 0.01 | | | Channel Z - Inpu | -20002.05 | -0.22 | 0.00 | | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 1999.91 | 0.13 | 0.01 | | Channel X + Input | 201.31 | 1.19 | 0.59 | | Channel X - Input | -199.69 | 0.03 | -0.02 | | Channel Y + Input | 1999.53 | -0.30 | -0.01 | | Channel Y + Input | 199.29 | -0.81 | -0.40 | | Channel Y - input | -200.90 | -1.13 | 0.57 | | Channel Z + Input | 1999.62 | -0.16 | -0.01 | | Channel Z + Input | 199.39 | 40.68 | -0.34 | | Channel Z - Input | -200,48 | -0.73 | 0.37 | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | · · · · · · · · · · · · · · · · · · · | Common mode Input Voltage (mV) | | - 41
 | High Range
Average Reading (μV) | | Low Range
Average Reading (μV) | | |---------------------------------------|--------------------------------|-------|----------------|------------------------------------|--------|-----------------------------------|--------| | Channel X | 200 | | ,
Harried I | | | e es | 21.59 | | · | - ;:. | - 200 | | : / : | -20.28 | 7.21 | -21.73 | | Channel Y | | 200 | 3 | | -27.94 | • | -27.90 | | | | - 200 | | | 26.04 | | 25.76 | | Channel Z | | 200 | | | -11.37 | | -11.39 | | | | - 200 | | | 10.05 | | 10.04 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 2.06 | -3.29 | | Channel Y | 200 | 9.41 | • | 3.82 | | Channel Z | 200 | 10.45 | 5.44 | | Certificate No: DAE4-1358_Apr15 Page 4 of 5 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | the state of s | | | |-----------|--|-----------------|--| | | High Range (LSB) | Low Range (LSB) | | | Channel X | 15573 | 16145 | | | Channel Y | 16047 | 15196 | | | Channel Z | 16064 | 15449 | | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.95 | 0.01 | 1.94 | 0.34 | | Channel Y | 0.52 | -0.73 | 2.21 | 0.53 | | Channel Z | 0.85 | -0.34 | 2.15 | 0.50 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | |-----------|----------------|------------------|--| | Channel X | 200 | 200 | | | Channel Y | 200 | 200 | | | Channel Z | 200 | 200 | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | • | Alarm Level (VDC) | | |----------------|---|-------------------|--| | Supply (+ Vcc) | | +7.9 | | | Supply (- Vcc) | | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | | |----------------|-------------------|---------------|-------------------|--| | Supply (+ Vcc) | +0:01 | +6 | +14 | | | Supply (-Vcc) | -0:01 | -8 | -9 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) Certificate No: EX3-3857_May14 Accreditation No.: SCS 108 S C ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3857 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: May 23, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. A) calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | Primary Standards | JD | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 oB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | April5 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apri-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. E53-3013, Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-860_Dec13) | Dec-14 | | Secondary Standards | ID. | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Name Claudio Leupler Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued May 28, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF Mx,y,z sensitivity in free space F sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D DOE crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ p rotation around probe axis tissue simulating liquid Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF) - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data
of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3857 Manufactured: January 23, 2012 Calibrated: May 23, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |---|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.18 | 0.44 | 0.46 | ± 10.1 % | | Norm (µV/(V/m) ²) ^A
DCP (mV) ^B | 94,2 | 98.6 | 99.4 | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc*
(k=2) | |-----|---------------------------|----|---------|-----------|-----|---------|----------|---------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 132.0 | 13.8 % | | | | Y | 0.0 | 0.0 | 1.0 | | 149.4 | | | | | -2 | 0.0 | 0.0 | 1.0 | | 149.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX Y Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). P Nomerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^Q | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|--------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.92 | 9,92 | 9.92 | 0.44 | 0.82 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.41 | 9.41 | 9.41 | 0.30 | 1.01 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.20 | 9.20 | 9.20 | 0.80 | 0.50 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.55 | 8.55 | 8.55 | 0.80 | 0.59 | ± 12.0 % | | 1900 | 40,0 | 1.40 | 8.40 | 8.40 | 8.40 | 0.69 | 0.65 | ± 12.0 9 | | 2000 | 40.0 | 1.40 | 8:31 | 8.31 | 8.31 | 0.77 | 0.56 | ± 12.0 % | | 2450 | 39,2 | 1.80 | 7.48 | 7.48 | 7.48 | 0.78 | 0.58 | ± 12.0 9 | | 2600 | 39,0 | 1,96 | 7.30 | 7.30 | 7.30 | 0.42 | 0.87 | ± 12.0 9 | | 5200 | 36.0 | 4.66 | 5.35 | 5.35 | 5.35 | 0.30 | 1.80 | ± 13.1 9 | | 5300 | 35,9 | 4.76 | 5.12 | 5,12 | 5.12 | 0.30 | 1.80 | ± 13.1 9 | | 5500 | 35.6 | 4.96 | 4.99 | 4.99 | 4.99 | 0.35 | 1.80 | ± 13.13 | | 5600 | 35,5 | 5.07 | 4.56 | 4,56 | 4.56 | 0,45 | 1.80 | ± 13.1 9 | | 5800 | 35.3 | 5.27 | 4.79 | 4.79 | 4.79 | 0.40 | 1.80 | ± 13.1 9 | Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), also it is restricted to ± 50 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the CorwF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect effect effect compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-5 GHz at any distance larger than half the probability diameter from the boundary. #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) C | Relative
Permittivity F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |-----------|----------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.46 | 9,46 | 9,46 | 0.47 | 0.84 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.31 | 9.31 | 9.31 | 0.31 | 1.06 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.13 | 9.13 | 9.13 | 0.80 | 0.61 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.89 | 7.89 | 7.89 | 0.80 | 0.60 | ± 12.0 % | | 1900 | 53,3 | 1.52 | 7.56 | 7.56 | 7.56 | 0.59 | 0.71 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.73 | 7.73 | 7.73 | 0.29 | 1.00 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.14 | 7.14 | 7.14 | 0.76 | 0.57 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.82 | 6.82 | 6,82 . | 0.73 | 0.61 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.54 | 4.54 | 4.54 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48,9 | 5.42 | 4.37 | 4.37 | 4.37 | 0.40 | 1.90 | = 13.1 % | | 5500 | 48.6 | 5.65 | 4.15 | 4.15 | 4.15 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.98 | 3.98 | 3.98 | 0.40 | 1,90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4,21 | 4.21 | 4.21 | 0.50 | 1.90 | ± 13.1 9 | Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (r and x) can be relaxed to ± 10% f liquid compensation formus a applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (r and or) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated largest lissue parameters. the ConvF uncertainty for indicated larget bissure parameters. "Alpha/Depth are determined during calibration, SPEAG warrants that the romaining deviation due to the boundary effect after compensation is elways less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-8 GHz at any distance larger than half the ninbe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (\$\phi\$), \$\theta = 0^\circ\$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # Conversion Factor Assessment # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -41.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | - 2 mm | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 108 Certificate No: EX3-3801_Jun14 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3801 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: June 18, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------
---|--| | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | ID | Check Date (in house) | Scheduled Check | | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | US37390585 | | In house check: Oct-14 | | | GB41293874
MY41498087
SN: S5054 (3c)
SN: S5277 (20x)
SN: S5129 (30b)
SN: 3013
SN: 660 | GB41293874 03-Apr-14 (No. 217-01911) MY41498087 03-Apr-14 (No. 217-01911) SN: S5054 (3c) 03-Apr-14 (No. 217-01915) SN: S5277 (20x) 03-Apr-14 (No. 217-01919) SN: S5129 (30b) 03-Apr-14 (No. 217-01920) SN: 3013 30-Dec-13 (No. ES3-3013_Dec13) SN: 660 13-Dec-13 (No. DAE4-660_Dec13) ID Check Date (in house) US3642U01700 4-Aug-99 (in house check Apr-13) | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Certificate No: EX3-3801_Jun14 Katja Pokovic Technical Manager Issued: June 18, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ o rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). June 18, 2014 EX3DV4 - SN:3801 # Probe EX3DV4 SN:3801 Manufactured: April 5, 2011 Calibrated: June 18, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) **Basic Calibration Parameters** | Sasic Cambration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.53 | 0.60 | 0.53 | ± 10.1 % | | DCP (mV) ^B | 100.2 | 98.4 | 100.9 | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|------|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | CW X | 0.0 | 0.0 | 1.0 | 0.00 | 128.0 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 134.4 | | | | | Z | 0.0 | 0.0 | 1.0 | 1 | 146.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. June 18, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Parameter D
Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.44 | 9.44 | 9.44 | 0.35 | 1.00 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.15 | 9.15 | 9.15 | 0.80 | 0.64 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.92 | 8.92 | 8.92 | 0.50 | 0.79 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 7.90 | 7.90 | 7.90 | 0.41 | 1.02 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.82 | 7.82 | 7.82 | 0.80 | 0.58 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.51 | 7.51 | 7.51 | 0.76 | 0.59 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.55 | 7.55 | 7.55 | 0.80 | 0.57 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.25 | 7.25 | 7.25 | 0.44 | 0.75 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.85 | 6.85 | 6.85 | 0.53 | 0.70 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.76 | 6.76 | 6.76 | 0.63 | 0.66 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 4.96 | 4.96 | 4.96 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.74 | 4.74 | 4.74 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.73 | 4.73 | 4.73 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.54 | 4.54 | 4.54 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.45 | 4.45 | 4.45 | 0.40 | 1.80 | ± 13.1 % | Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvP uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3801 June 18, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm)
 Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.11 | 9.11 | 9.11 | 0.65 | 0.75 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.12 | 9.12 | 9.12 | 0.80 | 0.66 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.91 | 8.91 | 8.91 | 0.80 | 0.67 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 7.97 | 7.97 | 7.97 | 0.54 | 0.76 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.62 | 7.62 | 7.62 | 0.63 | 0.71 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.29 | 7.29 | 7.29 | 0.60 | 0.71 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.47 | 7.47 | 7.47 | 0.37 | 0.90 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.18 | 7.18 | 7.18 | 0.80 | 0.60 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.90 | 6.90 | 6.90 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.74 | 6.74 | 6.74 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.17 | 4.17 | 4.17 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.03 | 4.03 | 4.03 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.93 | 3.93 | 3.93 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.84 | 3.84 | 3.84 | 0.45 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.94 | 3.94 | 3.94 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of Certificate No: EX3-3801_Jun14 Page 6 of 11 the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3801 June 18, 2014 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Tot Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Tot EX3DV4- SN:3801 June 18, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz EX3DV4-SN:3801 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -53.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) | Certificate No: | EX3-3911 | _Oct14 | |-----------------|----------|--------| Accreditation No.: SCS 108 | | RA | | | | | | |--|----|--|--|--|--|--| Object EX3DV4 - SN:3911 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: October 2, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | In | | | | | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | |----------------|--|-----------------------|-----------| | Calibrated by: | Jeton Kastrati | Laboratory Technician | 1-12- | | Approved by: | Katja Pokovic | Technical Manager | Ally- | | | American management of the second | | | Issued: October 2, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the
offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3911_Oct14 Page 2 of 11 # Probe EX3DV4 SN:3911 Manufactured: September 4, 2012 Repaired: September 26, 2014 Calibrated: October 2, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) #### **Basic Calibration Parameters** | 2.4 | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.32 | 0.42 | 0.49 | ± 10.1 % | | DCP (mV) ^B | 102.9 | 96.3 | 97.7 | = 1011 70 | **Modulation Calibration Parameters** | UID | Communication System Name | | A | B | С | D | VR | Unc | |-----|---------------------------|--------------------|-----|-------|-----|------|-------|--------| | 0 | CW | - ; | dB | dB√μV | | dB | mV | (k=2) | | | | - ^ | 0.0 | 0.0 | 1.0 | 0.00 | 145.4 | ±2.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 141.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 136.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.89 | 9.89 | 9.89 | 0.48 | 0.76 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.62 | 9.62 | 9.62 | 0.55 | 0.70 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.38 | 9.38 | 9.38 | 0.23 | 1.18 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.18 | 8.18 | 8.18 | 0.26 | 1.01 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.95 | 7.95 | 7.95 | 0.27 | 1.01 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.92 | 7.92 | 7.92 | 0.34 | 0.88 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.53 | 7.53 | 7.53 | 0.44 | 0.73 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.05 | 7.05 | 7.05 | 0.31 | 0.92 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.92 | 6.92 | 6.92 | 0.36 | 0.92 | ± 12.0 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to ± 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.61 | 9.61 | 9.61 | 0.20 | 1.44 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.66 | 9.66 | 9.66 | 0.61 | 0.65 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.36 | 9.36 | 9.36 | 0.32 | 1.07 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.93 | 7.93 | 7.93 | 0.70 | 0.66 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.57 | 7.57 | 7.57 | 0.31 | 0.98 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.76 | 7.76 | 7.76 | 0.35 | 0.92 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.39 | 7.39 | 7.39 | 0.41 | 0.88 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.18 | 7.18 | 7.18 | 0.72 | 0.61 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.03 | 7.03 | 7.03 | 0.80 | 0.50 | ± 12.0 % | $^{^{\}rm c}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------------| | Connector Angle (°) | | | Mechanical Surface Detection Mode | -76.3
enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: EX3-7350_Jan15 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7350 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: January 8, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 17-Dec-14 (No. DAE4-660_Dec14) | Dec-15 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 14, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### Calibration Laboratory of Certificate No: EX3-7350_Jan15 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation
Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:7350 Manufactured: October 13, 2014 Calibrated: January 8, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7350 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.50 | 0.53 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 99.2 | 100.5 | 97.7 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 CW | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 140.3 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 143.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 139.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7350 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.20 | 10.20 | 10.20 | 0.30 | 1.01 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.92 | 9.92 | 9.92 | 0.41 | 0.89 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.29 | 8.29 | 8.29 | 0.80 | 0.58 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.12 | 8.12 | 8.12 | 0.47 | 0.73 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.03 | 8.03 | 8.03 | 0.51 | 0.71 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.67 | 7.67 | 7.67 | 0.56 | 0.69 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.28 | 7.28 | 7.28 | 0.47 | 0.76 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.10 | 7.10 | 7.10 | 0.24 | 1.11 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.34 | 5.34 | 5.34 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.15 | 5.15 | 5.15 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.88 | 4.88 | 4.88 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.71 | 4.71 | 4.71 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.60 | 4.60 | 4.60 | 0.40 | 1.80 | ± 13.1 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7350 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.67 | 9.67 | 9.67 | 0.29 | 1.08 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.42 | 9.42 | 9.42 | 0.30 | 1.05 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.07 | 8.07 | 8.07 | 0.34 | 0.99 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.82 | 7.82 | 7.82 | 0.36 | 0.92 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.75 | 7.75 | 7.75 | 0.33 | 0.99 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.45 | 7.45 | 7.45 | 0.51 | 0.76 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.23 | 7.23 | 7.23 | 0.75 | 0.58 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.15 | 7.15 | 7.15 | 0.80 | 0.60 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.79 | 4.79 | 4.79 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.60 | 4.60 | 4.60 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.14 | 4.14 | 4.14 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.99 | 3.99 | 3.99 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.21 | 4.21 | 4.21 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Certificate No: EX3-7350_Jan15 At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for
frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) January 8, 2015 EX3DV4-SN:7350 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz 1.0 0.8 0.6 Deviation 0.0 0.0 -0.2 0.4 -0.4 -0.6 -0.8 -1.0 0 45 90 135 180 225 50 270 30 4 Ideal 20 10 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7350 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | | | |---|------------|--|--| | Connector Angle (°) | 31.2 | | | | Mechanical Surface Detection Mode | enabled | | | | Optical Surface Detection Mode | disabled | | | | Probe Overall Length | 337 mm | | | | Probe Body Diameter | 10 mm | | | | Tip Length | 9 mm | | | | Tip Diameter | 2.5 mm | | | | Probe Tip to Sensor X Calibration Point | 1 mm | | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | | Recommended Measurement Distance from Surface | 1.4 mm | | |