

HAC RF TEST REPORT

No. I14Z49085-SEM04

For

TCT Mobile Limited

HSDPA/HSUPA/HSPA+/CDMA dual band /LTE 1 band mobile phone

Model Name: A846L

With

Hardware Version: PIO

Software Version: 3JP6

FCC ID: RAD528

Results Summary: M Category = M4

Issued Date: 2015-01-21

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email:cttl terminals@catr.cn, website:www.chinattl.com

REPORT HISTORY

Report Number	eport Number Revision		Description	
I14Z49085-SEM04	Rev.0	2015-01-21	Initial creation of test report	

TABLE OF CONTENT

1 TEST LABORATORY	
1.1 TESTING LOCATION	
1.2 TESTING ENVIRONMENT	
1.4 Signature	
2 CLIENT INFORMATION	<u> </u>
2.1 APPLICANT INFORMATION	
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1 About EUT	6
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.4 AIR INTERFACES / BANDS INDICATING OPERATING MODES	6
4 CONDUCTED OUTPUT POWER MEASUREMENT	7
4.1 Summary	
4.2 CONDUCTED POWER	
5. REFERENCE DOCUMENTS	
5.1 REFERENCE DOCUMENTS FOR TESTING	
6 OPERATIONAL CONDITIONS DURING TEST	8
6.1 HAC MEASUREMENT SET-UP	
6.2 Probe Specification	10
6.4 ROBOTIC SYSTEM SPECIFICATIONS	10
7 EUT ARRANGEMENT	11
7.1 WD RF EMISSION MEASUREMENTS REFERENCE AND PLANE	11
8 SYSTEM VALIDATION	12
8.1 VALIDATION PROCEDURE	
8.2 VALIDATION RESULT	
9 PROBE MODULATION FACTOR	
9.1 MODULATION FACTOR TEST PROCEDURE	14
10 RF TEST PROCEDUERES	
11 HAC RF TEST DATA SUMMARY	16
11.1 Measurement Results (E-Field)	
11.2 MEASUREMENT RESULTS (H-FIELD)	
12 ANSI C 63.19-2007 LIMITS	
13 MEASUREMENT UNCERTAINTY	
14 MAIN TEST INSTRUMENTS	
15 CONCLUSION	
ANNEX A TEST LAYOUT	
ANNEX B TEST PLOTS	
ANNEX C SYSTEM VALIDATION RESULT	
ANNEX D PROBE CALIBRATION CERTIFICATE	
ANNEX E DIPOLE CALIBRATION CERTIFICATE	

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)	
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District	
	Beijing, P. R. China100191	

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards

1.3 Project Data

Project Leader:	Qi Dianyuan	
Test Engineer:	Lin Hao	
Testing Start Date:	January 07, 2015	
Testing End Date:	January 07, 2015	

1.4 Signature

Lin Hao

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory

(Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	TCT Mobile Limited	
Address /Post:	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post.	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	P.R.China	
Contact: Gong Zhizhou		
Email: zhizhou.gong@jrdcom.com		
Telephone: 0086-21-6146089		
Fax:	0086-21-61460602	

2.2 Manufacturer Information

Company Name:	TCT Mobile Limited	
Address /Dest	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post:	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	P.R.China	
Contact: Gong Zhizhou		
Email: zhizhou.gong@jrdcom.com		
Telephone:	0086-21-6146089	
Fax:	0086-21-61460602	

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

EUT Description:	HSDPA/HSUPA/HSPA+/CDMA dual band /LTE 1 band mobile phone	
Model Name:	A846L	
Frequency Band:	CDMA BC0/1, LTE Band13, BT, Wi-Fi	

3.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	866183020003296	PIO	3JP6
EUT2	866183020003148	PIO	3JP6

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test HAC with the EUT1 and conducted power with the EUT 2.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	TLp025A2	CAC2500028C2	SCUD

^{*}AE ID: is used to identify the test sample in the lab internally

3.4 Air Interfaces / Bands Indicating Operating Modes

Air-interface	Band(MHz)	Туре	C63.19/tested	Simultaneous Transmissions	ОТТ	Power Reduction
CDMA	BC0	VO	Yes	BT, WiFi	NA	NA
CDIVIA	BC1	VO	165	tes B1, WIFI		INA
LTE	Band 13	DT	NA	BT, WiFi	NA	NA
BT	2450	DT	NA	CDMA, LTE	NA	NA
WLAN	2450	DT	NA	CDMA, LTE	NA	NA

VO: Voice CMRS/PSTN Service Only

V/D: Voice CMRS/PSTN and Data Service

DT: D igital Transport

^{*} HAC Rating was not based on concurrent voice and data modes, Non current mode was found to represent worst case rating for both M and T rating

4 CONDUCTED OUTPUT POWER MEASUREMENT

4.1 Summary

During the process of testing, the EUT was c ontrolled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

4.2 Conducted Power

CDMA	Conducted Power (dBm)					
BC0	Channel 777(848.31MHz)	Channel 384(836.52MHz)	Channel 1013(824.7MHz)			
BCU	24.02	24.01	24.08			
CDMA	Conducted Power (dBm)					
CDMA BC1	Channel 1175(1908.75MHz)	Channel 600(1880MHz)	Channel 25(1851.25MHz)			
ВСТ	23.24	23.34	23.80			

5. Reference Documents

5.1 Reference Documents for testing

The following document listed in this section is referred for testing.

Reference	Title	Version
ANSI C63.19-2007	American National Standard for Methods of Measurement	2007
	of Compatibility between Wireless Communication Devices	Edition
	and Hearing Aids	

6 OPERATIONAL CONDITIONS DURING TEST

6.1 HAC MEASUREMENT SET-UP

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core2 1.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

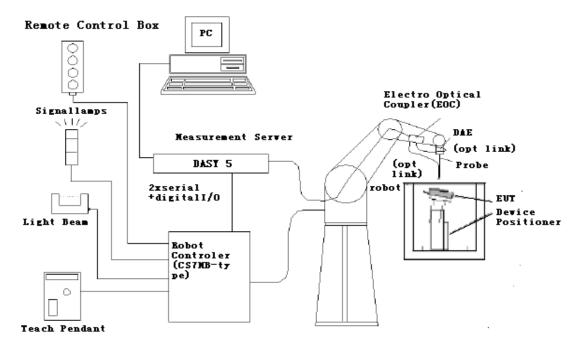


Fig. 1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

6.2 Probe Specification

6.2.1 E-Field Probe Description

Construction One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

PEEK enclosure material

Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%,

k=2)

Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz)

Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity ± 0.2 dB in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Application General near-field measurements up to 6 GHz

Field component measurements

Fast automatic scanning in phantoms

6.2.2 H-Field Probe Description

Construction Three concentric loop sensors with 3.8 mm loop diameters

Resistively loaded detector diodes for linear response

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., glycolether)

Frequency 200 MHz to 3 GHz (absolute accuracy ± 6.0%, k=2); Output

linearized

Directivity ± 0.2 dB (spherical isotropy error)

Dynamic Range 10 mA/m to 2 A/m at 1 GHz

E-Field Interference < 10% at 3 GHz (for plane wave)

Dimensions Overall length: 330 mm (Tip: 40 mm)

Tip diameter: 6 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 3 mm

Application General magnetic near-field measurements up to 3 GHz (in

air or liquids)

Field component measurements
Surface current measurements

Low interaction with the measured field

[ER3DV6]

[H3DV6]

6.3 Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm 0.5$ dB.

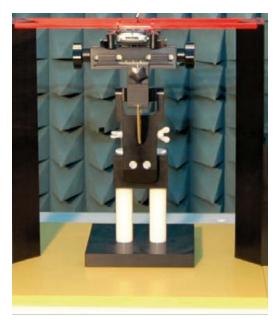


Fig. 2 HAC Phantom & Device Holder

6.4 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core2 Clock Speed: 1.86 GHz

Operating System: Windows XP

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

7 EUT ARRANGEMENT

7.1 WD RF Emission Measurements Reference and Plane

Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement.

- The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids.
- The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil).
- The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear
- The measurement plane is located parallel to the reference plane and 10 mm from it, out from the phone. The grid is located in the measurement plane.

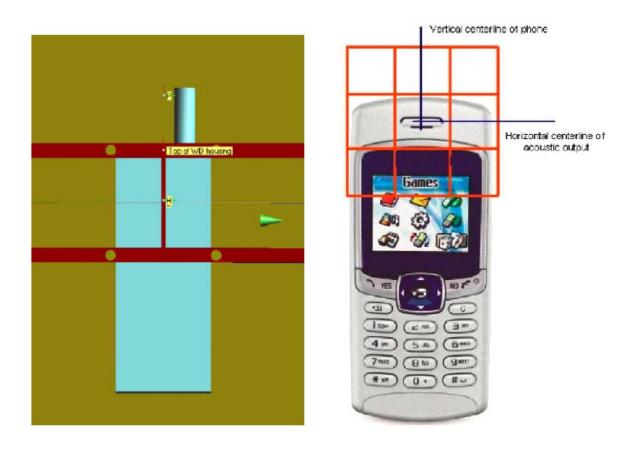


Fig. 3 WD reference and plane for RF emission measurements

8 SYSTEM VALIDATION

8.1 Validation Procedure

Place a dipole antenn a meeting the requirements given in ANSI C63.19 D.5 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field and H-field probes so that:

- · The probes and their cables are parallel to the coaxial feed of the dipole antenna
- The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions
- The center point of the prob e element(s) are 10 mm from the closest surface of the dipole elements.

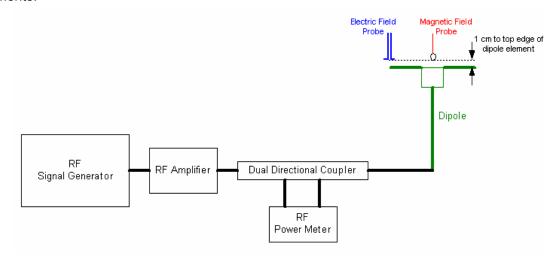


Fig. 4 Dipole Validation Setup

8.2 Validation Result

	E-Field Scan									
Mode	Frequency	Deviation ³	Limit ⁴							
	(MHz)	(mW)	Value(dBV/m)	Value(dBV/m)	(%)	(%)				
CW	835	100	44.34	44.61	-3.06	±25				
CW	1880	100	43.57	43.11	1.07	±25				
			H-Field Scar	1						
Mode	Frequency	Input Power	Measured	Target	Deviation	Limit				
	(MHz)	(mW)	Value(A/m)	Value(A/m)	(%)	(%)				
CW	835	100	0.467	0.459	1.74	±25				
CW	1880	100	0.451	0.456	-1.10	±25				

Notes:

- 1. Please refer to the attachment for detailed measurement data and plot.
- 2. Target value is provided by SPEAD in the calibration certificate of specific dipoles.
- 3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value.
- 4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the di pole actually used in the measurements should be used, when available.

9 Probe Modulation Factor

The Probe Modulation Factor (PMF) is defined as the ratio of the field readings for a CW and a modulated signal with the equivalent Field Envelope Peak as defined in ANSI C63.19 (Chapter C.3.1). Calibration shall be made of the modulation response of the probe and its instrumentation chain. This Calibration shall be performed with the field probe, attached to the instrumentation that is to be used with it during the measurement. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. The field level of the test signals shall be more than 10dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated field shall be applied to the readings taken of modulated fields of the specified type.

Note

For the PMF of CDMA835/1880, we need to calculate it at CDMA SO55 and SO3 respectively according to CTIA request.

9.1 Modulation Factor Test Procedure

This may be done using the following procedure:

- 1. Fix the field probe in a set location relative to a field generating device, such as the reference dipole antenna, as illustrated in the following figure.
- 2. Illuminate the probe using the wireless device (EUT) connected to the reference dipole with a test signal at the intended measurement frequency, Ensure there is sufficient field coupling between the probe and the antenna so the resulting reading is greater than 10 dB above the probe system noise floor but within the systems operating range.
 Note:
- The EUT shall be placed on a Service Option 3 call using Radio Configuration 1. The EUT audio shall be muted such that the RF gating is guaranteed to be 1/8th rate.
- The EUT shall be placed on a Service Option 2 or Service Option 55 call using Radio Configuration 1. The data rate shall be set to "Full".
- The test shall be run in Cell Band and PCS Band at low, mid, and high channels. Cell Band test channels shall be 1013, 384, and 777. PCS Band test channels shall be 25, 600, and 1175.
- 3. Record the amplitude applied to the antenna during transmission and the field strength measured by the E-field probe located near the tip of the dipole antenna
- 4. Replace the wireless device with an RF signal generator producing an unmodulated CW signal and set to the wireless device operating frequency.
- 5. Set the amplitude of the unmodulated signal to equal that recorded from the wireless device.
- 6. Record the reading of the probe measurement system of the unmodulated signal.
- 7. The ratio, in linear units, of the probe reading in Step 6) to the reading in Step 3) is the E-field modulation factor. $PMF_E = E_{CW} / E_{mod} (PMF_H = H_{CW} / H_{mod})$
- Repeat the previous steps using the H-field probe, except locate the probe at the center of the dipole.

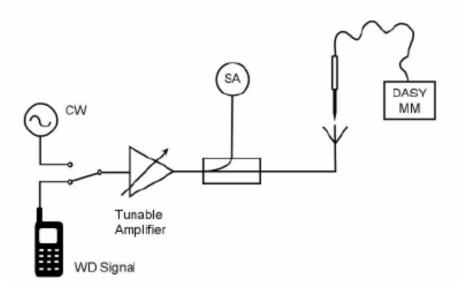


Fig. 6 Probe Modulation Factor Test Setup

9.2 Modulation Factor

9.2.1 E-Field

Band	Mode	Frequency (MHz)	E-Field Measured Value (V/m)	Probe Modulation Factor	
	014/	(IVITIZ)	` ,	racioi	
	CW	848.31	269	0.964	
	CDMA	040.01	279	0.304	
CDMA	CW	836.52	244	0.928	
BC0	CDMA	030.32	263	0.920	
	CW	824.7	237	0.940	
	CDMA	024.7	252	0.940	
	CW	1908.75	177	0.941	
	CDMA	1906.75	188	0.941	
CDMA	CW	1880	175	0.962	
BC1	CDMA	1000	182	0.902	
	CW	1851.25	169	0.024	
	CDMA	1001.20	181	0.934	

9.2.2 H-Field

Band	Mode	Frequency	H-Field Measured Value	Probe Modulation		
Dana		(MHz)	(A/m)	Factor		
	CW	848.31	0.591	0.912		
	CDMA	040.31	0.648	0.912		
CDMA	CW	000 50	0.574	0.003		
BC0	CDMA	836.52	0.636	0.903		
-	CW	824.7	0.568	0.912		
	CDMA	024.7	0.623	0.912		

	CW	1908.75	0.479	0.027	
	CDMA	1906.75	0.511	0.937	
CDMA	CW	1880	0.489	0.053	
BC1	CDMA	1000	0.513	0.953	
	CW	1051.05	0.477	0.020	
	CDMA	1851.25	0.508	0.939	

10 RF TEST PROCEDUERES

The evaluation was performed with the following procedure:

- 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2) Position the WD in its intended test position. The gauge block can simplify this positioning. Note that a separate E-field and H-field gauge block will be needed if the center of the probe sensor elements are at different distances from the tip of the probe.
- 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
- 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- 5) Record the reading.
- 6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- 7) Identify the five contiguous sub-grids around the center sub-grid with the lowest maximum field strength readings. Thus the six areas to be used to determine the WD's highest emissions are identified and outlined for the final manual scan. Please note that a maximum of five blocks can be excluded for both E-field and H-field measurements for the WD output being measured. Stated another way, the center sub-grid and three others must be common to both the E-field and H-field measurements.
- 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7)
- 9) Convert the maximum field strength reading identified in Step 8) to V/m or A/m, as appropriate. For probes which require a probe modulation factor, this conversion shall be done using the appropriate probe modulation factor and the calibration.
- 10) Repeat Step 1) through Step 10) for both the E-field and H-field measurements.
- 11) Compare this reading to the categories in ANSI C63.19 Clause 7 and record the resulting category. The lowest category number listed in 7.2, Table 7.4, or Table 7.5 obtained in Step 10) for either E- or H-field determines the M category for the audio coupling mode assessment. Record the WD category rating.

11 HAC RF TEST DATA SUMMARY

11.1 Measurement Results (E-Field)

Frequ	uency	AWF	Measured Value	Power Drift	Cotogony
MHz	Channel	AVVE	(V/m)	(dB)	Category
			CDMA BC	0	
848.31	777	0	48.33	0.14	M4(see Fig B.1)
836.52	384	0	57.81	0.07	M4(see Fig B.2)
824.7	1013	0	68.25	-0.00	M4(see Fig B.3)
			CDMA BC	1	
1908.75	1175	0	18.13	-0.03	M4(see Fig B.4)
1880	600	0	21.12	-0.03	M4(see Fig B.5)
1851.25	25	0	21.46	0.08	M4(see Fig B.6)

11.2 Measurement Results (H-Field)

Frequ	uency	AWF	Measured Value	Power Drift	Cotogony
MHz	Channel	AVVE	(A/m)	(dB)	Category
			CDMA BC	0	
848.31	777	0	0.07361	0.12	M4(see Fig B.7)
836.52	384	0	0.08119	0.09	M4(see Fig B.8)
824.7	1013	0	0.08900	-0.00	M4(see Fig B.9)
			CDMA BC	1	
1908.75	1175	0	0.06834	0.04	M4 (see Fig B.10)
1880	600	0	0.07701	-0.01	M4 (see Fig B.11)
1851.25	25	0	0.07712	0.02	M4 (see Fig B.12)

11.3 Total M-rating

Mode	Maximum value of peak	Maximum value of peak	E-Field M	H-Field M	Total M
wode	Total E-Field (V/m)	Total H-Field (A/m)	Rating	Rating	Rating
CDMA	68.25	0.08900	M4	M4	M4(see
BC0	00.25	0.06900	(AWF 0 dB)	(AWF 0 dB)	Fig B.13)
CDMA	21.46	0.07712	M4	M4	M4(see
BC1	21.46	0.07712	(AWF 0 dB)	(AWF 0 dB)	Fig B.14)

12 ANSI C 63.19-2007 LIMITS

Table 1: Telephone near-field categories in linear units

Category		Telephon	ne RF param	eters < 960 MHz		
Near field	AWF	E-field emis	sions	H-field emiss	ions	
Cotogon, M1/T1	0	631.0 to 1122.0	V/m	1.91 to 3.39	A/m	
Category M1/T1	- 5	473.2 to 841.4	V/m	1.43 to 2.54	A/m	
Catagon, M2/T2	0	354.8 to 631.0	V/m	1.07 to 1.91	A/m	
Category M2/T2	- 5	266.1 to 473.2	V/m	0.80 to 1.43	A/m	
Catagon, M2/T2	0	199.5 to 354.8	V/m	0.60 to 1.07	A/m	
Category M3/T3	- 5	149.6 to 266.1	V/m	0.45 to 0.80	A/m	
Cotogon, MA/TA	0	< 199.5	V/m	< 0.60	A/m	
Category M4/T4	- 5	< 149.6	V/m	< 0.45	A/m	
Category		Telephon	e RF param	eters > 960 MHz		
Near field	AWF	E-field emis	sions	H-field emissions		
Cotogon, M1/T1	0	199.5 to 354.8	V/m	0.60 to 1.07	A/m	
Category M1/T1	- 5	149.6 to 266.1	V/m	0.45 to 0.80	A/m	
Cotogon, M2/T2	0	112.2 to 199.5	V/m	0.34 to 0.60	A/m	
Category M2/T2	– 5	84.1 to 149.6	V/m	0.25 to 0.45	A/m	
Cotogon, M2/T2	0	63.1 to 112.2	V/m	0.19 to 0.34	A/m	
Category M3/T3	- 5	47.3 to 84.1	V/m	0.14 to 0.25	A/m	
Catagory M4/T4	0	< 63.1	V/m	< 0.19	A/m	
Category M4/T4	- 5	< 47.3	V/m	< 0.14	A/m	

13 MEASUREMENT UNCERTAINTY

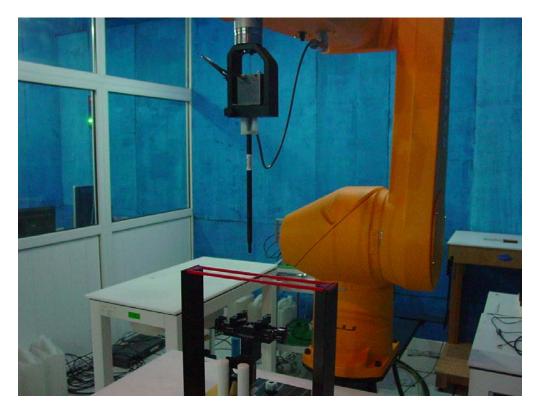
No.	Error source	Туре	Uncertainty Value (%)	Prob. Dist.	k	C _i	Ci \H	Standard Uncertainty (%) $u_i^{'}$ (%) E	Standard Uncertainty (%) $u_i^{'}$ (%) H	Degree of freedom V _{eff} or v _i
1	System repeatability	Α	0.24	N	1	1	1	0.24	0.24	9
Meas	surement System									
2	-Probe Calibration	В	3	N	1	1	1	5.1	5.1	∞
3	—Axial Isotropy	В	3.5	R	$\sqrt{3}$	1	1	2.7	2.7	∞
4	SensorDisplacement	В	16.5	R	$\sqrt{3}$	1	0.145	9.5	1.4	∞
5	─Boundary Effects	В	2.4	R	$\sqrt{3}$	1	1	1.4	1.4	∞
6	—Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
7	Scaling to PeakEnvolope Power	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
8	System Detection Limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
9	-Readout Electronics	В	0.3	N	1	1	1	0.3	0.3	∞
10	- Response Time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
11	-Integration Time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
12	RF AmbientConditions	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	-RF Reflections	В	12.0	R	$\sqrt{3}$	1	1	6.9	6.9	∞
14	-Probe Positioner	А	1.2	R	$\sqrt{3}$	1	0.67	0.7	0.5	∞
15	-Probe Positioning	Α	4.7	R	$\sqrt{3}$	1	0.67	2.7	1.8	8
16	Extra. And Interpolation	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test	Test Sample Related									
17	Device Positioning Vertical	В	4.7	R	$\sqrt{3}$	1	0.67	2.7	1.8	∞
18	Device Positioning Lateral	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
19	- Device Holder and Phantom	В	2.4	R	$\sqrt{3}$	1	1	1.4	1.4	∞

20	−Power Drift	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phar	ntom and Setup related						•			
21	-Phantom Thickness	В	2.4	R	$\sqrt{3}$	1	0.67	1.4	0.9	∞
PMF			1				•			
22	-monitoring amplitude ratio	В	2.8	R	$\sqrt{3}$	1	1	1.6	1.6	8
23	-setup repeatability	Α	2.7	N	1	1	1	2.7	2.7	9
24	-sensor amplitude	В	11.6	R	$\sqrt{3}$	1	0.569	6.7	3.8	8
	bined standard rtainty (%)		$u_{c} = \sqrt{\sum_{i=1}^{24} c_{i}^{2} u_{i}^{2}}$					16.4	11.5	
-	nded uncertainty idence interval of 95 %)	i	$u_e = 2u_c$	N		k=2		32.8	23.0	

14 MAIN TEST INSTRUMENTS

Table 2: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Signal Generator	E4438C	MY49071430	February 10, 2014	One Year
02	Power meter	NRVD	102196	March 14, 2014	One year
03	Power sensor	NRV-Z5	100596	March 14, 2014	One year
04	Amplifier	60S1G4	0331848	No Calibration Requested	
05	E-Field Probe	ER3DV6	2428	January 27, 2014	One year
06	H-Field Probe	H3DV6	6260	January 27, 2014	One year
07	HAC Dipole	CD835V3	1023	September 17, 2014	One year
80	HAC Dipole	CD1880V3	1018	September 17, 2014	One year
09	BTS	E5515C	MY50263375	January 30, 2014	One year
10	DAE	SPEAG DAE4	1331	January 23, 2014	One year


15 CONCLUSION

The HAC measurement indicates that the EUT complies with the HAC limits of the ANSI C63.19-2007 and CTIA Standard. The total M-rating is **M4.**

END OF REPORT BODY

ANNEX A TEST LAYOUT

Picture A1: HAC RF System Layout

ANNEX B TEST PLOTS

HAC RF E-Field CDMA 835 High

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.1°C

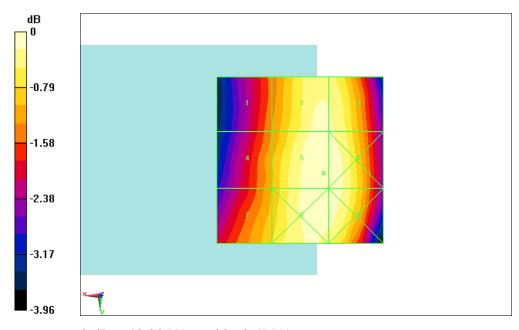
Communication System: CDMA 835; Frequency: 848.31 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 56.22 V/m; Power Drift = 0.14 dB

PMR not calibrated. PMF = 0.964 is applied.

E-field emissions = 48.33 V/m

PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
41.63 V/m	47.51 V/m	47.32 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
42.81 V/m	48.33 V/m	48.27 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
44.08 V/m	48.26 V/m	48.17 V/m

0 dB = 48.33 V/m = 33.68 dBV/m

Fig B.1 HAC RF E-Field CDMA 835 High

HAC RF E-Field CDMA 835 Middle

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.1°C

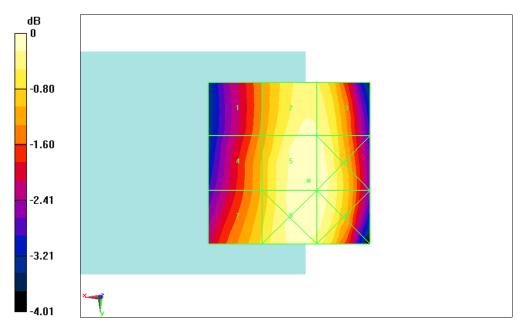
Communication System: CDMA 835; Frequency: 836.52 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device 2/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 68.26 V/m; Power Drift = 0.07 dB

PMR not calibrated. PMF = 0.928 is applied.

E-field emissions = 57.81 V/m

PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
50.23 V/m	56.78 V/m	56.41 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
51.49 V/m	57.81 V/m	57.60 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
53.04 V/m	57.73 V/m	57.45 V/m

0 dB = 57.81 V/m = 35.24 dBV/m

Fig B.2 HAC RF E-Field CDMA 835 Middle

HAC RF E-Field CDMA 835 Low

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.1°C

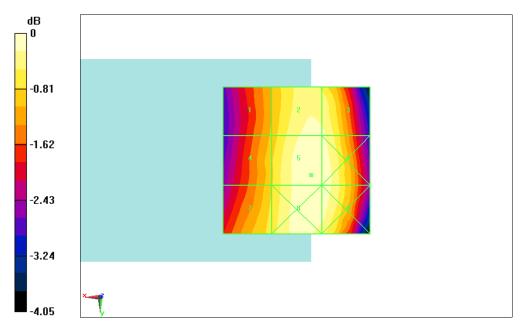
Communication System: CDMA 835; Frequency: 824.7 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 81.58 V/m; Power Drift = -0.00 dB

PMR not calibrated. PMF = 0.940 is applied.

E-field emissions = 68.25 V/m

PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
60.85 V/m	67.12 V/m	66.72 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
62.05 V/m	68.25 V/m	67.96 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
63.19 V/m	68.13 V/m	67.74 V/m

0 dB = 68.25 V/m = 36.68 dBV/m

Fig B.3 HAC RF E-Field CDMA 835 Low

HAC RF E-Field CDMA 1900 High

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.1°C

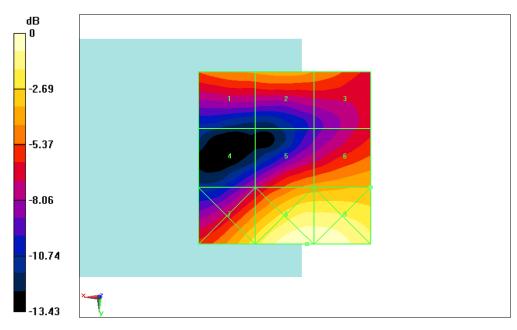
Communication System: CDMA 1900; Frequency: 1908.75 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 10.05 V/m; Power Drift = -0.03 dB

PMR not calibrated. PMF = 0.941 is applied.

E-field emissions = 18.13 V/m

PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
16.60 V/m	17.08 V/m	16.16 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
11.32 V/m	17.01 V/m	18.13 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.28 V/m	27.26 V/m	27.18 V/m

0 dB = 27.26 V/m = 28.71 dBV/m

Fig B.4 HAC RF E-Field CDMA 1900 High

HAC RF E-Field CDMA 1900 Middle

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.1°C

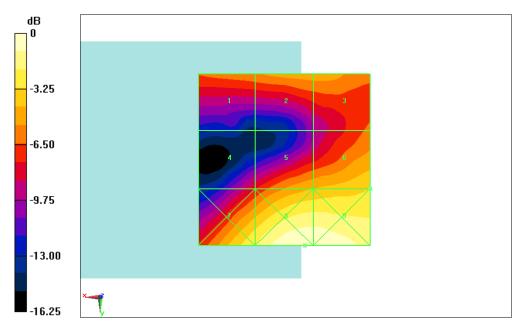
Communication System: CDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device 2/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 10.74 V/m; Power Drift = -0.03 dB

PMR not calibrated. PMF = 0.962 is applied.

E-field emissions = 21.12 V/m

PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
16.22 V/m	17.64 V/m	17.64 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
12.74 V/m	18.69 V/m	21.12 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
23.89 V/m	30.67 V/m	30.29 V/m

0 dB = 30.67 V/m = 29.73 dBV/m

Fig B.5 HAC RF E-Field CDMA 1900 Middle

HAC RF E-Field CDMA 1900 Low

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.1°C

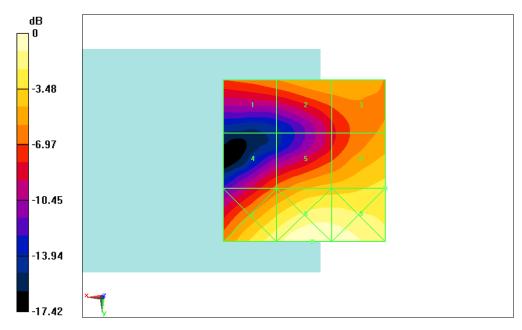
Communication System: CDMA 1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 11.64 V/m; Power Drift = 0.08 dB

PMR not calibrated. PMF = 0.934 is applied.

E-field emissions = 21.46 V/m

PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
15.75 V/m	18.06 V/m	18.14 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
14.44 V/m	19.08 V/m	21.46 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
25.96 V/m	30.67 V/m	29.99 V/m

0 dB = 30.67 V/m = 29.73 dBV/m

Fig B.6 HAC RF E-Field CDMA 1900 Low

HAC RF H-Field CDMA 835 High

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.1°C

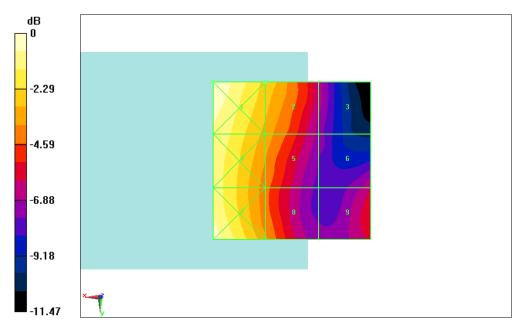
Communication System: CDMA 835; Frequency: 848.31 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.05500 A/m; Power Drift = 0.12 dB

PMR not calibrated. PMF = 0.912 is applied.

H-field emissions = 0.07361 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.098 A/m	0.074 A/m	0.047 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.089 A/m	0.067 A/m	0.048 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.095 A/m	0.065 A/m	0.053 A/m

0 dB = 0.09838 A/m = -20.14 dBA/m

Fig B.7 HAC RF H-Field CDMA 835 High

HAC RF H-Field CDMA 835 Middle

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.1°C

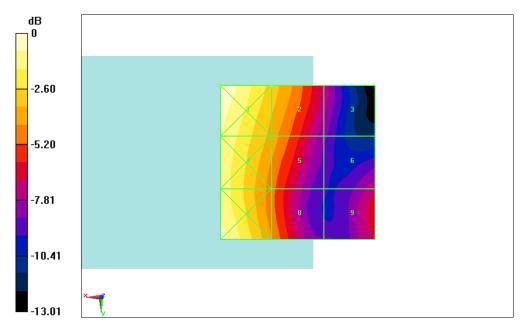
Communication System: CDMA 835; Frequency: 836.52 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device 2/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.05700 A/m; Power Drift = 0.09 dB

PMR not calibrated. PMF = 0.903 is applied.

H-field emissions = 0.08119 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.114 A/m	0.081 A/m	0.050 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.103 A/m	0.074 A/m	0.051 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.109 A/m	0.070 A/m	0.056 A/m

0 dB = 0.1139 A/m = -18.87 dBA/m

Fig B.8 HAC RF H-Field CDMA 835 Middle

HAC RF H-Field CDMA 835 Low

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.1°C

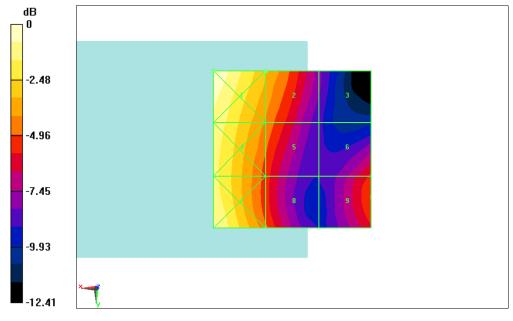
Communication System: CDMA 835; Frequency: 824.7 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.06100 A/m; Power Drift = -0.00 dB

PMR not calibrated. PMF = 0.912 is applied.

H-field emissions = 0.08900 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.128 A/m	0.089 A/m	0.051 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.114 A/m	0.079 A/m	0.068 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.120 A/m	0.075 A/m	0.073 A/m

0 dB = 0.1282 A/m = -17.84 dBA/m

Fig B.9 HAC RF H-Field CDMA 835 Low

HAC RF H-Field CDMA 1900 High

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.1°C

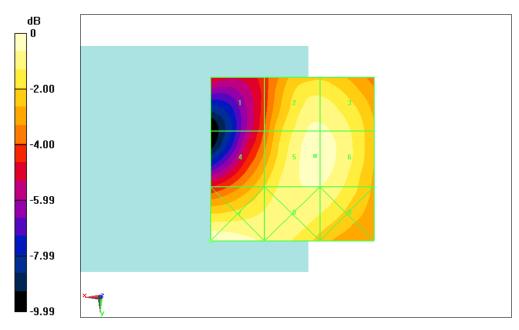
Communication System: CDMA 1900; Frequency: 1908.75 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.07800 A/m; Power Drift = 0.04 dB

PMR not calibrated. PMF = 0.937 is applied.

H-field emissions = 0.06834 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.045 A/m	0.067 A/m	0.067 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.057 A/m	0.068 A/m	0.068 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.071 A/m	0.066 A/m	0.066 A/m

0 dB = 0.07115 A/m = -22.96 dBA/m

Fig B.10 HAC RF H-Field CDMA 1900 High

HAC RF H-Field CDMA 1900 Middle

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.1°C

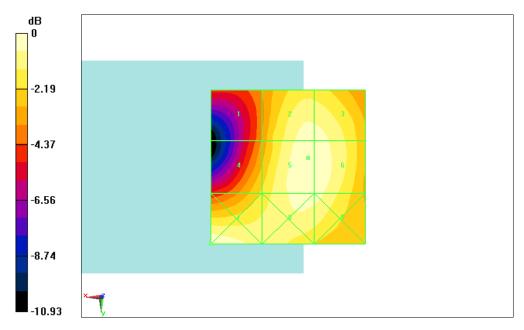
Communication System: CDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device 2/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.08800 A/m; Power Drift = -0.01 dB

PMR not calibrated. PMF = 0.953 is applied.

H-field emissions = 0.07701 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.052 A/m	0.075 A/m	0.075 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.062 A/m	0.077 A/m	0.077 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.078 A/m	0.074 A/m	0.074 A/m

0 dB = 0.07782 A/m = -22.18 dBA/m

Fig B.11 HAC RF H-Field CDMA 1900 Middle

HAC RF H-Field CDMA 1900 Low

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.1°C

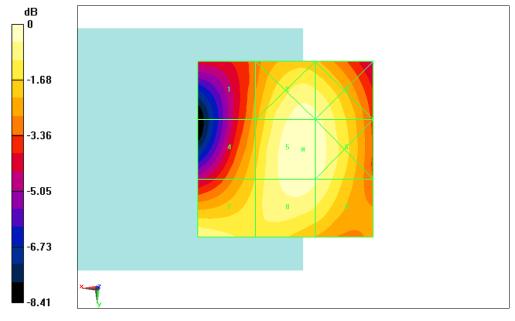
Communication System: CDMA 1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.09200 A/m; Power Drift = 0.02 dB

PMR not calibrated. PMF = 0.939 is applied.

H-field emissions = 0.07712 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.058 A/m	0.075 A/m	0.074 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.064 A/m	0.077 A/m	0.075 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.073 A/m	0.075 A/m	0.073 A/m

0 dB = 0.07712 A/m = -22.26 dBA/m

Fig B.12 HAC RF H-Field CDMA 1900 Low

Total M-rating of CDMA 835 MHz Band

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Medium parameters used: $\sigma =$

0 mho/m, $\varepsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$ Ambient Temperature:22.1°C

Communication System: CDMA 835; Frequency: 824.7 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428 Probe: H3DV6 - SN6260; ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 81.58 V/m: Power Drift = -0.00 dB

PMR not calibrated. PMF = 0.940 is applied.

E-field emissions = 68.25 V/m

Near-field category: M4 (AWF 0 dB)

PMF scaled E-field

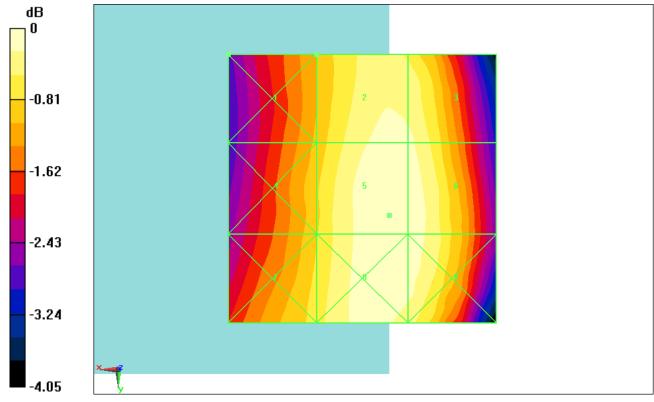
Grid 1 M4	Grid 2 M4	Grid 3 M4
60.85 V/m	67.12 V/m	66.72 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
62.05 V/m	68.25 V/m	67.96 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
63.19 V/m	68.13 V/m	67.74 V/m

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.06100 A/m; Power Drift = -0.00 dB


PMR not calibrated. PMF = 0.912 is applied.

H-field emissions = 0.08900 A/m

Near-field category: M4 (AWF 0 dB)

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.128 A/m	0.089 A/m	0.051 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.114 A/m	0.079 A/m	0.068 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.120 A/m	0.075 A/m	0.073 A/m

0 dB = 68.25 V/m = 36.68 dBV/m

RF RESULTS AND M-RATING	E-Field M Rating	M4 (AWF 0 dB)
	H-Field M Rating	M4 (AWF 0 dB)
	Total M Rating	M4

Fig B.13 Total M-rating of CDMA 835

Total M-rating of CDMA 1900 MHz Band

Date: 2015-01-07

Electronics: DAE4 Sn1331

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Medium parameters used: $\sigma =$

0 mho/m, $\varepsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$ Ambient Temperature:22.1°C

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428 Probe: H3DV6 - SN6260; ConvF(1, 1, 1)

E Scan - ER3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 11.64 V/m; Power Drift = 0.08 dB

PMR not calibrated. PMF = 0.934 is applied.

E-field emissions = 21.46 V/m

Near-field category: M4 (AWF 0 dB)

PMF scaled E-field

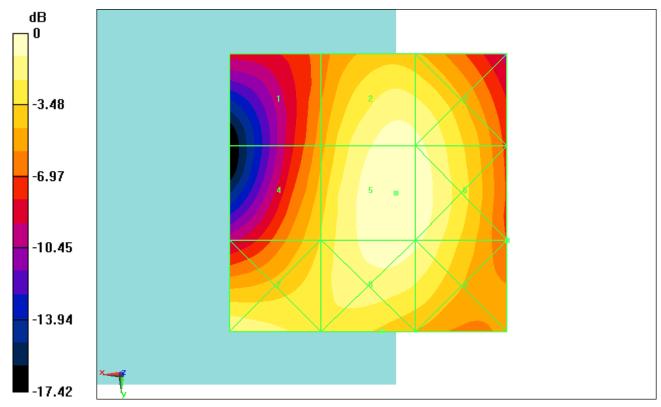
Grid 1 M4	Grid 2 M4	Grid 3 M4
15.75 V/m	18.06 V/m	18.14 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
14.44 V/m	19.08 V/m	21.46 V/m
14.44 V/m Grid 7 M4		

H Scan - H3DV6 - 2007: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.09200 A/m; Power Drift = 0.02 dB


PMR not calibrated. PMF = 0.939 is applied.

H-field emissions = 0.07712 A/m

PMF scaled H-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.058 A/m	0.075 A/m	0.074 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.064 A/m	0.077 A/m	0.075 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.073 A/m	0.075 A/m	0.073 A/m

0 dB = 30.67 V/m = 29.73 dBV/m

RF RESULTS AND M-RATING	E-Field M Rating	M4 (AWF 0 dB)
	H-Field M Rating	M4 (AWF 0 dB)
	Total M Rating	M4

Fig B.14 Total M-rating of CDMA 1900

ANNEX C SYSTEM VALIDATION RESULT

E SCAN of Dipole 835 MHz

Date: 2015-1-7

Electronics: DAE4 Sn1331

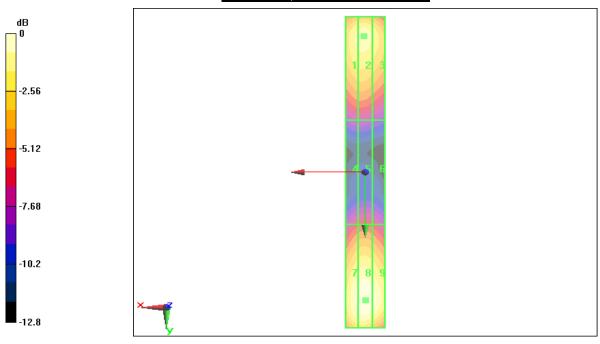
Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=0.5000mm,

dy=0.5000mm


Maximum value of peak Total field = 164.8 V/m

Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm

Reference Value = 126.0 V/m; Power Drift = 0.03 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
154.4 M4	164.8 M4	162.0 M4
Grid 4	Grid 5	Grid 6
85.71 M4	91.92M4	90.88 M4
Grid 7	Grid 8	Grid 9
150.7 M4	160.2 M4	158.1 M4

0 dB = 164.8 V/m

H SCAN of Dipole 835 MHz

Date: 2015-1-7

Electronics: DAE4 Sn1331

Medium: Air

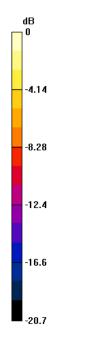
Medium parameters used: $\sigma = 0$ mho/m, $\epsilon r = 1$; $\rho = 1$ kg/m3

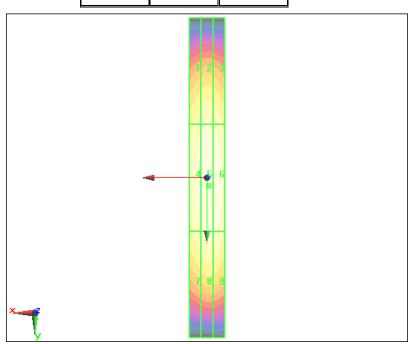
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=0.5000mm,

dy=0.5000mm


Maximum value of peak Total field = 0.467 A/m


Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.496 A/m; Power Drift = -0.05 dB **Hearing Aid Near-Field Category: M4 (AWF 0 dB)**

Peak H-field in A/m

		Grid 3
0.385 M4	0.409 M4	0.389 M4
Grid 4	Grid 5	Grid 6
0.437 M4	0.467 M4	0.449 M4
Grid 7	Grid 8	Grid 9
0 382 M4	0.411 M4	0.395 M4

0 dB = 0.467 A/m

E SCAN of Dipole 1880 MHz

Date: 2015-1-7

Electronics: DAE4 Sn1331

Medium: Air

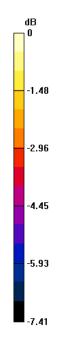
Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

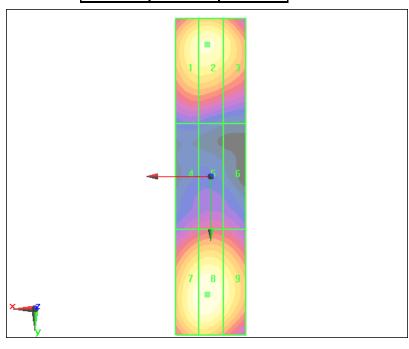
Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2428;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000mm,

dy=0.5000mm


Maximum value of peak Total field = 150.8 V/m


Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm

Reference Value = 148.1 V/m; Power Drift = 0.05 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
140.5 M2	150.8 M2	147.6 M2
Grid 4	Grid 5	Grid 6
93.12 M3	99.03M3	98.28 M3
Grid 7	Grid 8	Grid 9
138.3 M2	144.8 M2	142.3 M2

0 dB = 150.8 V/m

H SCAN of Dipole 1880 MHz

Date: 2015-1-7

Electronics: DAE4 Sn1331

Medium: Air

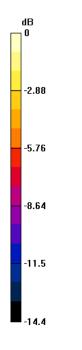
Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

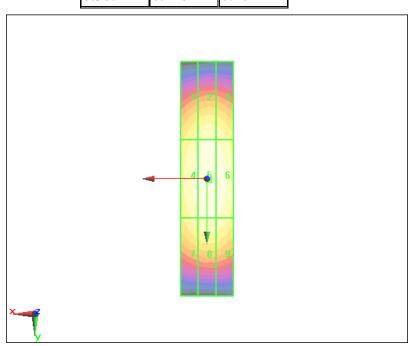
Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: H3DV6 - SN6260;

H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000mm,

dy=0.5000mm


Maximum value of peak Total field = 0.451 A/m


Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.478 A/m; Power Drift = 0.03 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

		Grid 3 0.395 M2
Grid 4	Grid 5	Grid 6
0.424 M2	0.451 M2	0.433 M2
Grid 7	Grid 8	Grid 9
0.385 M2	0.416 M2	0.401 M2

0 dB = 0.451 A/m

ANNEX D PROBE CALIBRATION CERTIFICATE

E_Probe ER3DV6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TMC Beijing (Auden)

Certificate No: ER3-2428_Jan14

C

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ER3DV6 - SN:2428

Calibration procedure(s) QA CAL-02.v8, QA CAL-25.v6

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: January 27, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

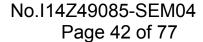
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ER3DV6	SN: 2328	10-Oct-13 (No. ER3-2328_Oct13)	Oct-14
DAE4	SN: 789	15-May-13 (No. DAE4-789_May13)	May-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Signature

Calibrated by: Leif Klysner Laboratory Technician


Approved by: Katja Pokovic Technical Manager

Issued: January 28, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2428_Jan14

Page 1 of 10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- b) CTIA Test Plan for Hearing Aid Compatibility, April 2010.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2428_Jan14 Page 2 of 10

January 27, 2014

ER3DV6 - SN:2428

Probe ER3DV6

SN:2428

Manufactured: Calibrated:

September 11, 2007 January 27, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2428_Jan14

Page 3 of 10

ER3DV6- SN:2428

January 27, 2014

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2428

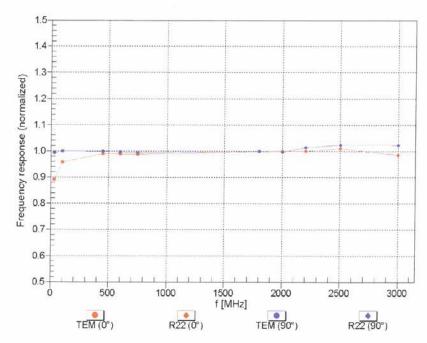
Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.51	1.59	1.83	± 10.1 %
DCP (mV) ^B	98.9	97.0	101.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	190.5	±3.3 %
		Y	0.0	0.0	1.0		152.5	
		Z	0.0	0.0	1.0		198.6	
10021- DAA	GSM-FDD (TDMA, GMSK)	Х	20.75	99.9	29.1	9.39	119.1	±1.2 %
		Y	19.27	99.6	28.9		125.1	
		Z	24.43	99.4	28.5		139.5	
10039- CAA	CDMA2000 (1xRTT, RC1)	X	4.62	65.6	18.5	4.57	109.6	±0.9 %
		Y	4.78	66.3	18.9		121.2	
		Z	4.58	66.0	18.7		114.4	

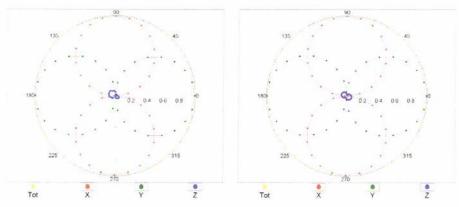
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


Certificate No: ER3-2428_Jan14

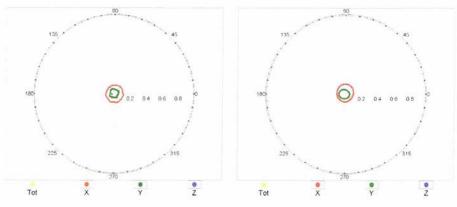
B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

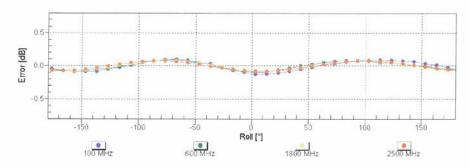

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ER3-2428_Jan14


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

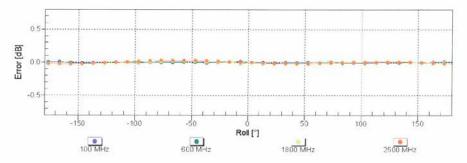
f=600 MHz,TEM,0° f=2500 MHz,R22,0°

Receiving Pattern (ϕ), $9 = 90^{\circ}$



Certificate No: ER3-2428_Jan14

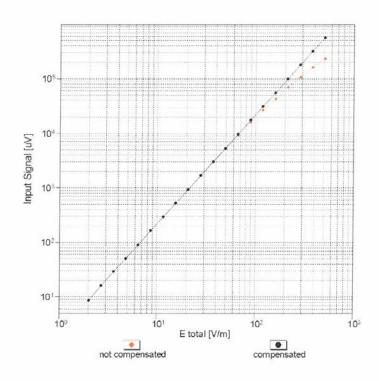
Page 6 of 10

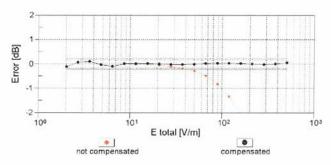


Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

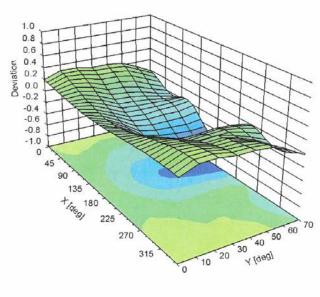
Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

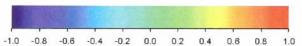

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ER3-2428_Jan14

Page 7 of 10

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ER3-2428_Jan14

Page 8 of 10

Deviation from Isotropy in Air Error (\phi, \theta), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2428_Jan14

Page 9 of 10

ER3DV6- SN:2428

January 27, 2014

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2428

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-36.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: ER3-2428_Jan14

Page 10 of 10

H_Probe H3DV6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client TM

TMC Beijing (Auden)

Certificate No: H3-6260_Jan14

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

Object

H3DV6 - SN:6260

Calibration procedure(s)

QA CAL-03.v8, QA CAL-25.v6

Calibration procedure for H-field probes optimized for close near field

evaluations in air

Calibration date:

January 27, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

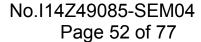
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe H3DV6	SN: 6182	10-Oct-13 (No. H3-6182_Oct13)	Oct-14
DAE4	SN: 789	15-May-13 (No. DAE4-789_May13)	May-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name
Function
Signature
Laboratory Technician

Suppose Signature
Laboratory Technician

Signature
Laboratory Technician


Signature
Laboratory Technician

Issued: January 28, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: H3-6260_Jan14

Page 1 of 10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.
- b) CTIA Test Plan for Hearing Aid Compatibility, April 2010.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no uncertainty required).

Certificate No: H3-6260_Jan14

Page 2 of 10

Probe H3DV6

SN:6260

Manufactured: Calibrated:

September 7, 2007 January 27, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: H3-6260_Jan14

Page 3 of 10

H3DV6- SN:6260

January 27, 2014

DASY/EASY - Parameters of Probe: H3DV6 - SN:6260

Basic Calibration Parameters

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(A/m / \sqrt{(mV)})$	a0	2.48E-003	2.49E-003	2.92E-003	± 5.1 %
Norm $(A/m / \sqrt{(mV)})$	a1	-2.51E-005	1.35E-006	2.69E-006	± 5.1 %
Norm $(A/m / \sqrt{(mV)})$	a2	5.03E-005	4.10E-005	5.26E-005	± 5.1 %
DCP (mV) ^B		90.9	91.8	92.6	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	138.5	±1.4 %
		Y	0.0	0.0	1.0		136.9	
		Z	0.0	0.0	1.0		134.3	

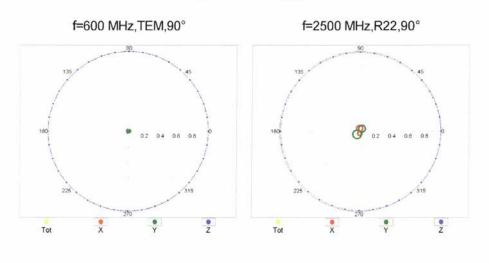

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: H3-6260_Jan14

⁸ Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Frequency Response of H-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

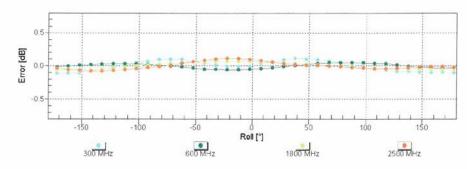
Uncertainty of Frequency Response of H-field: ± 6.3% (k=2)


Certificate No: H3-6260_Jan14

Page 5 of 10

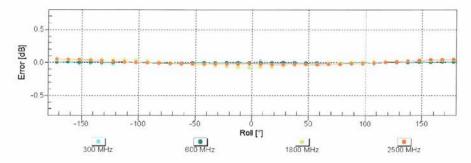
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $9 = 90^{\circ}$



Certificate No: H3-6260_Jan14

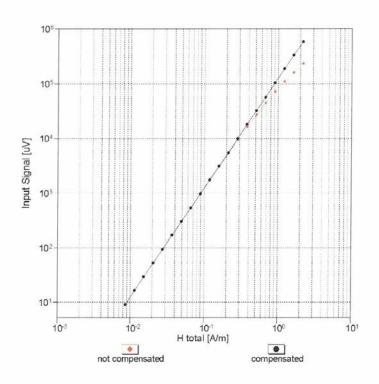
Page 6 of 10

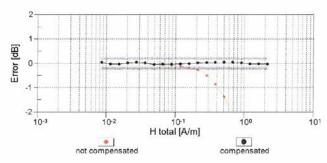


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

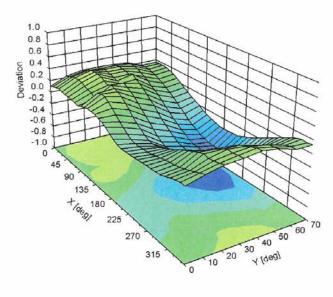

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

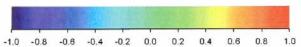

Certificate No: H3-6260_Jan14

Page 7 of 10

Dynamic Range f(H-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: H3-6260_Jan14


Page 8 of 10

Deviation from Isotropy in Air

Error (\$\phi\$, \$\text{9}\$), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: H3-6260_Jan14

Page 9 of 10

H3DV6-SN:6260

January 27, 2014

DASY/EASY - Parameters of Probe: H3DV6 - SN:6260

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-152.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm

Certificate No: H3-6260_Jan14

ANNEX E DIPOLE CALIBRATION CERTIFICATE

Dipole 835 MHz

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Accreditation No.: SCS 108

Certificate No: CD835V3-1023_Sep14

CALIBRATION CERTIFICATE CD835V3 - SN: 1023 Object QA CAL-20.v6 Calibration procedure(s) Calibration procedure for dipoles in air September 17, 2014 Calibration date This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration GB37480704 Power meter EPM-442A 09-Oct-13 (No. 217-01827) Oct-14 US37292783 09-Oct-13 (No. 217-01827) Power sensor HP 8481A Oct-14 MY41092317 Power sensor HP 8481A 09-Oct-13 (No. 217-01828) Oct-14 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Probe ER3DV6 SN: 2336 30-Dec-13 (No. ER3-2336_Dec13) Dec-14 Probe H3DV6 SN: 6065 30-Dec-13 (No. H3-6065_Dec13) Dec-14 DAE4 SN: 781 12-Sep-14 (No. DAE4-781_Sep14) Sep-15 Secondary Standards Check Date (in house) Scheduled Check Power meter Agilent 4419B SN: GB40202831 29-Oct-13 (in house check Oct-13) In house check: Oct-15 Power sensor HP E4412A SN: MY41498700 11-Oct-13 (in house check Oct-13) In house check: Oct-15 Power sensor HP E4412A SN: MY41502623 11-Oct-13 (in house check Oct-13) In house check: Oct-15 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-13) In house check: Oct-14 RF generator R&S SMT-06 SN: 832283/011 27-Aug-12 (in house check Oct-13) In house check: Oct-16 Name Function Calibrated by: Leif Klysner Laboratory Technician Fin Bomholt Approved by: Deputy Technical Manager Issued: September 22, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD835V3-1023_Sep14

Page 1 of 8

No.I14Z49085-SEM04 Page 62 of 77

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

- [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 10 mm (15 mm for [2]) above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1] and [2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (15 mm for [2]) (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1023_Sep14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW input power	0.459 A/m ± 8.2 % (k=2)
E tield 40 mm above discale soutons	andition .	Internalated maximum

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	170.0 V/m = 44.61 dBV/m
Maximum measured above low end	100 mW input power	158.3 V/m = 43.99 dBV/m
Averaged maximum above arm	100 mW input power	164.2 V/m ± 12.8 % (k=2)

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	108.3 V/m = 40.69 dBV/m
Maximum measured above low end	100 mW input power	104.9 V/m = 40.41 dBV/m
Averaged maximum above arm	100 mW input power	106.6 V/m ± 12.8 % (k=2)

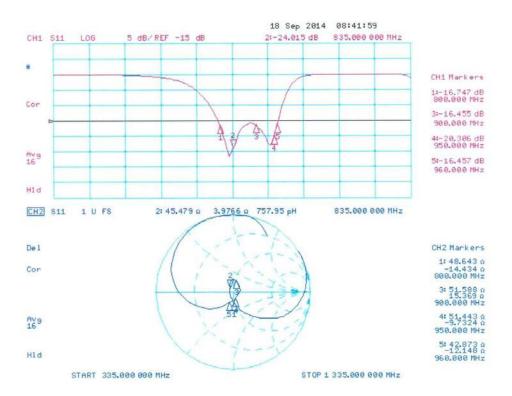
Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.7 dB	48.6 Ω - 14.4 jΩ
835 MHz	24.0 dB	45.5 Ω + 4.0 jΩ
900 MHz	16.5 dB	51.6 Ω + 15.4 jΩ
950 MHz	20.3 dB	51.4 Ω - 9.7 jΩ
960 MHz	16.5 dB	42.9 Ω - 12.1 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 H-field Result

Date: 17.09.2014

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

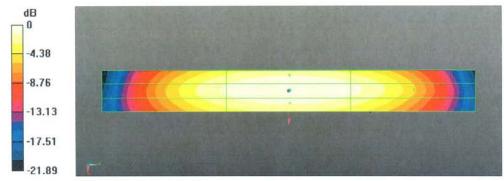
- Probe: H3DV6 SN6065; ; Calibrated: 30.12.2013
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 12.09.2014
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole H-Field measurement @ 835MHz/H-Scan - 835MHz d=10mm/Hearing Aid Compatibility Test (41x361x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.4880 A/m; Power Drift = -0.02 dB


PMR not calibrated. PMF = 1.000 is applied.

H-field emissions = 0.4587 A/m

Near-field category: M4 (AWF 0 dB)

PMF scaled H-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
0.378 A/m	0.400 A/m	0.383 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.427 A/m	0.459 A/m	0.441 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.379 A/m	0.410 A/m	0.394 A/m

0 dB = 0.4587 A/m = -6.77 dBA/m

DASY5 E-field Result

Date: 17.09.2014

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2013;

Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn781; Calibrated: 12.09.2014

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole~E-Field~measurement~@~835MHz/E-Scan-835MHz~d=10mm/Hearing~Aid~Compatibility~Test~(41x361x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 121.3 V/m; Power Drift = -0.02 dB

Applied MIF = 0.00 dB

RF audio interference level = 44.61 dBV/m

Emission category: M3

MIF scaled E-field

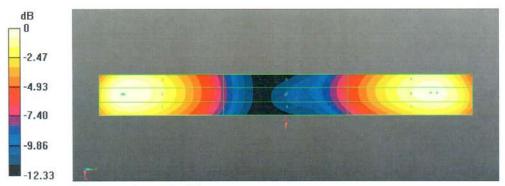
	Grid 2 M3 44.61 dBV/m	Grid 3 M3 44.37 dBV/m
Marca de la companyone	Grid 5 M4 38.91 dBV/m	Grid 6 M4 38.82 dBV/m
(Sec. 51). A 8.5 (Sec. 51).		Grid 9 M3 43.89 dBV/m

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated

grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 120.8 V/m; Power Drift = 0.00 dB


Applied MIF = 0.00 dB

RF audio interference level = 40.70 dBV/m

Emission category: M3

MIF scaled E-field

Grid 2 M3 40.69 dBV/m	
 Grid 5 M4 36.03 dBV/m	Grid 6 M4 36 dBV/m
Grid 8 M3 40.41 dBV/m	Grid 9 M3 40.35 dBV/m

0 dB = 170.0 V/m = 44.61 dBV/m

Dipole 1880 MHz

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

CALIBRATION C			
Dbject	CD1880V3 - SN:	1018	
Calibration procedure(s)	QA CAL-20.v6		
	Calibration proce	dure for dipoles in air	
Calibration date:	September 17, 2	014	
	100	onal standards, which realize the physical unit	
	į.	,	
All calibrations have been conduc	ted in the closed laborator	ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
		ry facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&T		ry facility: environment temperature $(22 \pm 3)^{\circ}$ C Cal Date (Certificate No.)	and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&T	E critical for calibration)		
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	E critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination	E critical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14
All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 2336 SN: 781	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB40202831	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 29-Oct-13 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check In house check: Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Fype-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB40202831 SN: MY41498700	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 29-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check In house check: Oct-15 In house check: Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP E4412A Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB40202831 SN: MY41498700 SN: MY41502623	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 29-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check In house check: Oct-15 In house check: Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB40202831 SN: MY41498700 SN: MY41502623 US37390585	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 29-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check In house check: Oct-15
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP E4412A Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB40202831 SN: MY41498700 SN: MY41502623 US37390585 SN: 832283/011	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 30-Dec-13 (No. H3-6065_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 29-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP E4412A Network Analyzer HP 8753E RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB40202831 SN: MY41498700 SN: MY41502623 US37390585 SN: 832283/011 Name	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ER3-2336_Dec13) 12-Sep-14 (No. DAE4-781_Sep14) Check Date (in house) 29-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13) 11-Oct-13 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 27-Aug-12 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Dec-14 Sep-15 Scheduled Check In house check: Oct-15 In house check: Oct-15 In house check: Oct-15 In house check: Oct-14 In house check: Oct-14

Certificate No: CD1880V3-1018_Sep14

Page 1 of 8

No.I14Z49085-SEM04 Page 70 of 77

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

- [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 10 mm (15 mm for [2]) above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1] and [2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (15 mm for [2]) (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1018_Sep14 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

Averaged maximum above arm

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW input power	0.456 A/m ± 8.2 % (k=2)
E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	143.0 V/m = 43.11 dBV/m
Maximum measured above low end	100 mW input power	134.6 V/m = 42.58 dBV/m
Averaged maximum above arm	100 mW input power	138.8 V/m ± 12.8 % (k=2)
E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	89.5 V/m = 39.04 dBV/m
Maximum measured above low end	100 mW input power	88.9 V/m = 38.97 dBV/m
Averaged maximum above arm	100 mW input power	89.2 V/m ± 12.8 % (k=2)

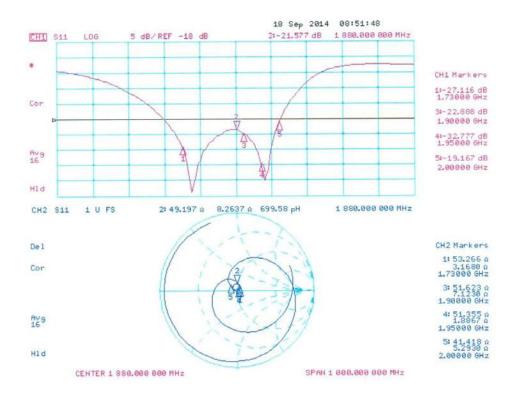
Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	27.1 dB	53.3 Ω + 3.2 jΩ
1880 MHz	21.6 dB	49.2 Ω + 8.3 jΩ
1900 MHz	22.9 dB	51.6 Ω + 7.1 jΩ
1950 MHz	32.8 dB	51.4 Ω + 1.9 jΩ
2000 MHz	19.2 dB	41.4 Ω + 5.3 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 H-field Result

Date: 17.09.2014

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018

Communication System: UID 0 - CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

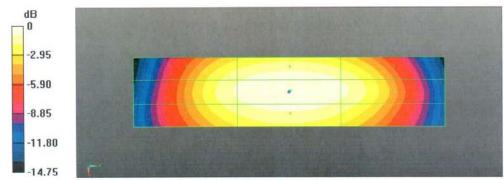
DASY52 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 30.12.2013
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 12.09.2014
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole H-Field measurement @ 1880MHz/H-Scan - 1880MHz d=10mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 0.4820 A/m; Power Drift = 0.02 dB

PMR not calibrated. PMF = 1.000 is applied.

H-field emissions = 0.4565 A/m Near-field category: M2 (AWF 0 dB)

PMF scaled H-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
0.394 A/m	0.416 A/m	0.400 A/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
0.431 A/m	0.456 A/m	0.439 A/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
0.394 A/m	0.422 A/m	0.405 A/m

0 dB = 0.4565 A/m = -6.81 dBA/m

Certificate No: CD1880V3-1018_Sep14

DASY5 E-field Result

Date: 17.09.2014

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018

Communication System: UID 0 - CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2013;

• Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn781; Calibrated: 12.09.2014

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=10mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 141.0 V/m; Power Drift = -0.01 dB

Applied MIF = 0.00 dB

RF audio interference level = 43.11 dBV/m

Emission category: M1

MIF scaled E-field

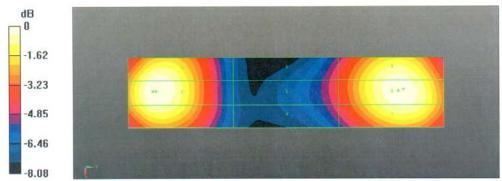
100 100 100 100 100 100 100 100 100 100	Grid 2 M1 43.11 dBV/m	Grid 3 M1 42.82 dBV/m
Grid 4 M2		Grid 6 M2
Grid 7 M1		Grid 9 M1

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated

grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 140.9 V/m; Power Drift = -0.02 dB


Applied MIF = 0.00 dB

RF audio interference level = 39.04 dBV/m

Emission category: M2

MIF scaled E-field

	Grid 2 M2 39.04 dBV/m	Grid 3 M2 38.91 dBV/m
ben't ben't ben't ben't	Grid 5 M2 36.65 dBV/m	Grid 6 M2 36.61 dBV/m
present to the control of	Grid 8 M2 38.97 dBV/m	Grid 9 M2 38.87 dBV/m

0 dB = 143.0 V/m = 43.11 dBV/m

The photos of HAC test are presented in the additional document:

Appendix to test report no. I14Z49085-SEM04/05

The photos of HAC test