No. I14Z45965-GTE02 Page 1 of 65

TEST REPORT

No. I14Z45965-GTE02

for

TCT Mobile Limited

HSDPA/HSUPA/HSPA+/UMTS Quad bands / GSM quad bands/LTE 5

bands mobile phone

Model Name: EOS 4G BELL

Marketing Name: 6050A

FCC ID: RAD500

IC No.: 9238A-0034

with

Hardware Version: 02

Software Version: 7D1Q

Issued Date: 2014-06-18

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

FCC 2.948 Listed: No.733176

IC O.A.T.S listed: No.6629A-1

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0) 10-62304633-2561, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com ©Copyright. All rights reserved by TMC Beijing.

CONTENTS

1.1. TESTING LOCATION 3 1.2. TESTING ENVIRONMENT 3 1.3. PROJECT DATA 3 1.4. SIGNATURE 3 1.4. SIGNATURE 3 2. CLIENT INFORMATION 4 2.1. APPLICANT INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH <	1.	TEST LABORATORY	
1.3. PROJECT DATA 3 1.4. SIGNATURE 3 2. CLIENT INFORMATION 4 2.1. APPLICANT INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A CONDUCTED EMISSION 21 A 4 FREQUENCY STABILITY 26 A 5 OCCUPIED BANDWIDTH 28	1.1.	1. TESTING LOCATION	
1.4. SIGNATURE 3 2. CLIENT INFORMATION 4 2.1. APPLICANT INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENT UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	1.2.	2. TESTING ENVIRONMENT	
2. CLIENT INFORMATION 4 2.1. APPLICANT INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	1.3.	3. PROJECT DATA	
2.1. APPLICANT INFORMATION 4 2.2. MANUFACTURER INFORMATION 4 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	1.4.	4. SIGNATURE	
2.2. MANUFACTURER INFORMATION 4 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	2.	CLIENT INFORMATION	
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5 3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	2.1.	1. APPLICANT INFORMATION	
3.1. ABOUT EUT 5 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT. 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	2.2.	2. MANUFACTURER INFORMATION	
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH 28	3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING. 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT. 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH. 28	3.1.	1. ABOUT EUT	5
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5 3.4. NORMAL ACCESSORY SETTING. 6 3.5. GENERAL DESCRIPTION 6 5. REFERENCE DOCUMENTS 7 5.1. REFERENCE DOCUMENTS FOR TESTING 7 6. LABORATORY ENVIRONMENT. 8 7. SUMMARY OF TEST RESULTS 9 8. TEST EQUIPMENTS UTILIZED 10 ANNEX A: MEASUREMENT RESULTS 11 A.1 OUTPUT POWER 11 A.2 EMISSION LIMIT 15 A.3 CONDUCTED EMISSION 21 A.4 FREQUENCY STABILITY 26 A.5 OCCUPIED BANDWIDTH. 28	3.2.	2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.4. NORMAL ACCESSORY SETTING	3.3.		
5. REFERENCE DOCUMENTS75.1. REFERENCE DOCUMENTS FOR TESTING76. LABORATORY ENVIRONMENT87. SUMMARY OF TEST RESULTS98. TEST EQUIPMENTS UTILIZED10ANNEX A: MEASUREMENT RESULTS11A.1 OUTPUT POWER11A.1 OUTPUT POWER11A.2 EMISSION LIMIT15A.3 CONDUCTED EMISSION21A.4 FREQUENCY STABILITY26A.5 OCCUPIED BANDWIDTH28	3.4.		
5.1. REFERENCE DOCUMENTS FOR TESTING76. LABORATORY ENVIRONMENT87. SUMMARY OF TEST RESULTS98. TEST EQUIPMENTS UTILIZED10ANNEX A: MEASUREMENT RESULTS11A.1 OUTPUT POWER11A.2 EMISSION LIMIT15A.3 CONDUCTED EMISSION21A.4 FREQUENCY STABILITY26A.5 OCCUPIED BANDWIDTH28	3.5.	5. GENERAL DESCRIPTION	6
5.1. REFERENCE DOCUMENTS FOR TESTING76. LABORATORY ENVIRONMENT87. SUMMARY OF TEST RESULTS98. TEST EQUIPMENTS UTILIZED10ANNEX A: MEASUREMENT RESULTS11A.1 OUTPUT POWER11A.2 EMISSION LIMIT15A.3 CONDUCTED EMISSION21A.4 FREQUENCY STABILITY26A.5 OCCUPIED BANDWIDTH28	5.	REFERENCE DOCUMENTS	7
6. LABORATORY ENVIRONMENT.87. SUMMARY OF TEST RESULTS98. TEST EQUIPMENTS UTILIZED10ANNEX A: MEASUREMENT RESULTS11A.1 OUTPUT POWER11A.2 EMISSION LIMIT.15A.3 CONDUCTED EMISSION21A.4 FREQUENCY STABILITY26A.5 OCCUPIED BANDWIDTH.28			
7. SUMMARY OF TEST RESULTS98. TEST EQUIPMENTS UTILIZED10ANNEX A: MEASUREMENT RESULTS11A.1 OUTPUT POWER11A.2 EMISSION LIMIT15A.3 CONDUCTED EMISSION21A.4 FREQUENCY STABILITY26A.5 OCCUPIED BANDWIDTH28	6.		
8. TEST EQUIPMENTS UTILIZED10ANNEX A: MEASUREMENT RESULTS11A.1OUTPUT POWER11A.2EMISSION LIMIT15A.3CONDUCTED EMISSION21A.4FREQUENCY STABILITY26A.5OCCUPIED BANDWIDTH28			
ANNEX A: MEASUREMENT RESULTS			
A.1OUTPUT POWER.11A.2EMISSION LIMIT.15A.3CONDUCTED EMISSION.21A.4FREQUENCY STABILITY.26A.5OCCUPIED BANDWIDTH.28			
A.2EMISSION LIMIT			
A.3CONDUCTED EMISSION21A.4FREQUENCY STABILITY26A.5OCCUPIED BANDWIDTH28			
A.4FREQUENCY STABILITY26A.5OCCUPIED BANDWIDTH28			
A.5 OCCUPIED BANDWIDTH			
		-	
$\Lambda \in EMISSION DANDWIDTU 22$			
A.6 EMISSION BANDWIDTH 36 A.7 BAND EDGE COMPLIANCE 40			
A.7 BAND EDGE COMPLIANCE			
A.8 CONDUCTED SPORIOUS EMISSION	A		
A.9 PEAK-TO-AVERAGE POWER KATIO	٨		

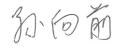
1. Test Laboratory

1.1. Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT	
Address:	No.18A, Kangding Street, Beijing Economical Development Area,	
	Beijing, China	
Postal Code:	100176	
Telephone:	00861067857376	
Fax:	00861067857376	

1.2. Testing Environment

Normal Temperature:	15-35°C
Relative Humidity:	20-75%


1.3. Project data

Testing Start Date:	2014-05-26
Testing End Date:	2014-06-17

1.4. Signature

登税则

Zi Xiaogang (Prepared this test report)

Sun Xiangqian (Reviewed this test report)

的我们

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2. Client Information

2.1. <u>Applicant Information</u>

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address / Post.	Pudong Area Shanghai, P.R. China.
City:	Shanghai
Postal Code:	201203
Country:	China
Contact Person:	Gong Zhizhou
Contact Email	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

2.2. Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post.	Pudong Area Shanghai, P.R. China.
City:	Shanghai
Postal Code:	201203
Country:	China
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. <u>About EUT</u>

Description	HSDPA/HSUPA/HSPA+/UMTS Q uad ba nds / G SM qua d
	bands/LTE 5 bands mobile phone
Model Name	EOS 4G BELL
Marketing Name	6050A
FCC ID	RAD500
IC Number	9238A-0034
Antenna	Integrated
Output power	24.21dBm maximum EIRP measured for WCDMA Band II
Extreme vol. Limits	3.5VDC to 4.35VDC (nominal: 3.8VDC)
Extreme temp. Tolerance	-30°C to +50°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
UT21a	014103000011573	02	7D1Q
UT26a	014103000012019	02	7D1Q

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN	Remarks
AE1	Battery	/	Inbuilt
AE2	Battery	/	Inbuilt
AE3	Travel charger	/	TCT-CHR-1011
AE4	USB cable	/	TCT-DC-0549
AE5	USB cable	/	1

AE1

Model Manufacturer	CAB2000013C2 SCUD
Capacitance	2150 mAh
Nominal voltage	3.8 V
AE2	
Model	CAB2000010C1
Manufacturer	/
Capacitance	/
Nominal voltage	1
AE3	
Model	CBA3000AG0C1
Manufacturer	TEN PAO

Length of cable	/
AE4	
Model	CDA3122002C1
Manufacturer	JUWEI
Length of cable	102cm
AE5	
Model	CDA0000026C2
Manufacturer	Shenghua
Length of cable	1

*AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery was used during the test.

3.5. <u>General Description</u>

4. The Equipment Under Test (EUT) is a model of HSDPA/HSUPA/HSPA+/UMTS Quad bands / GSM quad bands/LTE 5 bands mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

5. <u>Reference Documents</u>

5.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-13 Edition
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-13 Edition
ANSI/TIA-603-C	Land M obile F M or P M C ommunications Equipment Measurement and Performance Standards	2004
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from Low-Voltage E lectrical a nd E lectronic E quipment i n t he Range of 9 kHz to 40 GHz	2003
RSS-Gen	RSS-Gen — General Requirements and Information for the Certification of Radiocommunication Equipment	lssue 3,
RSS-132	Cellular Telephones E mploying N ew T echnologies Operating in the Bands 824-849 MHz and 869-894 MHz	Issue 3,
RSS-133	2 GHz Personal Communications Services	lssue 6,
KDB971168 D01	Procedures for Compliance Measurement of the Fundament Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems	al 2011

6. LABORATORY ENVIRONMENT

Control room / conducted chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber 2 (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	<1 Ω
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

Semi-anechoic chamber 2 / Fully-anechoic chamber 3 (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing:

Min. = 15 °C, Max. = 30 °C
Min. = 35 %, Max. = 60 %
> 100 dB
> 2 MΩ
< 0.5 Ω
< ±3.5 dB, 3 m distance
Between 0 and 6 dB, from 1GHz to 18GHz
Between 0 and 6 dB, from 80 to 3000 MHz

7. SUMMARY OF TEST RESULTS

WCDMA Band II

Items	Test Name	Clause in FCC rules	Clause in IC rules	Section in this report	Verdict
1	Output Power	24.232(c)	6.4	A.1	Р
2	Emission Limit	24.238, 2.1051	6.5	A.2	Р
3	CONDUCTED EMISSION	15.107/15.207		A.3	Р
4	Frequency Stability	24.235, 2.1055	6.3	A.4	Р
5	Occupied Bandwidth	2.1049(h)(i)	6.5	A.5	Р
6	Emission Bandwidth	24.238(b)	6.5	A.6	Р
7	Band Edge Compliance	24.238(b)	6.5	A.7	Р
8	Conducted Spurious Emission	24.238, 2.1057	6.5	A.8	Р
9	PEAK-TO-AVERAGE POWER RATIO		5.4	A.9	Р

WCDMA Band V

Items	Test Name	Clause in FCC rules	Clause in IC rules	Section in this report	Verdict
1	Output Power	§2.1046(a),	4.4	A.1	Р
		22.913(a)	4.4	A. I	Г
2	Emission Limit	22.917, 2.1051	4.5	A.2	Р
3	CONDUCTED EMISSION	15.107/15.207	/	A.3	Р
4	Frequency Stability	22.235, 2.1055	4.3	A.4	Р
5	Occupied Bandwidth	2.1049(h)(i)	4.5	A.5	Р
6	Emission Bandwidth	22.917(b)	4.5	A.6	Р
7	Band Edge Compliance	22.917(b)	4.5	A.7	Р
8	Conducted Spurious Emission	22.917, 2.1057	4.5	A.8	Р
9	PEAK-TO-AVERAGE POWER RATIO		6.4	A.9	Р

Receiver Radiated Emission

ltems	Test Name	Clause in FCC rules		se in ules	Clause in IC rules	Section in this report	Verdict
1	Receiver Radiated Emissions	15.109 , 2.1053	RSS-132 4.6	RSS-133 6.6	4.6/6.6	A.9	Р

8. Test Equipments Utilized

NO.	Description	TYPE	series number	MANUFACTURE	CAL DUE DATE
1	Test Receiver	ESCI	100344	R&S	2015-03-03
2	Test Receiver	ESU26	100376	R&S	2014-11-05
3	EMI Antenna	VULB 9163	514	Schwarzbeck	2014-11-10
4	EMI Antenna	3117	00139065	ETS-Lindgren	2014-07-31
5	LISN	NV216	101200	R&S	2014-07-11
6	Universal Radio Communication Tester	CMU200	102228	R&S	2014-06-23
7	Universal Radio Communication Tester	E5515C	MY48361083	Agilent	2015-02-27
8	Spectrum Analyzer	E4440A	MY48250642	Agilent	2015-02-27
9	EMI Antenna	9117	177	Schwarzbeck	2014-06-29
10	EMI Antenna	VULB 9163	9163 175	Schwarzbeck	2014-07-13
11	EMI Antenna	3117	00119024	ETS-Lindgren	2016-01-20
12	Signal Generator	N5183A	MY49060052	Agilent	2015-03-02
13	Climate chamber	SH-241	92007454	ESPEC	2015-12-14
14	Loop Antenna	HFH2-Z2	829324/007	R&S	2014-12-12

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation. This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

Limit

According to FCC§2.1046.

WCDMA Band II

Measurement result

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	23.49
(Band II)	9400	1880.0	23.38
	9538	1907.6	23.38

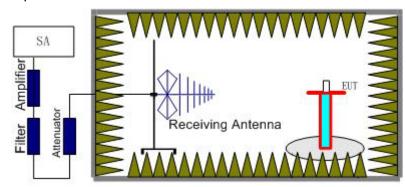
WCDMA Band V

Measurement result

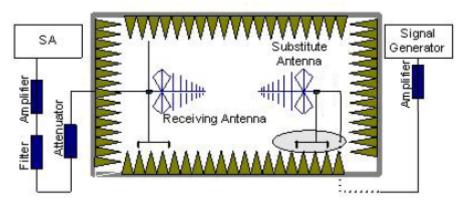
	СН	Frequency(MHz)	output power(dBm)
WCDMA	4132	826.4	23.58
(Band V)	4183	836.6	23.61
	4233	846.6	23.60

A.1.3 Radiated

A.1.3.1 Description


This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24. 232(c) s pecifies that "Peak t ransmit pow er m ust be measured o ver any i nterval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


A.1.3.2 Method of Measurement

The measurements procedures in TIA-603C-2004 are used.

 EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere

with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

 A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{Ag} - P_{cl} - G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

WCDMA Band II-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band II	≤33dBm (2W)

Measurement result

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1852.40	-29.32	3.18	-50.00	-4.55	22.05	33.00	10.95	Н
1880.00	-28.06	3.11	-50.00	-4.43	23.26	33.00	9.74	Н
1907.60	-26.92	3.18	-50.00	-4.31	24.21	33.00	8.79	Н

Frequency: 1907.60MHz

$$\label{eq:peak_elr} \begin{split} &\mathsf{Peak}\;\mathsf{EIRP}(dBm) = \mathsf{P}_{\mathsf{Mea}}(\text{-}26.92dBm) \text{-}\; \mathsf{P}_{\mathsf{cl}}(3.18dB) \text{-}\; \mathsf{P}_{\mathsf{Ag}}(\text{-}50.00dB) \text{-} \mathsf{G}_{\mathsf{a}}(\text{-}4.31dB) = & 24.21dBm \\ &\mathsf{ANALYZER}\;\mathsf{SETTINGS:}\; \mathsf{RBW} = \mathsf{VBW} = & \mathsf{5MHz} \end{split}$$

WCDMA Band V-ERP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band V	≤38.45dBm

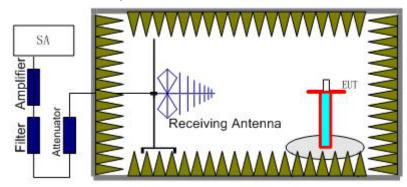
Measurement result

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
826.40	-28.52	2.07	-53.00	0.85	2.15	19.41	38.45	19.04	V
836.60	-28.53	2.08	-53.00	0.90	2.15	19.34	38.45	19.11	V
846.60	-29.25	2.09	-53.00	0.94	2.15	18.57	38.45	19.88	V

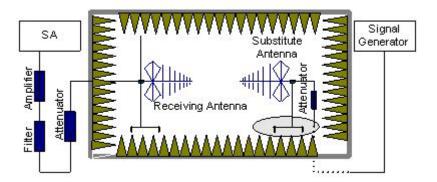
Frequency: 826.40MHz

 $\label{eq:Peak ERP(dBm)=P_{Mea}(-28.52dBm)-P_{cl}(2.07dB)-P_{Ag}(-53.00dB)-G_{a}~(0.85dB)-2.15dB=19.41dBm\\ \textbf{ANALYZER SETTINGS: RBW = VBW = 5MHz}$

A.2 EMISSION LIMIT


A.2.1 Measurement Method

The measurements procedures in TIA-603C-2004 are used.


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 24.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II and WCDMA Band V.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

No. I14Z45965-GTE02 Page16 of 65

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.
 A amplifier should be connected in for the test.
 The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.
 The measurement results are obtained as described below:
 Power(EIRP)=P_{Mea} P_{pl} G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

A.2.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz) and WCDMA Band V (826.4MHz, 836.6MHz and 846.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II and WCDMA Band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
WCDMA Band V	Low	30MHz-10GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
WCDMA Band II	Low	30MHz-20GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
WCDMA Band V	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
WCDMA Band II	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

WCDMA BAND II Mode Channel 9262/1852.4MHz

	D (dBm)	Path	Antenna	Peak	Limit	Margin(dD)	Polarization	
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	TOIANZALION	
3635.34	-57.82	4.38	-8.06	-54.14	-13.00	41.14	V	
5527.72	-58.48	5.47	-10.01	-53.94	-13.00	40.94	V	
7464.09	-59.33	6.58	-11.38	-54.53	-13.00	41.53	V	
9673.09	-56.59	8.02	-12.53	-52.08	-13.00	39.08	Н	
13319.38	-51.49	9.03	-13.62	-46.90	-13.00	33.90	V	
16478.08	-47.39	10.59	-12.43	-45.55	-13.00	32.55	Н	

WCDMA BAND II Mode Channel 9400/1880MHz

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Margin(dB)	Polarization	
	T Mea(GDIII)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(db)		
3378.18	-57.14	4.23	-7.61	-53.76	-13.00	40.76	Н	
5250.42	-58.26	5.26	-9.85	-53.67	-13.00	40.67	V	
6886.91	-57.87	6.08	-10.99	-52.96	-13.00	39.96	V	
8710.52	-58.63	7.47	-12.37	-53.73	-13.00	40.73	V	
10101.79	-55.09	8.20	-12.42	-50.87	-13.00	37.87	V	
11568.62	-55.19	8.61	-12.41	-51.39	-13.00	38.39	V	

WCDMA BAND II Mode Channel 9538/1907.6MHz

	D (dDm)	Path	Antenna	Peak	Limit	Margin(dP)) Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	Polarization
3654.18	-56.25	4.40	-8.09	-52.56	-13.00	39.56	Н
5538.76	-58.44	5.46	-10.02	-53.88	-13.00	40.88	Н
6995.88	-57.61	6.24	-11.10	-52.75	-13.00	39.75	V
9786.12	-57.02	7.75	-12.49	-52.28	-13.00	39.28	V
11982.31	-55.16	8.65	-12.50	-51.31	-13.00	38.31	V
14156.36	-51.13	9.16	-13.87	-46.42	-13.00	33.42	V

WCDMA BAND V Mode Channel 4132/826.4MHz

Frequency(MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Margin(dB)	Polarization
3346.98	-56.66	4.23	-7.53	2.15	-55.51	-13.00	42.51	Н
4710.51	-57.92	4.95	-9.18	2.15	-55.84	-13.00	42.84	V
5644.13	-61.35	5.45	-10.06	2.15	-58.89	-13.00	45.89	V
7011.44	-57.70	6.32	-11.11	2.15	-55.06	-13.00	42.06	Н
7960.87	-58.93	6.93	-11.86	2.15	-56.15	-13.00	43.15	V
8643.69	-60.75	7.45	-12.31	2.15	-58.04	-13.00	45.04	V

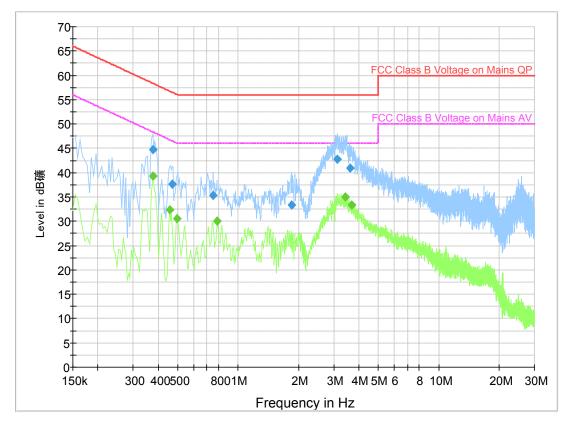
WCDMA BAND V Mode Channel 4183/836.6MHz

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Correction	Peak	Limit	Margin(dB)	Polarization
		Loss	Gain	(dB)	ERP(dBm)	(dBm)		
1665.78	-59.13	2.96	-5.37	2.15	-58.87	-13.00	45.87	Н
3625.52	-58.13	4.38	-8.05	2.15	-56.61	-13.00	43.61	V
4621.83	-58.83	4.96	-9.02	2.15	-56.92	-13.00	43.92	V
5483.60	-56.59	5.41	-9.99	2.15	-54.16	-13.00	41.16	Н
6995.75	-59.20	6.24	-11.10	2.15	-56.49	-13.00	43.49	V
7995.25	-57.09	6.94	-11.90	2.15	-54.28	-13.00	41.28	Н

WCDMA BAND V Mode Channel 4233/846.6MHz

Frequency(MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Margin(dB)	Polarization
3617.92	-58.45	4.38	-8.04	2.15	-56.94	-13.00	43.94	Н
4382.16	-59.07	4.84	-8.73	2.15	-57.33	-13.00	44.33	Н
5194.85	-58.14	5.21	-9.82	2.15	-55.68	-13.00	42.68	V
6735.96	-57.48	6.11	-10.84	2.15	-54.90	-13.00	41.90	Н
7329.71	-59.28	6.44	-11.30	2.15	-56.57	-13.00	43.57	Н
8962.04	-57.77	7.30	-12.57	2.15	-54.65	-13.00	41.65	Н

A.3 CONDUCTED EMISSION

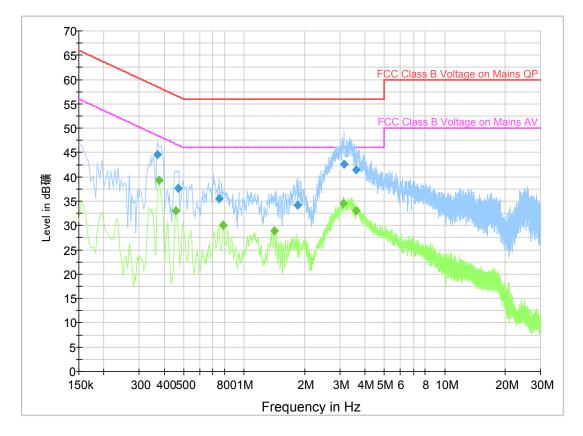

The measurement procedure in ANSI C63.4-2003 is used. Conducted Emission is measured with travel charger.

A.3.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)							
Frequency of Emission (MHZ)	Quasi -Peak	Average						
0.15 - 0.5	66 to 56*	56 to 46*						
0.5 – 5	56	46						
5 – 30	60	50						
* Decreases with logarithm of the frequency								

A.3.2 Measurement result WCDMA Band II

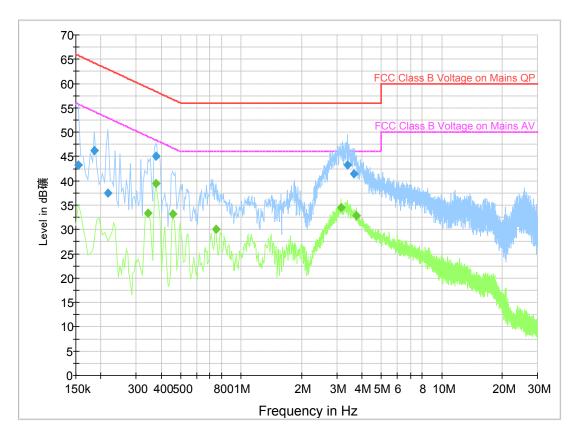
Final Result 1


Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.375000	44.8	GND	L1	9.8	13.6	58.4
0.469500	37.6	GND	L1	9.8	18.9	56.5
0.753000	35.4	GND	Ν	9.8	20.6	56.0
1.842000	33.4	GND	N	9.7	22.6	56.0
3.120000	42.8	GND	L1	9.7	13.2	56.0
3.615000	41.0	GND	L1	9.7	15.0	56.0

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.375000	39.2	GND	L1	9.8	9.2	48.4
0.456000	32.4	GND	L1	9.8	14.3	46.8
0.496500	30.6	GND	L1	9.8	15.5	46.1
0.789000	30.0	GND	L1	9.8	16.0	46.0
3.408000	35.0	GND	L1	9.7	11.0	46.0
3.682500	33.4	GND	L1	9.7	12.6	46.0

WCDMA Band V

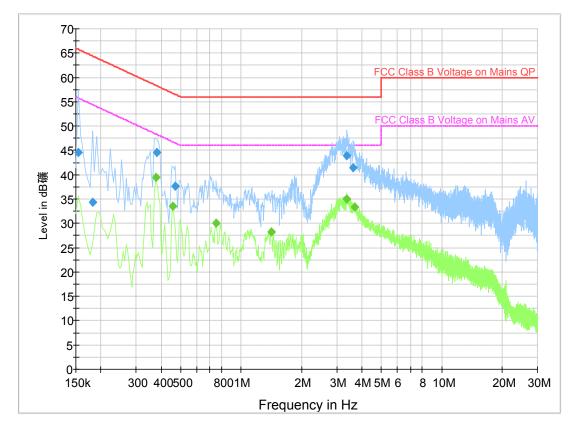
TMX


Final Result 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.370500	44.5	GND	L1	9.8	14.0	58.5
0.469500	37.7	GND	L1	9.8	18.8	56.5
0.753000	35.6	GND	N	9.8	20.4	56.0
1.842000	34.2	GND	Ν	9.7	21.8	56.0
3.147000	42.6	GND	L1	9.7	13.4	56.0
3.606000	41.4	GND	L1	9.7	14.6	56.0

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.375000	39.3	GND	L1	9.8	9.0	48.4
0.456000	33.0	GND	L1	9.8	13.8	46.8
0.789000	30.1	GND	L1	9.8	15.9	46.0
1.410000	28.9	GND	L1	9.7	17.1	46.0
3.133500	34.6	GND	L1	9.7	11.4	46.0
3.606000	33.0	GND	L1	9.7	13.0	46.0

MP3


Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154500	43.2	GND	Ν	9.8	22.5	65.8
0.186000	46.3	GND	Ν	9.8	17.9	64.2
0.217500	37.5	GND	N	9.8	25.4	62.9
0.375000	45.1	GND	L1	9.8	13.3	58.4
3.385500	43.3	GND	L1	9.7	12.7	56.0
3.660000	41.5	GND	L1	9.7	14.5	56.0

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.343500	33.3	GND	L1	9.8	15.8	49.1
0.375000	39.4	GND	L1	9.8	8.9	48.4
0.456000	33.1	GND	L1	9.8	13.6	46.8
0.748500	30.1	GND	L1	9.8	15.9	46.0
3.138000	34.5	GND	L1	9.7	11.5	46.0
3.754500	32.9	GND	L1	9.7	13.1	46.0

CAMERA

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154500	44.6	GND	L1	9.8	21.1	65.8
0.181500	34.3	GND	L1	9.8	30.1	64.4
0.379500	44.6	GND	L1	9.8	13.7	58.3
0.469500	37.7	GND	L1	9.8	18.8	56.5
3.372000	44.0	GND	L1	9.7	12.0	56.0
3.633000	41.5	GND	L1	9.7	14.5	56.0

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.375000	39.5	GND	L1	9.8	8.9	48.4
0.456000	33.6	GND	L1	9.8	13.2	46.8
0.748500	30.1	GND	L1	9.8	15.9	46.0
1.410000	28.2	GND	L1	9.7	17.8	46.0
3.372000	34.9	GND	L1	9.7	11.1	46.0
3.678000	33.3	GND	L1	9.7	12.7	46.0

A.4 FREQUENCY STABILITY

A.4.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30 $^{\circ}$ C.
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of WCDMA Band II and WCDMA Band V, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 $^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50°C to -30°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to $+/-0.5^{\circ}$ C during the measurement procedure.

A.4.2 Measurement Limit

A.4.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5VDC and 4.35VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

A.4.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the

fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.4.3 Measurement results

WCDMA Band II

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	6	0.003
3.8	8	0.004
4.35	15	0.008

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	6	0.003
-20	5	0.003
-10	4	0.002
0	5	0.002
10	6	0.003
20	12	0.007
30	6	0.003
40	8	0.004
50	9	0.005

WCDMA Band V

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	-4	0.004
3.8	4	0.004
4.35	-4	0.005

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	3	0.004
-20	4	0.005
-10	5	0.006
0	-3	0.003
10	-5	0.005
20	6	0.007
30	-3	0.004
40	7	0.008
50	-3	0.004

A.5 OCCUPIED BANDWIDTH

A.5.1 Occupied Bandwidth Results

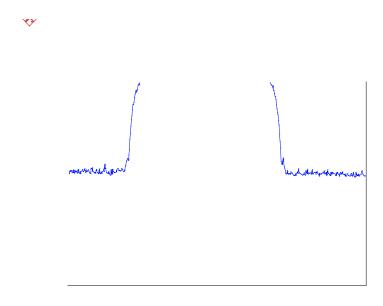
Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA Band II and WCDMA Band V. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

The EUT was set up for the max output power with pseudo random data modulation. Use the Occupied Bandwidth function of SA to measure the 99% bandwidth.

WCDMA Band II(99% BW)

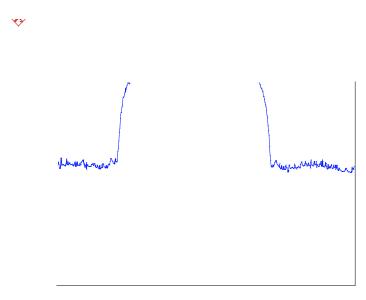
Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1852.4	4.183
1880.0	4.167
1907.6	4.151

WCDMA Band II Channel 9262-Occupied Bandwidth (99% BW)


×У

have many the MINANN

Date: 6.JUN.2014 15:53:48



Channel 9400-Occupied Bandwidth (99% BW)

Date: 6.JUN.2014 15:54:22

Channel 9538-Occupied Bandwidth (99% BW)

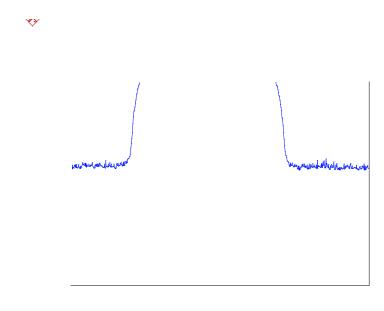
Date: 6.JUN.2014 15:54:57

WCDMA Band II(99% BW)-IC

Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1852.4	4.167
1880.0	4.151
1907.6	4.151

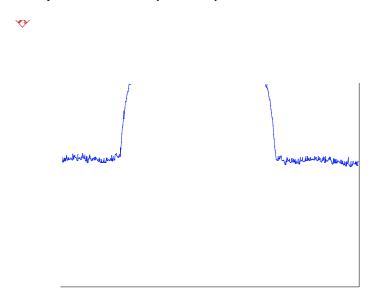
WCDMA Band II

XY


Channel 9262-Occupied Bandwidth (99% BW)

Multimenter will with the and work atter

Date: 6.JUN.2014 15:57:50

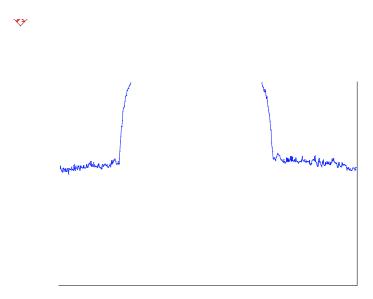


Channel 9400-Occupied Bandwidth (99% BW)

Date: 6.JUN.2014 15:58:25

Channel 9538-Occupied Bandwidth (99% BW)

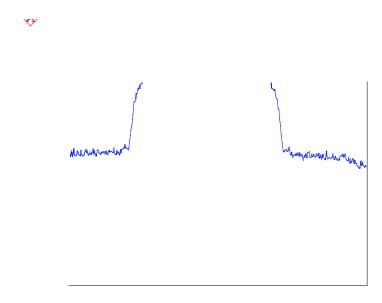
Date: 6.JUN.2014 15:59:00



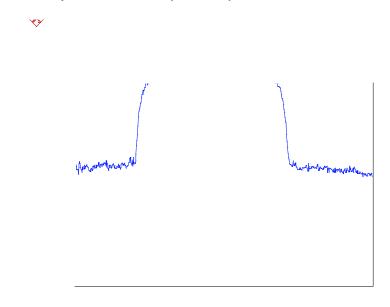
WCDMA Band V(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
826.4	4.167
836.6	4.183
846.6	4.167

WCDMA Band V


Channel 4132-Occupied Bandwidth (99% BW)

Date: 6.JUN.2014 16:16:33



Channel 4183-Occupied Bandwidth (99% BW)

Date: 6.JUN.2014 16:17:07

Channel 4233-Occupied Bandwidth (99% BW)

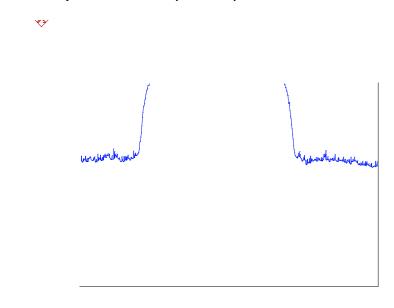
Date: 6.JUN.2014 16:17:42

WCDMA Band V(99% BW)-IC

XY

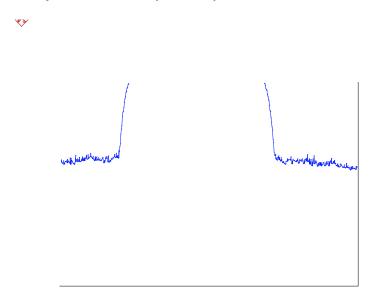
Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
826.4	4.167
836.6	4.167
846.6	4.167

WCDMA Band V


Channel 4132-Occupied Bandwidth (99% BW)

be storing believer all was www.thuthe

Date: 6.JUN.2014 16:20:36



Channel 4183-Occupied Bandwidth (99% BW)

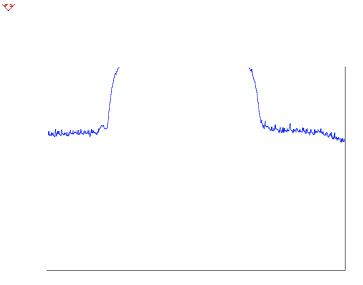
Date: 6.JUN.2014 16:21:10

Channel 4233-Occupied Bandwidth (99% BW)

Date: 6.JUN.2014 16:21:45

A.6 EMISSION BANDWIDTH

A.6.1Emission Bandwidth Results


Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA Band II and WCDMA Band V. Table below lists the measured 100% BW. Spectrum analyzer plots are included on the following pages. The EUT was set up for the max output power with pseudo random data modulation. Use the Occupied Bandwidth function of SA to measure the 100% bandwidth.

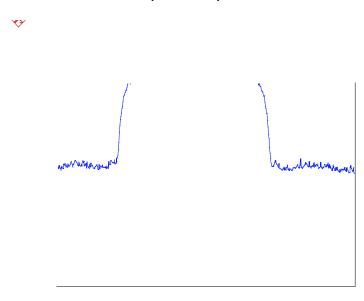
WCDMA Band II(100% BW)

Frequency(MHz)	Emission Bandwidth (100% BW)(MHz)
1852.4	4.615
1880.0	4.455
1907.6	4.455

WCDMA Band II


Channel 9262-Emission Bandwidth (100% BW)

Date: 6.JUN.2014 15:55:33



Channel 9400-Emission Bandwidth (100% BW)

Date: 6.JUN.2014 15:56:08

Channel 9538-Emission Bandwidth (100% BW)

Date: 6.JUN.2014 15:56:42

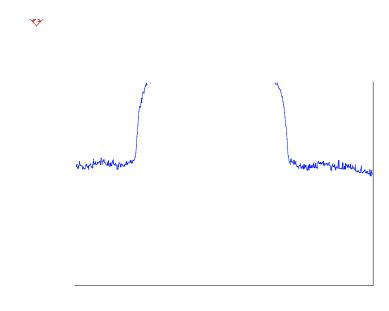
WCDMA Band V(100% BW)

Frequency(MHz)	Emission Bandwidth (100% BW)(MHz)	
826.40	4.487	
836.60	4.471	
846.60	4.487	

WCDMA Band V

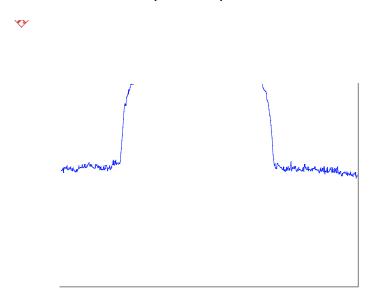
XY

Channel 4132-Emission Bandwidth (100% BW)


Winner and Marine Marine Manabuner

Date: 6.JUN.2014 16:18:18

©Copyright. All rights reserved by TMC Beijing.

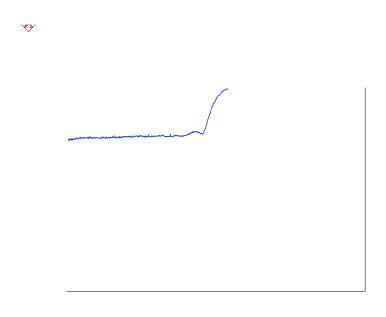


Channel 4183-Emission Bandwidth (100% BW)

Date: 6.JUN.2014 16:18:53

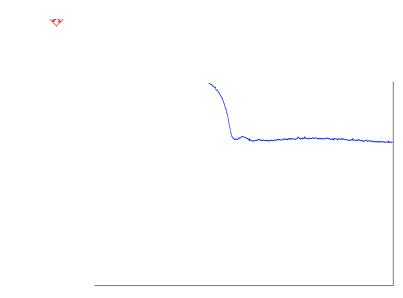
Channel 4233-Emission Bandwidth (100% BW)

Date: 6.JUN.2014 16:19:27



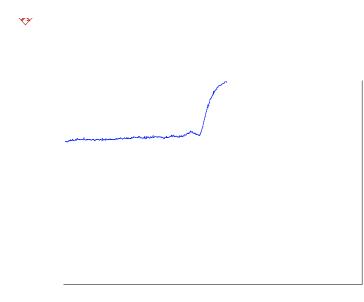
A.7 BAND EDGE COMPLIANCE

WCDMA Band I


LOW BAND EDGE BLOCK-A (WCDMA Band II)-Channel 9262

Search the peak marker below low frequency for low band edge or above high frequency for high band edge.

Date: 6.JUN.2014 15:56:58


HIGH BAND EDGE BLOCK-C (WCDMA Band II) – Channel 9538

Date: 6.JUN.2014 15:57:14

WCDMA Band V LOW BAND EDGE BLOCK-A (WCDMA Band V)-Channel 4132

Date: 6.JUN.2014 16:19:44

HIGH BAND EDGE BLOCK-C (WCDMA Band $\,V)$ –Channel 4233

♥

Date: 6.JUN.2014 16:20:00

©Copyright. All rights reserved by TMC Beijing.

A.8 CONDUCTED SPURIOUS EMISSION

A.8.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of WCDMA Band II, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For WCDMA Band V, data taken from 30 MHz to 10GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds;
 Cet the result

Get the result.

4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

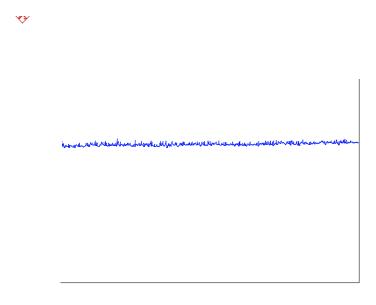
Channel	Frequency (MHz)
9262	1852.40
9400	1880.00
9538	1907.60

WCDMA Band II Transmitter

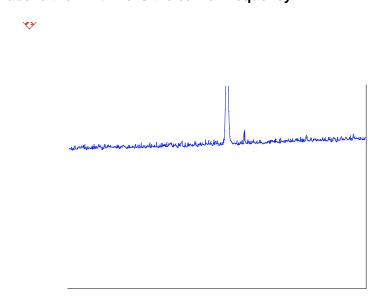
WCDMA Band V Transmitter

Channel	Frequency (MHz)
4132	826.40
4183	836.60
4233	846.60

A.8.2 Measurement Limit


Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

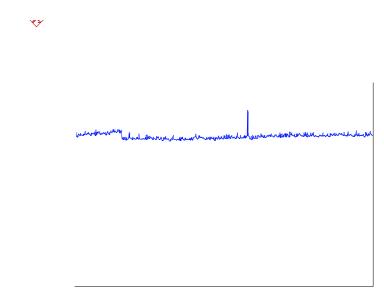
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.


A.8.3 Measurement result

WCDMA Band II A.8.3.1 Channel 9262: 30MHz –1GHz Spurious emission limit –13dBm.

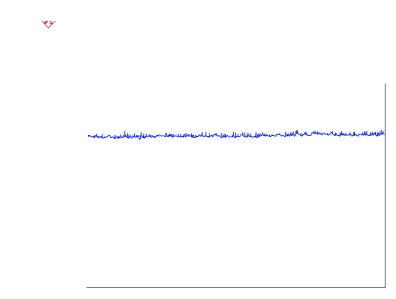
Date: 6.JUN.2014 15:59:39

A.8.3.2 Channel 9262: 1GHz –2.5GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency.



Date: 6.JUN.2014 16:00:08

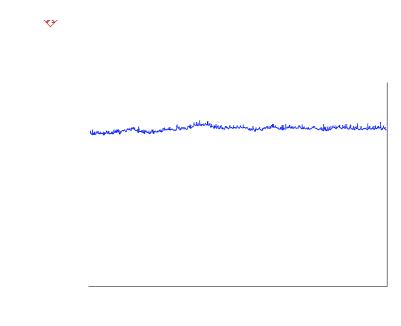
A.8.3.3 Channel 9262: 2.5GHz -7.5GHz


Spurious emission limit –13dBm.

Date: 6.JUN.2014 16:00:35

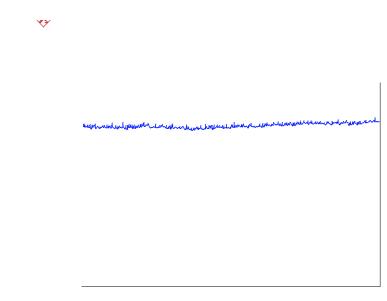
A.8.3.4 Channel 9262: 7.5GHz -10GHz

Spurious emission limit –13dBm.



Date: 6.JUN.2014 16:01:03

A.8.3.5 Channel 9262: 10GHz -15GHz


Spurious emission limit –13dBm.

Date: 6.JUN.2014 16:01:31

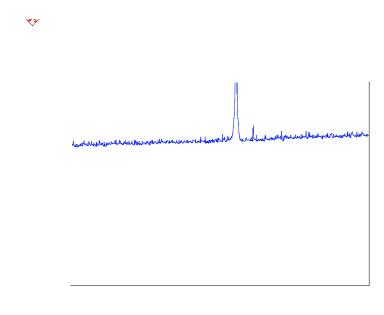
A.8.3.6 Channel 9262: 15GHz -20GHz

Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:02:00

A.8.3.7 Channel 9400: 30MHz -1GHz

Spurious emission limit -13dBm.

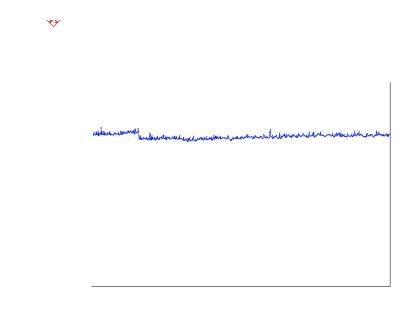

**	
	muchanional addition and an and a second and a second and a second s

Date: 6.JUN.2014 16:02:31

A.8.3.8 Channel 9400: 1GHz -2.5GHz

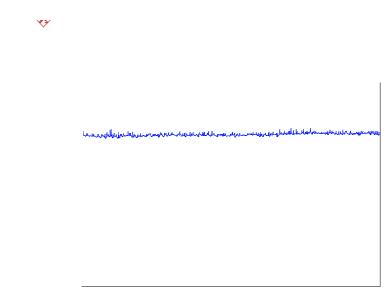
Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.



Date: 6.JUN.2014 16:02:59

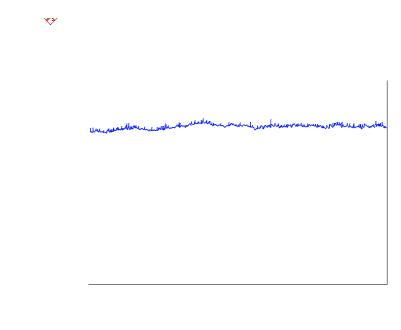
A.8.3.9 Channel 9400: 2.5GHz -7.5GHz


Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:03:27

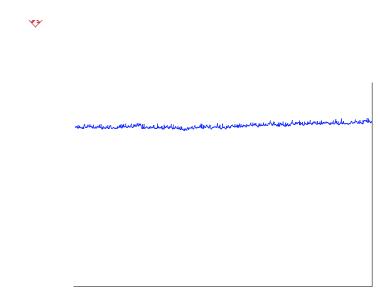
A.8.3.10 Channel 9400: 7.5GHz -10GHz

Spurious emission limit -13dBm.



Date: 6.JUN.2014 16:03:55

A.8.3.11 Channel 9400: 10GHz –15GHz


Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:04:23

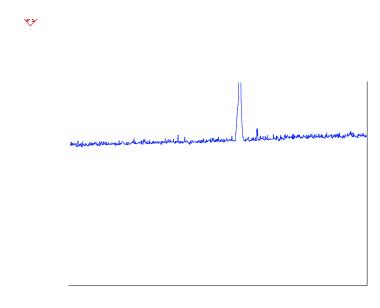
A.8.3.12 Channel 9400: 15GHz -20GHz

Spurious emission limit –13dBm.

Date: 6.JUN.2014 16:04:52

A.8.3.13 Channel 9538: 30MHz -1GHz

Spurious emission limit -13dBm.

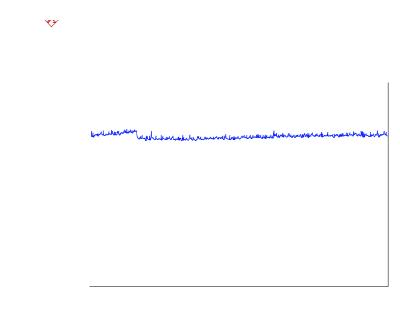

*>	
	wand a second days of a well a sub-the first with a pressing on the growthe destruction of the

Date: 6.JUN.2014 16:05:23

A.8.3.14 Channel 9538: 1GHz -2.5GHz

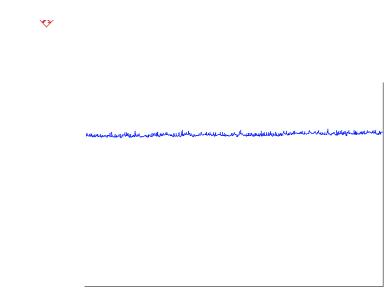
Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.



Date: 6.JUN.2014 16:05:51

A.8.3.15 Channel 9538: 2.5GHz -7.5GHz


Spurious emission limit -13dBm.

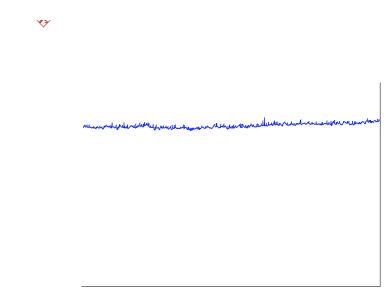
Date: 6.JUN.2014 16:06:19

A.8.3.16 Channel 9538: 7.5GHz -10GHz

Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:06:47

A.8.3.17 Channel 9538: 10GHz –15GHz

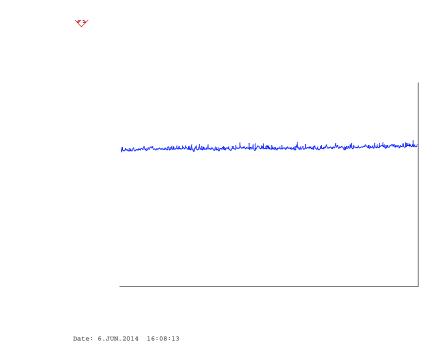

Spurious emission limit -13dBm.

**	
	where the well and the land of the second and the second and the state of the second and the second second and the second

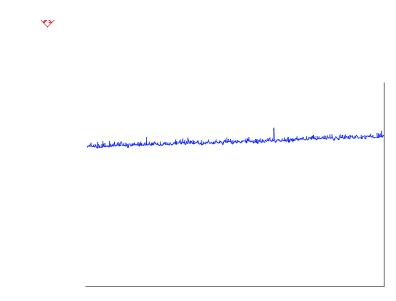
Date: 6.JUN.2014 16:07:15

A.8.3.18 Channel 9538: 15GHz -20GHz

Spurious emission limit –13dBm.



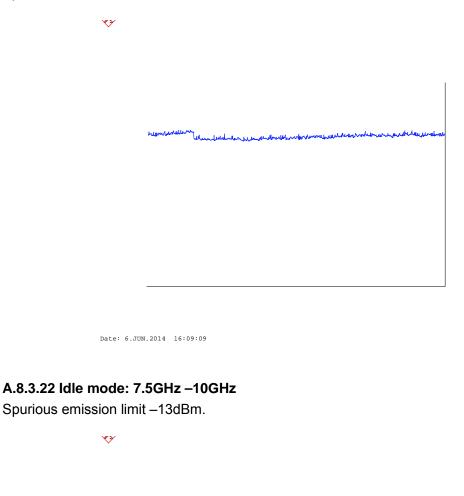
Date: 6.JUN.2014 16:07:44


A.8.3.19 Idle mode: 30MHz –1GHz

Spurious emission limit -13dBm.

A.8.3.20 Idle mode: 1GHz -2.5GHz

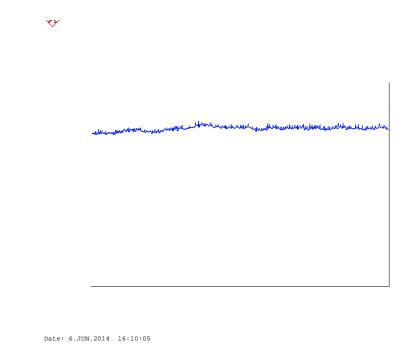
Spurious emission limit -13dBm.



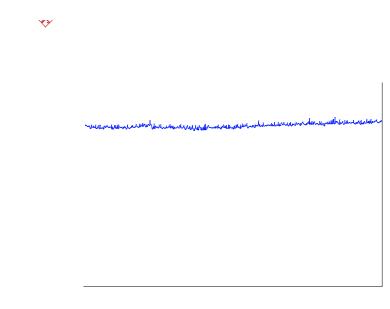
Date: 6.JUN.2014 16:08:41

A.8.3.21 Idle mode: 2.5GHz -7.5GHz

Spurious emission limit –13dBm.

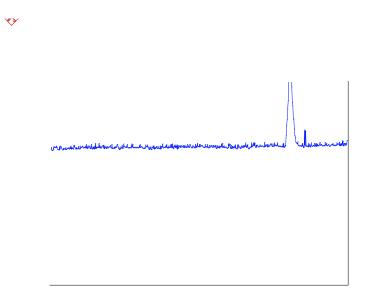

detertification and a second and a second and the particulation and the second and the second and the second and

Date: 6.JUN.2014 16:09:37

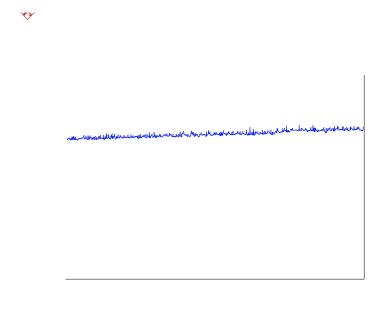

A.8.3.23 Idle mode: 10GHz -15GHz

Spurious emission limit -13dBm.

A.8.3.24 Idle mode: 15GHz -20GHz


Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:10:34


WCDMA Band V A.8.3.25 Channel 4132: 30MHz –1GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency.

Date: 6.JUN.2014 16:22:24

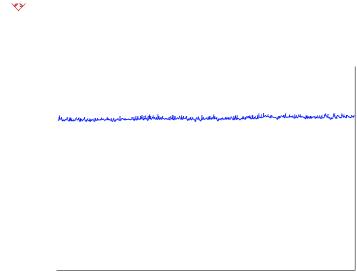
A.8.3.26 Channel 4132: 1GHz – 2.5GHz

Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:22:53

A.8.3.27 Channel 4132: 2.5GHz -7.5GHz

Spurious emission limit -13dBm.

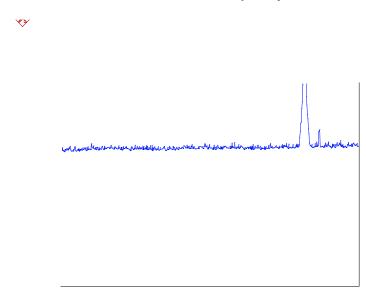

NOTE:	peak above	the limit I	ine is the	carrier frequency.

KX	
	on the optimal and a second and the second and the second and a second and the second and the second and the second second and the second s
	the manufacture of the second se

Date: 6.JUN.2014 16:23:21

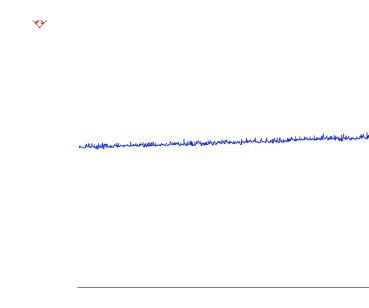
A.8.3.28 Channel 4132: 7.5GHz – 10GHz

Spurious emission limit –13dBm.


Date: 6.JUN.2014 16:23:49

A.8.3.29 Channel 4183: 30MHz -1GHz

Spurious emission limit –13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 6.JUN.2014 16:24:20

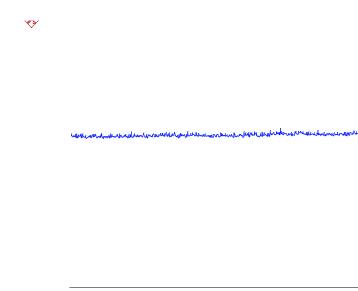
A.8.3.30 Channel 4183: 1GHz - 2.5GHz

Spurious emission limit –13dBm.

Date: 6.JUN.2014 16:24:48

A.8.3.31 Channel 4183: 2.5GHz -7.5GHz

Spurious emission limit -13dBm.

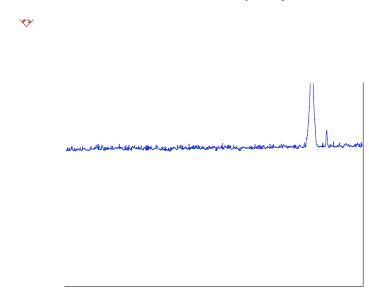

NOTE: peak above	e the limit line i	is the carrier freque	ency.
------------------	--------------------	-----------------------	-------

**	
	with a starting may well also we with the wy with the a ball on the or a south the second at the balance

Date: 6.JUN.2014 16:25:16

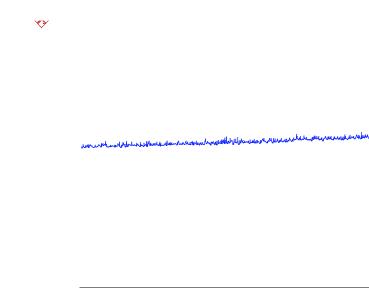
A.8.3.32 Channel 4183: 7.5GHz – 10GHz

Spurious emission limit –13dBm.


Date: 6.JUN.2014 16:25:44

A.8.3.33 Channel 4233: 30MHz -1GHz

Spurious emission limit –13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 6.JUN.2014 16:26:16

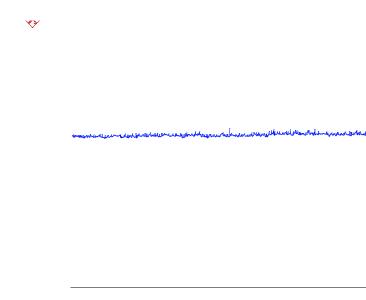
A.8.3.34 Channel 4233: 1GHz - 2.5GHz

Spurious emission limit –13dBm.

Date: 6.JUN.2014 16:26:44

A.8.3.35 Channel 4233: 2.5GHz -7.5GHz

Spurious emission limit –13dBm.

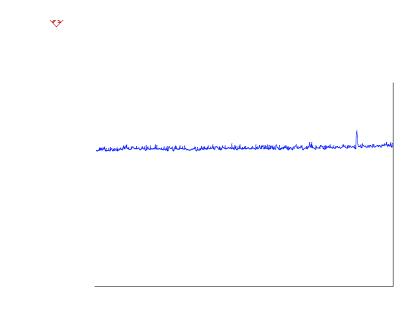

NOTE: peak above	e the limit line is f	the carrier frequency.
------------------	-----------------------	------------------------

*>	
	we have the second states and the second

Date: 6.JUN.2014 16:27:12

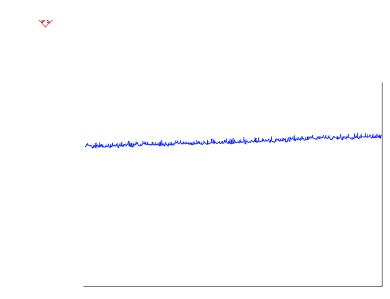
A.8.3.36 Channel 4233: 7.5GHz – 10GHz

Spurious emission limit –13dBm.



Date: 6.JUN.2014 16:27:40

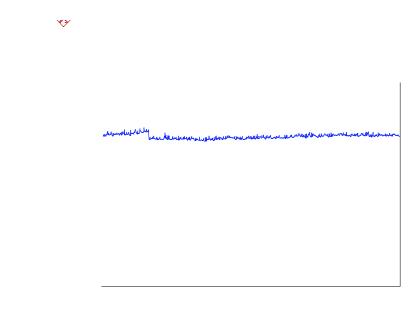
A.8.3.37 Idle mode: 30MHz - 1GHz


Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:28:09

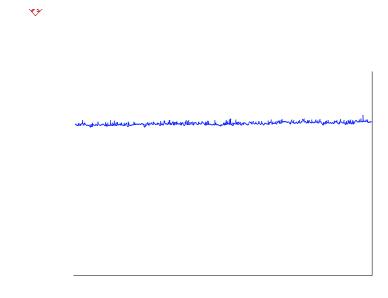
A.8.3.38 Idle mode: 1GHz - 2.5GHz

Spurious emission limit -13dBm.



Date: 6.JUN.2014 16:28:37

A.8.3.39 Idle mode: 2.5GHz - 7.5GHz


Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:29:05

A.8.3.40 Idle mode: 7.5GHz - 10GHz

Spurious emission limit -13dBm.

Date: 6.JUN.2014 16:29:34

A.9 PEAK-TO-AVERAGE POWER RATIO

A.9.1 Measurement description

According to RSS 132 and 133, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

The parameter of spectrum analyzer: RBW = 10MHz, detector = sample, No. of sample = 500,000

A.9.2 Measurement results

Frequency Error vs Temperature

	Frequency(MHz)	PAPR(dB)
WCDMA II	1880.0	3.590
WCDMA V	836.6	3.173

signaling.

A.10 RECEIVER RADIATION EMISSION

A.10.1 Method of Measurement

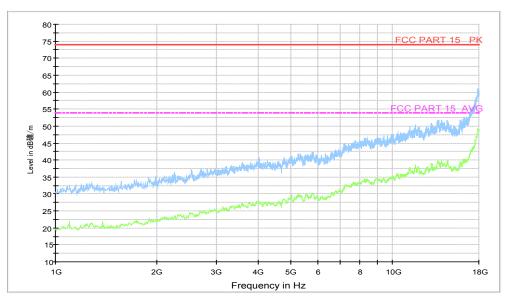
The measurement procedure in ANSI C64.4-2003 is used. The EUT is placed on a 80cm height non-conductive table locating on the center of turntable. From 30MHz-1GHz, the measurement distance is 10m. For frequency range above 1GHz, the measurement distance is 3m. The EUT is measured with t ravel charger and t he oper ating mode is idle without CMU200's

A.10.2 Method of Measurement

Frequency of Emission (MHz)	Limit (dBµV/m)	Measurement Distance (m)
30-88	30	10
88-216	33.5	10
216-960	36	10
960-1000	44	10
>1000	54	3

A. 10.3 Measurement results

IF bandwidth: 120 kHz


Normal RE_30M-1GHz_10m 45 FCC PART15_QP_10 40 35 30 المتعليل المحالي Level in dB礦/m 25 William & Company & Company When 20 TYAL. 15 10 5-30M 50 100M 200 300 400 500 800 1G 60 80 Frequency in Hz

Idle Mode: 30MHz-1GHz

RBW / VBW 1 MHz

Idle Mode: 1GHz-18GHz

Normal RE_1G-18GHz_directly

END OF REPORT