

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

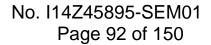
 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)


The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 4

Picture C.6 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

No. I14Z45895-SEM01 Page 93 of 150

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

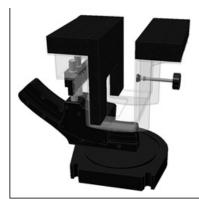
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

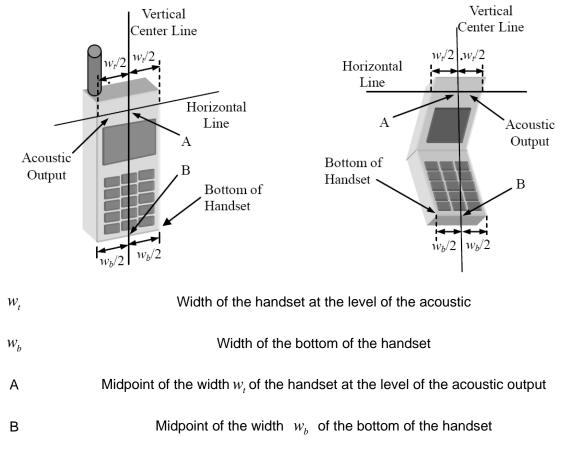
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

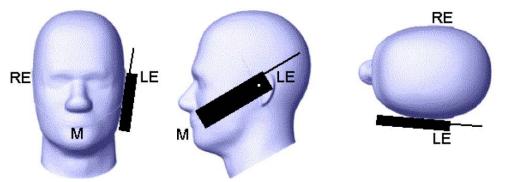
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation

No. I14Z45895-SEM01 Page 94 of 150

of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

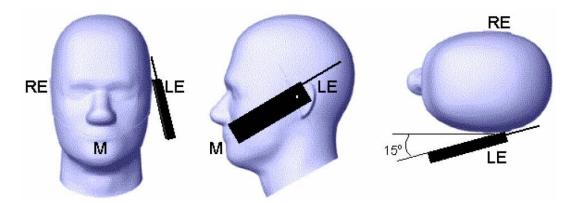
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special


Picture C.10: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

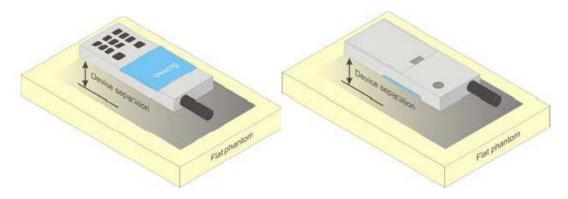
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

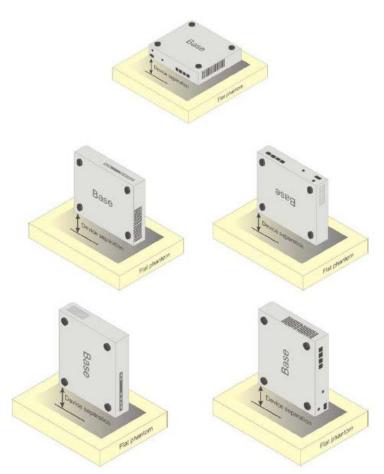
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Frequency	835	835	1900	1900	2450	2450	5800	5800		
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body		
ngredients (% by weight)										
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53		
Sugar	56.0	45.0	١	١	١	١	١	١		
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١		
Preventol	0.1	0.1	١	١	١	١	\	١		
Cellulose	1.0	1.0	١	١	١	١	\	١		
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22	١	١		
Diethylenglycol monohexylether	١	١	١	١	١	١	17.24	17.24		
Triton X-100	١	١	١	١	١	\	17.24	17.24		
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95	ε=35.3 σ=5.27	ε=48.2 σ=6.00		

Table E.1: Composition of the Tissue Equivalent Matter

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

	Table F.1: System Validation							
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)				
3846	Head 750MHz	Mar. 06, 2014	750 MHz	ОК				
3846	Head 850MHz	Mar. 06, 2014	850 MHz	ОК				
3846	Head 900MHz	Mar. 01, 2014	900 MHz	OK				
3846	Head 1750MHz	Mar. 03, 2014	1750 MHz	OK				
3846	Head 1810MHz	Mar. 03, 2014	1810 MHz	OK				
3846	Head 1900MHz	Mar. 07, 2014	1900 MHz	OK				
3846	Head 1950MHz	Mar. 04, 2014	1950 MHz	OK				
3846	Head 2000MHz	Mar. 04, 2014	2000 MHz	OK				
3846	Head 2100MHz	Mar. 05, 2014	2100 MHz	OK				
3846	Head 2300MHz	Mar. 05, 2014	2300 MHz	OK				
3846	Head 2450MHz	Mar. 02, 2014	2450 MHz	OK				
3846	Head 2550MHz	Mar. 08, 2014	2550 MHz	OK				
3846	Head 2600MHz	Mar. 08, 2014	2600 MHz	ОК				
3846	Head 3500MHz	Mar. 09, 2014	3500 MHz	OK				
3846	Head 3700MHz	Mar. 09, 2014	3700 MHz	OK				
3846	Head 5200MHz	Mar. 10, 2014	5200 MHz	OK				
3846	Head 5500MHz	Mar. 10, 2014	5500 MHz	OK				
3846	Head 5800MHz	Mar. 10, 2014	5800 MHz	OK				
3846	Body 750MHz	Mar. 06, 2014	750 MHz	OK				
3846	Body 850MHz	Mar. 06, 2014	850 MHz	OK				
3846	Body 900MHz	Mar. 01, 2014	900 MHz	OK				
3846	Body 1750MHz	Mar. 03, 2014	1750 MHz	OK				
3846	Body 1810MHz	Mar. 03, 2014	1810 MHz	OK				
3846	Body 1900MHz	Mar. 07, 2014	1900 MHz	OK				
3846	Body 1950MHz	Mar. 04, 2014	1950 MHz	OK				
3846	Body 2000MHz	Mar. 04, 2014	2000 MHz	OK				
3846	Body 2100MHz	Mar. 05, 2014	2100 MHz	OK				
3846	Body 2300MHz	Mar. 05, 2014	2300 MHz	OK				
3846	Body 2450MHz	Mar. 02, 2014	2450 MHz	OK				
3846	Body 2550MHz	Mar. 08, 2014	2550 MHz	OK				
3846	Body 2600MHz	Mar. 08, 2014	2600 MHz	OK				
3846	Body 3500MHz	Mar. 09, 2014	3500 MHz	OK				
3846	Body 3700MHz	Mar. 09, 2014	3700 MHz	OK				
3846	Body 5200MHz	Mar. 10, 2014	5200 MHz	ОК				
3846	Body 5500MHz	Mar. 10, 2014	5500 MHz	OK				
3846	Body 5800MHz	Mar. 10, 2014	5800 MHz	OK				

ANNEX G Probe Calibration Certificate

Probe 3846 Calibration Certificate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur	D ry of	SWISS S CRUSS CRUSS S CRUSS S S S S S S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ice is one of the signatorie	es to the EA	No.: SCS 108
Client TMC-BJ (Aud	en)	Certificate No:	EX3-3846_Sep13
CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:38	46	
Calibration procedure(s)		DA CAL-14.v4, QA CAL-23.v5, QA edure for dosimetric E-field probes	CAL-25.v6
Calibration date:	September 3, 20	13	A DESCRIPTION OF THE OWNER
		ry facility: environment temperature (22 \pm 3)°C .	and humidity < 70%.
Calibration Equipment used (Mł			
Calibration Equipment used (Ma Primary Standards Power meter E4419B	&TE critical for calibration)	ry facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	and humidity < 70%. Scheduled Calibration Apr-14
Calibration Equipment used (M/ Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ID GB41293874 MY41498087 SN: \$5054 (3c)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14
Calibration Equipment used (M/ Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5277 (20x)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13
Calibration Equipment used (M/ Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID ID US3642U01700	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15
Calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5129 (30b) SN: \$5129 (30b) SN: \$013 SN: 660 ID	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check
Calibration Equipment used (M/ Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID ID US3642U01700	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15
Calibration Equipment used (M/ Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5129 (30b) SN: \$5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (MA Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 3013 SN: 660 ID US3642U01700 US37390585 Name ID <td>Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function</td> <td>Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13</td>	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (MA Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	BTE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13

No. 114Z45895-SEM01 Page 101 of 150

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

C

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z ConvF DCP CF A, B, C, D Polarization (Polarization 9 tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific a)Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal . characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Certificate No: EX3-3846_Sep13

Page 2 of 11

No. I14Z45895-SEM01 Page 102 of 150

EX3DV4 - SN:3846

September 3, 2013

Probe EX3DV4

SN:3846

Manufactured: Repaired: Calibrated: October 25, 2011 August 28, 2013 September 3, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3846_Sep13

Page 3 of 11

EX3DV4- SN:3846

September 3, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.39	0.43	0.49	± 10.1 %
DCP (mV) ^B	107.1	101.1	100.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^L (k=2)
0	CW	X 0.0	0.0	0.0	1.0	0.00	145.7	±3.3 %
		Y	0.0	0.0	1.0		152.2	
		Z	0.0	0.0	1.0		165.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3846_Sep13

Page 4 of 11

EX3DV4-- SN:3846

September 3, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.32	9.32	9.32	0.47	0.82	± 12.0 %
850	41.5	0.92	8.92	8.92	8.92	0.20	1.19	± 12.0 %
900	41.5	0.97	8.96	8.96	8.96	0.41	0.85	± 12.0 %
1450	40.5	1.20	8.23	8.23	8.23	0.68	0.63	± 12.0 %
1750	40.1	1.37	7.85	7.85	7.85	0.39	0.81	± 12.0 %
1810	40.0	1.40	7.63	7.63	7.63	0.49	0.72	± 12.0 %
1900	40.0	1.40	7.57	7.57	7.57	0.35	0.87	± 12.0 %
2000	40.0	1.40	7.58	7.58	7.58	0.65	0.64	± 12.0 %
2100	39.8	1.49	7.68	7.68	7.68	0.28	0.93	± 12.0 %
2300	39.5	1.67	7.21	7.21	7.21	0.40	0.79	± 12.0 %
2450	39.2	1.80	6.78	6.78	6.78	0.52	0.68	± 12.0 %
2600	39.0	1.96	6.68	6.68	6.68	0.37	0.83	± 12.0 %
3500	37.9	2.91	6.67	6.67	6.67	0.59	0.77	± 13.1 %
3700	37.7	3.12	6.37	6.37	6.37	0.43	0.92	± 13.1 %
5200	36.0	4.66	5.25	5.25	5.25	0.25	1.80	± 13.1 %
5300	35.9	4.76	5.04	5.04	5.04	0.25	1.80	± 13.1 %
5500	35.6	4.96	4.80	4.80	4.80	0.30	1.80	± 13.1 %
5600	35.5	5.07	4.52	4.52	4.52	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.51	4.51	4.51	0.35	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

An requerices below 3 Graz, the validity of issue parameters (ϵ and σ) can be relaxed to \pm 10% in liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3846_Sep13

Page 5 of 11

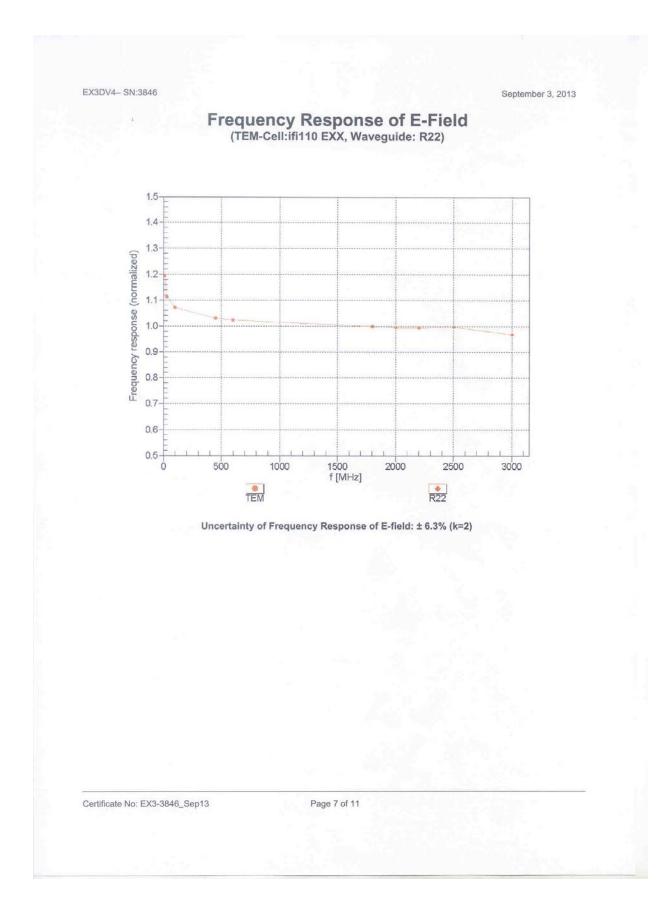
EX3DV4- SN:3846

September 3, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

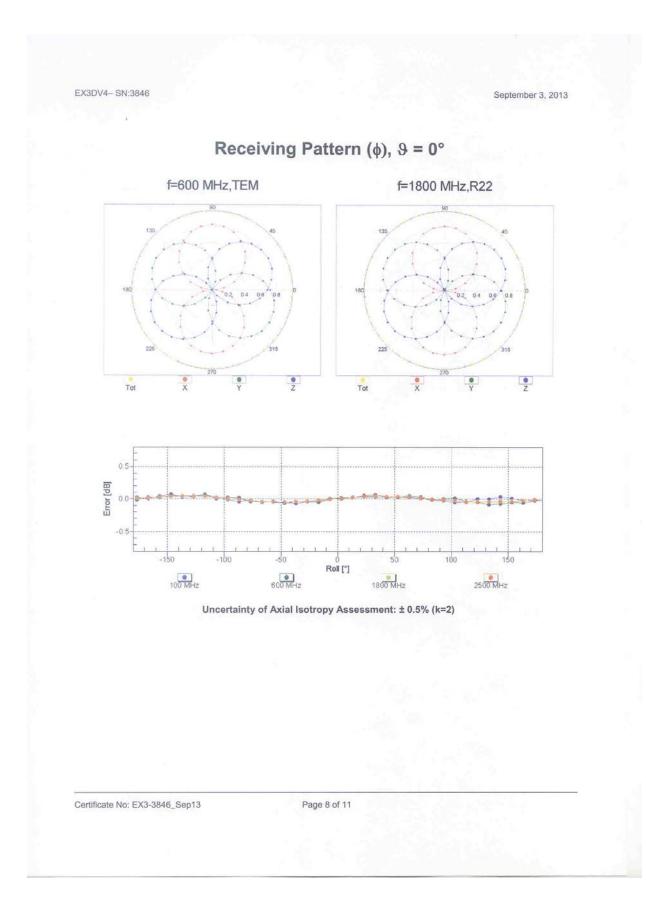
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.96	8.96	8.96	0.38	0.91	± 12.0 %
850	55.2	0.99	8.73	8.73	8.73	0.80	0.61	± 12.0 %
900	55.0	1.05	8.71	8.71	8.71	0.80	0.59	± 12.0 %
1450	54.0	1.30	7.82	7.82	7.82	0.80	0.59	± 12.0 %
1750	53.4	1.49	7.56	7.56	7.56	0.71	0.65	± 12.0 %
1810	53.3	1.52	7.27	7.27	7.27	0.47	0.83	± 12.0 %
1900	53.3	1.52	7.03	7.03	7.03	0.30	1.04	± 12.0 %
2000	53.3	1.52	7.52	7.52	7.52	0.38	0.90	± 12.0 %
2100	53.2	1.62	7.54	7.54	7.54	0.43	0.82	± 12.0 %
2300	52.9	1.81	7.00	7.00	7.00	0.76	0.61	± 12.0 %
2450	52.7	1.95	6.73	6.73	6.73	0.80	0.56	± 12.0 %
2600	52.5	2.16	6.59	6.59	6.59	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.18	6.18	6.18	0.38	1.06	± 13.1 %
3700	51.0	3.55	5.99	5.99	5.99	0.43	1.02	± 13.1 %
5200	49.0	5.30	4.36	4.36	4.36	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.17	4.17	4.17	0.40	1.90	± 13.1 %
5500	48.6	5.65	3.81	3.81	3.81	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.77	3.77	3.77	0.35	1.90	± 13.1 %
5800	48.2	6.00	3.94	3.94	3.94	0.45	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulation

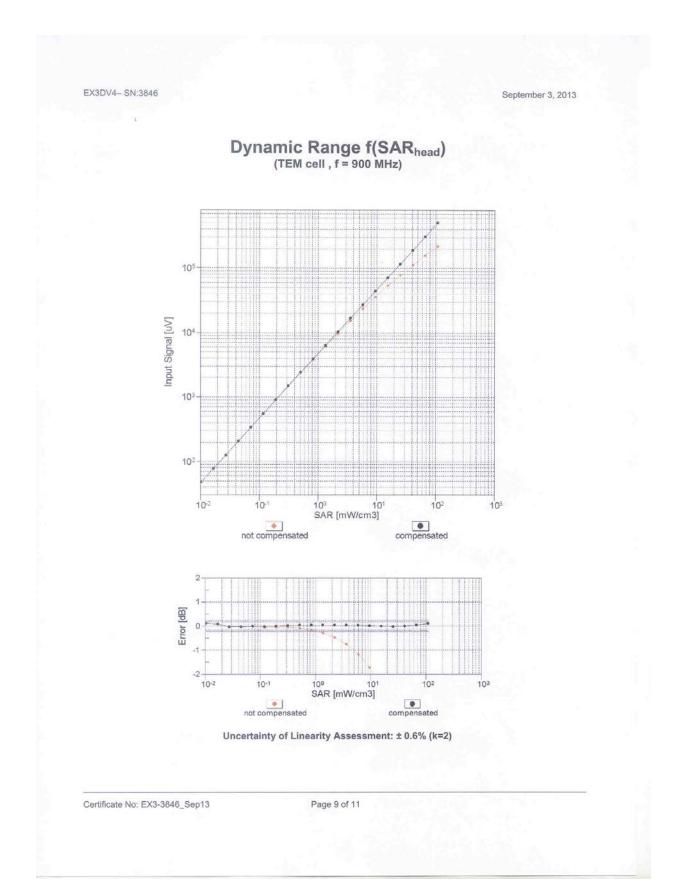

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3846_Sep13

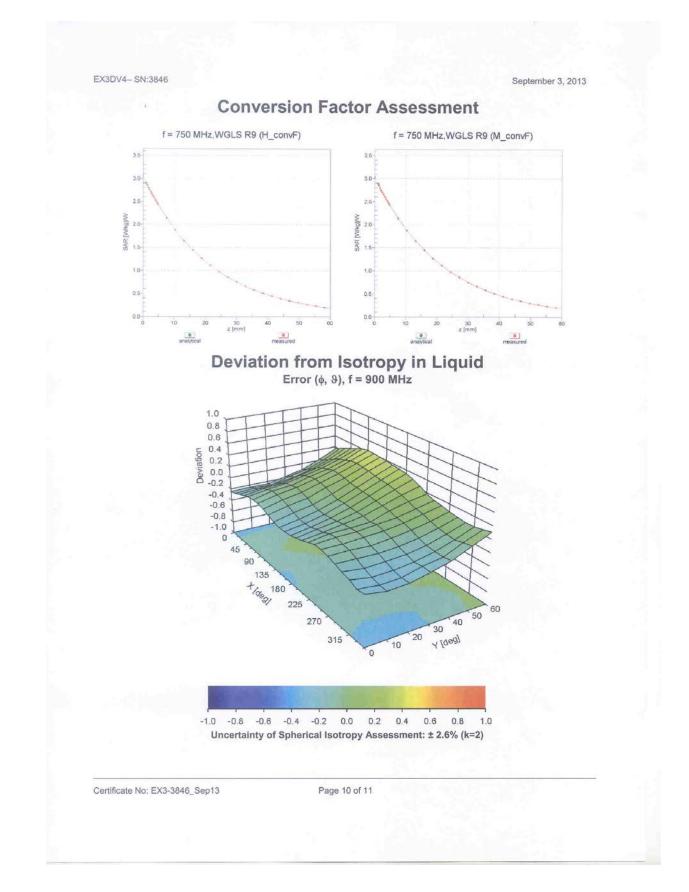
Page 6 of 11



No. I14Z45895-SEM01 Page 106 of 150



No. I14Z45895-SEM01 Page 107 of 150



No. I14Z45895-SEM01 Page 108 of 150

No. I14Z45895-SEM01 Page 109 of 150

EX3DV4-- SN:3846

September 3, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	3.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3846_Sep13

Page 11 of 11

ANNEX H Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich	y of n, Switzerland		Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accreditat			on No.: SCS 108
Multilateral Agreement for the re	•		
Client TMC-BJ (Auder	n)	Certificate N	No: D835V2-443_Aug13
CALIBRATION C	ERTIFICATE		
Object	D835V2 - SN: 44	3	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	pove 700 MHz
Calibration date:	August 29, 2013		
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical u robability are given on the following pages a y facility: environment temperature (22 \pm 3)	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	rtainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages ϵ y facility: environment temperature (22 \pm 3)	and are part of the certificate.)°C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	rtainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages ϵ y facility: environment temperature (22 \pm 3)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13 Oct-13 Apr-14
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5057.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13 Oct-13 Apr-14 Apr-14
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Oct-13 Oct-13 Apr-14
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 50547.3 / 06327 SN: 3205	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. DAE4-601_Apr13) Check Date (in house)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Scheduled Check
The measurements and the uncer All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. DAE4-601_Apr13) Check Date (in house)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 50547.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

No. I14Z45895-SEM01 Page 112 of 150

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taraturaSwiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

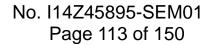
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-443_Aug13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.44 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.16 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.40 W/kg ± 17.0 % (k=2)

SAR for nominal Body TSL parameters	normalized to 1W	6.20 W/kg ± 16.5 % (k=2)
SAR measured	250 mW input power	1.59 W/kg
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	

Certificate No: D835V2-443_Aug13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 7.6 jΩ
Return Loss	- 22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω - 9.5 jΩ	
Return Loss	- 20.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D835V2-443_Aug13

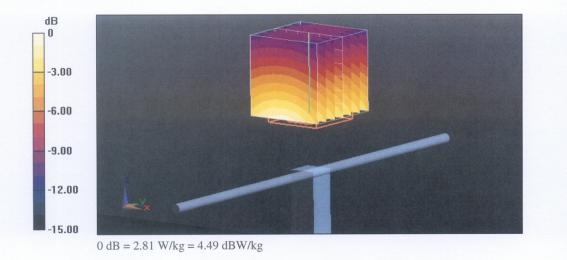
Page 4 of 8

No. I14Z45895-SEM01 Page 115 of 150

Date: 29.08.2013

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.92 S/m; ϵ_r = 41.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.828 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 2.81 W/kg

Certificate No: D835V2-443_Aug13

Page 5 of 8